RU2114210C1 - Способ формирования углеродного алмазоподобного покрытия в вакууме - Google Patents
Способ формирования углеродного алмазоподобного покрытия в вакууме Download PDFInfo
- Publication number
- RU2114210C1 RU2114210C1 RU97108626A RU97108626A RU2114210C1 RU 2114210 C1 RU2114210 C1 RU 2114210C1 RU 97108626 A RU97108626 A RU 97108626A RU 97108626 A RU97108626 A RU 97108626A RU 2114210 C1 RU2114210 C1 RU 2114210C1
- Authority
- RU
- Russia
- Prior art keywords
- product
- cathode
- ions
- coating
- plasma
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 69
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 238000000576 coating method Methods 0.000 claims abstract description 48
- 239000011248 coating agent Substances 0.000 claims abstract description 44
- 150000002500 ions Chemical class 0.000 claims abstract description 38
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 28
- 239000010439 graphite Substances 0.000 claims abstract description 28
- 238000010891 electric arc Methods 0.000 claims abstract description 14
- 239000000047 product Substances 0.000 claims description 71
- 229910052719 titanium Inorganic materials 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 10
- 229910021645 metal ion Inorganic materials 0.000 claims description 10
- 238000005507 spraying Methods 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 238000005275 alloying Methods 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000012300 argon atmosphere Substances 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052762 osmium Inorganic materials 0.000 claims description 3
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 2
- 230000001133 acceleration Effects 0.000 abstract description 3
- 238000004544 sputter deposition Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract 2
- 230000008021 deposition Effects 0.000 abstract 2
- 230000000694 effects Effects 0.000 abstract 1
- 230000000977 initiatory effect Effects 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- -1 titanium ions Chemical class 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910001234 light alloy Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
- C23C14/0611—Diamond
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3492—Variation of parameters during sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Способ включает помещение изделия в вакуумную камеру, обработку поверхности ускоренными ионами, нанесение на поверхность подслоя, электродуговое распыление графитового катода и получение углеродной плазмы, ускорение ионной компоненты углеродной плазмы и осаждение ее на поверхность изделия. При этом используют импульсный электродуговой разряд, при помощи которого на торцевой поверхности катода, возбуждают множество катодных пятен, перемещающихся по его поверхности со скоростью 10 - 30 м/с и генерирующих углеродную плазму с энергией ионов 40 -100 эВ и концентрацией ионов в плазме 1012 - 1014 см-3, причем изделие в вакуумной камере электроизолируют и поддерживают его температуру в пределах 200 - 450 К посредством регулирования частоты следования импульсов разряда. Способ позволяет повысить производительность, качество покрытия, его однородность и износостойкость. 10 з.п. ф-лы.
Description
Изобретение относится к получению сверхтвердых износостойких покрытий в вакууме, а более точно к способу формирования углеродного алмазоподобного покрытия в вакууме.
Изобретение может быть использовано для повышения срока службы режущего, измерительного инструмента, узлов трений и деталей машин, а также в медицине для повышения биосовместимости имплантатов, в электроннной технике для повышения срока службы аудио- и видеоголовок, для улучшения характеристик акустических мембран, в качестве покрытий оптических деталей и в качестве декоративных покрытий.
Известен способ получения высокотвердых алмазоподобных покрытий на металлических и диэлектрических подложках (авт. св. СССР N 411037, 1975), в котором осуществляют катодное распыление графита в магнитном поле при низком давлении инертного газа - криптона 10-5 - 10-2 Па на охлаждаемую подложку, имеющую температуру ниже 100 K.
Указанный процесс имеет низкую производительность вследствие низкого давления рабочего газа криптона и низких энергетических характеристик тлеющего разряда при данном давлении. Трудно технологически поддерживать столь низкую температуру обрабатываемых изделий. Приходится значительно усложнять технологическое оборудование для достижения сверхвысокого вакуума.
Наиболее близким техническим решением является способ формирования углеродного алмазоподобного покрытия в вакууме, заключающийся в том, что осуществляют предварительную подготовку поверхности изделия, помещают изделие в вакуумную камеру, обрабатывают поверхность изделия ускоренными ионами, наносят на обработанную поверхность изделия подслой материала, осуществляют электродуговое вакуумное распыление графитового катода из катодного пятна и получают углеродную плазму, ускоряют ионную компоненту углеродной плазмы, осаждают полученную углеродную плазму на поверхности изделия и получают углеродное алмазоподобное покрытие [1].
В указанном способе распыление катода осуществляют в стационарном разряде из одного катодного пятна, получают углеродную плазму, проводят сепарацию плазмы, т. е. очистку от макрочастиц, образующихся в стационарном катодном пятне. Ускоряют электростатически ионную компоненту плазмы, прикладывая отрицательный и высокочастотный потенциал, и получают углеродное алмазоподобное покрытие.
В указанном способе использование стационарного разряда не позволяет получить энергию плазмы, необходимую для формирования алмазоподобного покрытия, что обуславливает необходимость доускорения ионов плазмы приложением потенциала к изделию. Это приводит к разогреву покрытия и ухудшению его свойств - снижению микротвердости.
Кроме того, возникает опасность перегрева малоразмерных деталей, а также острых кромок, что приводит к их разупрочнению. В случае, если изделие изготовлено из диэлектрика, электростатическое ускорение оказывается малоэффективным.
Стационарный электродуговой разряд характеризуется наличием малоподвижного катодного пятна, являющегося источником низкоэнергетической углеродной плазмы, а также большого количества твердых осколков графита, вырывающихся из катодного пятна. Энергия ионов не превышает 10 - 15 эВ. Попадая на поверхность изделия, твердые осколки графита существенно ухудшают качество получаемого покрытия, увеличивая его дефектность.
Для устранения этого недостатка в указанном способе применяется криволинейная магнитная отклоняющая система, значительно усложняющая способ получения покрытия. Кроме того, стационарное катодное пятно, являющееся источником углеродной плазмы в указанном способе, дает узкий пучок углеродной плазмы, не позволяющий наносить алмазоподобное покрытие на протяженные изделия с достаточной равномерностью.
Сравнительно невысокая плотность плазмы, т.е. концентрация ионов, обуславливает повышенные требования к величине вакуума, чтобы избежать загрязнения покрытия остаточными газами и соответственно ухудшения качества покрытия.
Стационарный характер процесса усложняет способ нанесения покрытия, т.к. затрудняет поддержание необходимого температурного режима. Нанесения алмазоподобного покрытия на малоразмерный и пленочные материалы связано с большими трудностями, при этом свойства покрытия нестабильны.
В основу изобретения поставлена задача создания способа формирования углеродного алмазоподобного покрытия в вакууме, в котором использование импульсного дугового разряда для возбуждения множества катодных пятен на торцевой поверхности катода, а также поддержание температуры изделия посредством изменения частоты следования импульсов позволит упростить способ формирования покрытия и повысить его стабильность и производительность, а также повысить качество формируемого покрытия, в частности его однородность и износостойкостью.
Поставленная задача решается тем, что в способе формирования углеродного алмазоподобного покрытия в вакууме, заключающемся в том, что осуществляют предварительную подготовку поверхности изделия, помещают изделие в вакуумную камеру, обрабатывают поверхность изделия ускоренными ионами, наносят на обработанную поверхность изделия подслой материала, осуществляют электродуговое вакуумное распыление графитового катода из катодного пятна и получают углеродную плазму, ускоряют ионную компоненту углеродной плазмы, осаждают полученную углеродную плазму на поверхности изделия и получают углеродное алмазоподобное покрытие, согласно изобретению, для получения, ускорения и осаждения углеродной плазмы используют импульсный электродуговой разряд, посредством которого возбуждают множество катодных пятен на торцевой поверхности графитового катода, перемещающихся по торцевой поверхности катода со скоростью 10 - 30 м/с и генерирующих углеродную плазму с энергией ионов 40 - 100 эВ и концентрацией ионов в плазме 1012 - 1014 см-3, при этом изделие в вакуумной камере электроизолируют, поддерживают температуру изделия в пределах 200 - 450 K посредством регулирования частоты следования импульсов разряда.
Полезно, чтобы при обработке металлического изделия в качестве ускоренных ионов использовали ионы металла.
Целесообразно, чтобы в качестве материала подслоя использовали металла толщиной 100 - 500 , в качестве которого использовали металл, выбранный из группы, состоящей из титана, хрома, молибдена, циркония, ниобия, вольфрама.
Выгодно, чтобы при обработке поверхности изделия ускоренными ионами металла повышали температуру изделия до 473 - 573 K, затем охлаждали изделие до 293 - 300 K, повторно обрабатывали поверхность изделия ускоренными ионами металла до достижения температуры 323 K.
Целесообразно, чтобы способ осуществляли в атмосфере аргона при давлении 10-2 - 10-1 Па.
Полезно, чтобы при обработке изделия из диэлектрика в качестве ускоренных ионов использовали ионы газа, выбранного из группы, состоящей из аргона, азота, кислорода или их смеси.
Выгодно, чтобы при обработке изделия из стекла на него предварительно наносили слой нитрида алюминия толщиной 50 - 200 .
Целесообразно, чтобы в качестве графитового катода использовали графит высокой степени очистки, в котором количество пор составляет около 0,5%.
Полезно, чтобы в качестве графитового катода использовали графит с примесью легирующего элемента, в качестве которого использовали элемент, выбранный из группы, состоящий из кремния, германия, осмия, висмута, фосфора, сурьмы.
Выгодно, чтобы осуществляли распыление дополнительного катода, выполненного из металла, выбранного из группы, состоящей из титана, хрома, алюминия, циркония, кремния и германия.
Полезно также, чтобы обрабатывали сформированное на изделии алмазоподобное покрытие ускоренными ионами газа или металла.
В дальнейшем изобретение поясняется конкретными вариантами его воплощения.
Способ формирования углеродного алмазоподобного покрытия в вакууме осуществляется следующим образом.
Осуществляют предварительную подготовку механическим способом поверхности изделия с последующим обезжириванием. Затем помещают изделие в вакуумную камеру в специальное приспособление и закрепляют. Камеру вакуумируют до 5 • 10-3 Па.
При обработке металлического изделия в качестве ускоренных ионов используют ионы металла, которые генерируют электродуговым источником с титановым катодом. Ток дуги устанавливают равным 60 - 80 A, при этом на изделие подают отрицательный потенциал 1000 - 1500 B. Таким образом осуществляют обработку поверхность изделия ускоренными ионами.
После этого снижают потенциал, подаваемый на изделие, до 100 B и наносят на обработанную поверхность подслой металла толщиной 100 - 500 . Может быть также использован металл, выбранный из группы, состоящей из титана, хрома, молибдена, циркония, ниобия, вольфрама.
Затем осуществляют электродуговое вакуумное распыление графитового катода и получают углеродную плазму. Для этого используют импульсный электродуговой разряд, который имеет следующие параметры: напряжение на конденсаторной батарее емкостью 2000 мкФ составляет 300 В; длительность разряда составляет 0,5 мс; частота следования импульсов 1 - 20 Гц. При данных условиях на торцевой поверхности графитового катода возбуждается множество катодных пятен. Указанные катодные пятна перемещаются по торцевой поверхности катода со скоростью 10 - 30 м/с и генерируют углеродную плазму с энергией ионов 40 - 100 эВ и концентрацией ионов в плазме 1012 - 1014 см-3. При этом потенциал на изделие не подается, а само изделие изолировано от всех электродов и корпуса вакуумной камеры.
Поддерживают температуру изделия в пределах 200 - 450 K посредством регулирования частоты следования импульсов разряда.
Осаждают полученную углеродную плазму на поверхности изделия и получают углеродное алмазоподобное покрытие.
Если после предварительной обработки визуально или под микроскопом обнаружено, что обработка проведена неэффективно и на поверхности изделия остались окисные пленки, увеличивают продолжительность ионной обработки поверхности изделия ускоренными ионами металла, при этом повышают температуру изделия до 473 - 573 K. Затем охлаждают изделие до 293 - 300 K. Повторно обрабатывают поверхность изделия ускоренными ионами металла до достижения температуры 323 K.
Для повышения интенсивности очистки процесс ионной обработки осуществляют в атмосфере аргона при давлении 10-2 - 10-1 Па.
При обработке изделия из диэлектрика в качестве ускоренных ионов используют ионы газа, выбранного из группы, состоящей из аргона, азота, кислорода или их смеси.
При обработке изделия из стекла после обработки ионами газа на стекло предварительно наносят слой нитрида алюминия толщиной 50 - 200 для улучшения адгезии алмазоподобного покрытия к поверхности стеклянного изделия.
В качестве графитового катода в указанном способе используют графит высокой степени очистки, в котором количество пор составляет около 0,5%. Для повышения качества алмазоподобного углеродного покрытия используют графит высокой степени очистки с минимальным количеством пор, поскольку в порах находятся примеси: газ - азот, кислород, пары воды. Эти примеси, попадая в формируемое покрытие, ухудшают его качество.
Для того, чтобы получить полупроводниковые свойства алмазоподобного покрытия, в качестве графитового катода используют графит с примесью легирующего элемента, в качестве которого используют элемент, выбранный из группы, состоящей из кремния, германия, осмия, висмута, фосфора, сурьмы.
При необходимости получения алмазоподобного покрытия с различным значением электросопротивления осуществляют распыление дополнительного катода, выполненного из металла, выбранного из группы, состоящей из титана, хрома, алюминия, циркония, кремния и германия.
Для измерения оптических и электрических характеристик, а также получения рисунка на покрытии, обрабатывают сформированное на изделии алмазоподобное покрытие ускоренными ионами газа или металла.
Пример 1. Использовали полированный образец из закаленной углеродистой стали размерами 20•20•10 мм, который закрепляли в специальном приспособлении, помещали его в вакуумную камеру, камеру вакуумировали до давления 5 • 10-3 Па. Производили ионную обработку ионами титана, которые генерировали электродуговым источником плазмы с титановым катодом. На изделие подавали отрицательный потенциал 1000 В. Ток дуги устанавливали 80 А. Время обработки составило 5 мин. После этого снижали потенциал изделия до 100 В и наносили подслой титана толщиной 200 . Затем наносили слой алмазоподобного углеродного покрытия толщиной 10 мкм без подачи потенциала на изделие путем электродугового распыления графитового катода в импульсном разряде при следующих параметрах: напряжение на конденсаторной батарее емкостью 2000 мкФ составляло 300 В, длительность разряда 0,5 мс, частота следования импульсов 10 Гц. При этом энергия ионов составляла 70 эВ, плотность плазмы 1 • 1013 см-3. Температура изделия повышалась до 423 K.
Способом электронно-спектрального химического анализа примесей графита в покрытии не обнаружено.
Микротвердость углеродного алмазоподобного покрытия составила 8000 HV при нагрузке 100 г. Коэффициент трения по нитриду титана составил 0,04; по закаленной стали - 0,08, по меди - 0,1.
Путем рентгеноструктурного анализа установлено, что покрытие аморфно.
Пример 2. Использовали корпус искусственного клапана сердца, изготовленного из титана, который закрепляли в специальном приспособлении, помещали его в вакуумную камеру, камеру вакуумировали до давления 5 • 10-3 Па. Производили ионную обработку ионами титана, которые генерировали электродуговым источником плазмы с титановым катодом. На изделие подавали отрицательный потенциал 1000 В. Ток дуги устанавливали 80 А. Время обработки составило 5 мин. После этого снижали потенциал изделия до 100 В и наносили подслой титана толщиной 500 . Затем наносили слой алмазоподобного углеродного покрытия толщиной 2 мкм без подачи потенциала на изделие путем электродугового распыления графитового катода в импульсном разряде при следующих параметрах: напряжение на конденсаторной батарее емкостью 2000 мкФ составляло 300 В, длительность разряда 0,5 мс, частота следования импульсов 3 Гц. При этом энергия ионов составляли 70 эВ, плотность плазмы 1 • 1013 см-3. Температура изделия повышалась до 423 K.
Путем рентгеноструктурного анализа установлено, что покрытие аморфно.
Медико-биологическими исследованиями установлено, что покрытие имело удовлетворительные свойства по биосовместимости.
Пример 3. Использовали режущую пластинку, изготовленную из твердого сплава и применяемую при обработке легких сплавов на основе алюминия, которую закрепляли в специальном приспособлении, помещали в вакуумную камеру, камеру вакуумировали до давления 5 • 10-3 Па. Производили ионную обработку ионами титана, которые генерировали электродуговым источником плазмы с титановым катодом. На изделие подавали отрицательный потенциал 1500 В. Ток дуги устанавливали 80 А. Время обработки составило 5 мин. После этого пластинку охлаждали в вакуумной камере до 300 K. Повторяли ионную обработку в течение 1 мин. После этого снижали потенциал изделия до 100 В и наносили подслой титана толщиной 200 . Затем наносили слой алмазоподобного углеродного покрытия толщиной 2 мкм без подачи потенциала на изделие путем электродугового распыления графитового катода в импульсном разряде при следующих параметрах: напряжение на конденсаторной батарее емкостью 2000 мкФ составляло 300 В, длительность разряда 0,5 мс, частота следования импульсов 10 Гц. При этом энергия ионов составляла 70 эВ, плотность плазмы 1 • 1013 см-3. Температура изделия повышалась до 423 K.
Микротвердость углеродного алмазоподобного покрытия составила 8000 HV при нагрузке 100 г. Коэффициент трения по алюминию составил 0,12.
Производственные испытания твердосплавной пластинки с покрытием в реальных условиях серийного производства детали автомобиля показали повышение ее срока службы и улучшение качества обработанной поверхности.
Путем рентгеноструктурного анализа установлено, что покрытие аморфно.
Claims (10)
1. Способ формирования углеродного алмазоподобного покрытия в вакууме, заключающийся в том, что осуществляют предварительную подготовку поверхности изделия, помещают изделие в вакуумную камеру, обрабатывают поверхность изделия ускоренными ионами, наносят на обработанную поверхность изделия подслой материала, осуществляют электродуговое вакуумное распыление графитового катода из катодного пятна и получают углеродную плазму, ускоряют ионную компоненту углеродной плазмы, осаждают полученную углеродную плазму на поверхности изделия и получают углеродное алмазоподобное покрытие, отличающийся тем, что для получения, ускорения и осаждения углеродной плазмы используют импульсный электродуговой разряд, посредством которого возбуждают множество катодных пятен на торцевой поверхности графитового катода, перемещающихся по торцевой поверхности катода со скоростью 10 - 30 м/с и генерирующих углеродную плазму с энергией ионов 40 - 100 эВ и концентрацией ионов в плазме 1012 - 1014 см-3, при этом изделие в вакуумной камере электроизолируют, поддерживают температуру изделия в пределах 200 - 450 K посредством регулирования частоты следования импульсов разряда.
2. Способ по п. 1, отличающийся тем, что при обработке металлического изделия в качестве ускоренных ионов используют ионы металла.
4. Способ по пп. 2 и 3, отличающийся тем, что при обработке поверхности изделия ускоренными ионами металла повышают температуру изделия до 473 - 573 K, затем охлаждают изделие до температуры 293 - 300 K, повторно обрабатывают поверхность изделия ускоренными ионами металла до достижения температуры 323 K.
5. Способ по пп. 2 - 4, отличающийся тем, что способ осуществляют в атмосфере аргона при давлении 10-2 - 10-1 Па.
6. Способ по п. 1, отличающийся тем, что при обработке изделия из диэлектрика в качестве ускоренных ионов используют ионы газа, выбранного из группы, состоящей из аргона, азота, кислорода или их смеси.
7. Способ по п. 1, отличающийся тем, что при обработке изделия из стекла на него предварительно наносят слой нитрида алюминия толщиной 50 - 200
8. Способ по п. 1, отличающийся тем, что в качестве графитового катода используют графит высокой степени очистки, в котором количество пор составляет около 0,5%.
8. Способ по п. 1, отличающийся тем, что в качестве графитового катода используют графит высокой степени очистки, в котором количество пор составляет около 0,5%.
9. Способ по п. 1, отличающийся тем, что в качестве графитового катода используют графит с примесью легирующего элемента, в качестве которого используют элемент, выбранный из группы, состоящей из кремния, германия, осмия, висмута, фосфора, сурьмы.
10. Способ по п. 1, отличающийся тем, что осуществляют распыление дополнительного катода, выполненного из металла, выбранного из группы, состоящей из титана, хрома, алюминия, циркония, кремния и германия.
11. Способ по п. 1, отличающийся тем, что обрабатывают сформированное на изделии алмазоподобное покрытие ускоренными ионами газа или металла.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU97108626A RU2114210C1 (ru) | 1997-05-30 | 1997-05-30 | Способ формирования углеродного алмазоподобного покрытия в вакууме |
KR1019997010940A KR20010012970A (ko) | 1997-05-30 | 1998-05-28 | 진공하에 다이아몬드형 탄소 코팅막의 형성방법 |
PCT/NO1998/000158 WO1998054376A1 (en) | 1997-05-30 | 1998-05-28 | Method of forming diamond-like carbon coating in vacuum |
AU76785/98A AU7678598A (en) | 1997-05-30 | 1998-05-28 | Method of forming diamond-like carbon coating in vacuum |
EP98924681A EP0985057A1 (en) | 1997-05-30 | 1998-05-28 | Method of forming diamond-like carbon coating in vacuum |
CN98805586.4A CN1258322A (zh) | 1997-05-30 | 1998-05-28 | 在真空中生成金刚石般碳涂层的方法 |
US09/424,763 US6261424B1 (en) | 1997-05-30 | 1998-05-28 | Method of forming diamond-like carbon coating in vacuum |
JP50054099A JP2002501575A (ja) | 1997-05-30 | 1998-05-28 | 真空内でダイヤモンド質のカーボン薄膜を成膜する方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU97108626A RU2114210C1 (ru) | 1997-05-30 | 1997-05-30 | Способ формирования углеродного алмазоподобного покрытия в вакууме |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2114210C1 true RU2114210C1 (ru) | 1998-06-27 |
RU97108626A RU97108626A (ru) | 1998-11-27 |
Family
ID=20193334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU97108626A RU2114210C1 (ru) | 1997-05-30 | 1997-05-30 | Способ формирования углеродного алмазоподобного покрытия в вакууме |
Country Status (8)
Country | Link |
---|---|
US (1) | US6261424B1 (ru) |
EP (1) | EP0985057A1 (ru) |
JP (1) | JP2002501575A (ru) |
KR (1) | KR20010012970A (ru) |
CN (1) | CN1258322A (ru) |
AU (1) | AU7678598A (ru) |
RU (1) | RU2114210C1 (ru) |
WO (1) | WO1998054376A1 (ru) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004104263A1 (en) * | 2003-05-22 | 2004-12-02 | Argor Aljba S.A. | A method for forming a superhard amorphous carbon coating in vacuum |
RU2518823C2 (ru) * | 2009-05-19 | 2014-06-10 | Федерал-Могул Буршайд Гмбх | Элемент скольжения |
RU2542912C2 (ru) * | 2013-07-18 | 2015-02-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" | Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп |
RU2553803C2 (ru) * | 2009-08-07 | 2015-06-20 | Эрликон Трейдинг Аг, Трюббах | Трибология в сочетании с коррозионной стойкостью: новое семейство pvd- и pacvd-покрытий |
RU2651837C1 (ru) * | 2017-03-21 | 2018-04-24 | Олег Андреевич Стрелецкий | Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения |
RU2656312C1 (ru) * | 2017-08-14 | 2018-06-04 | Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН) | Способ нанесения твердых износостойких наноструктурных покрытий из аморфного алмазоподобного углерода |
RU2757303C1 (ru) * | 2020-08-18 | 2021-10-13 | Общество с ограниченной ответственностью "ТехноТерм-Саратов" | Способ получения аморфного наноструктурированного алмазоподобного покрытия |
RU2760018C1 (ru) * | 2020-11-03 | 2021-11-22 | ООО "ТехноТерм-Саратов" | Способ получения аморфного наноструктурированного алмазоподобного покрытия |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3555844B2 (ja) | 1999-04-09 | 2004-08-18 | 三宅 正二郎 | 摺動部材およびその製造方法 |
US6475573B1 (en) | 1999-05-03 | 2002-11-05 | Guardian Industries Corp. | Method of depositing DLC inclusive coating on substrate |
US6368664B1 (en) | 1999-05-03 | 2002-04-09 | Guardian Industries Corp. | Method of ion beam milling substrate prior to depositing diamond like carbon layer thereon |
US6280834B1 (en) | 1999-05-03 | 2001-08-28 | Guardian Industries Corporation | Hydrophobic coating including DLC and/or FAS on substrate |
US6277480B1 (en) | 1999-05-03 | 2001-08-21 | Guardian Industries Corporation | Coated article including a DLC inclusive layer(s) and a layer(s) deposited using siloxane gas, and corresponding method |
DE19933707A1 (de) * | 1999-07-19 | 2001-01-25 | Johannes Moeller Hamburg Engin | Beschickungsvorrichtung für feinteiliges oder pulverförmiges Material |
JP4560964B2 (ja) | 2000-02-25 | 2010-10-13 | 住友電気工業株式会社 | 非晶質炭素被覆部材 |
US6359388B1 (en) | 2000-08-28 | 2002-03-19 | Guardian Industries Corp. | Cold cathode ion beam deposition apparatus with segregated gas flow |
EP1184119A1 (en) * | 2000-08-31 | 2002-03-06 | N.V. Bekaert S.A. | Tool for cutting organic material comprising a twisted cutting wire having a sharp pointed cross-section |
US6566983B2 (en) * | 2000-09-02 | 2003-05-20 | Lg Electronics Inc. | Saw filter using a carbon nanotube and method for manufacturing the same |
US6602371B2 (en) | 2001-02-27 | 2003-08-05 | Guardian Industries Corp. | Method of making a curved vehicle windshield |
US20050034668A1 (en) * | 2001-03-22 | 2005-02-17 | Garvey James F. | Multi-component substances and apparatus for preparation thereof |
US6613198B2 (en) | 2001-04-18 | 2003-09-02 | James F. Garvey | Pulsed arc molecular beam process |
US6797336B2 (en) * | 2001-03-22 | 2004-09-28 | Ambp Tech Corporation | Multi-component substances and processes for preparation thereof |
KR100465738B1 (ko) * | 2002-07-04 | 2005-01-13 | 한국과학기술연구원 | 다층 경질 탄소박막과 그 제조방법 |
US6815690B2 (en) * | 2002-07-23 | 2004-11-09 | Guardian Industries Corp. | Ion beam source with coated electrode(s) |
KR20040022639A (ko) * | 2002-09-09 | 2004-03-16 | 주식회사 네오바이오텍 | 탄소계 물질 박막 형성방법 |
JP2004138128A (ja) | 2002-10-16 | 2004-05-13 | Nissan Motor Co Ltd | 自動車エンジン用摺動部材 |
US6988463B2 (en) * | 2002-10-18 | 2006-01-24 | Guardian Industries Corp. | Ion beam source with gas introduced directly into deposition/vacuum chamber |
US6812648B2 (en) | 2002-10-21 | 2004-11-02 | Guardian Industries Corp. | Method of cleaning ion source, and corresponding apparatus/system |
US6969198B2 (en) | 2002-11-06 | 2005-11-29 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
FR2849867B1 (fr) * | 2003-01-10 | 2005-03-25 | Centre Nat Rech Scient | Croissance diamant a grande vitesse par plasma micro-onde en regime pulse. |
CN100594253C (zh) * | 2003-02-26 | 2010-03-17 | 住友电气工业株式会社 | 无定形碳膜 |
US20040172832A1 (en) * | 2003-03-04 | 2004-09-09 | Colin Clipstone | Razor blade |
JP3891433B2 (ja) | 2003-04-15 | 2007-03-14 | 日産自動車株式会社 | 燃料噴射弁 |
EP1479946B1 (en) | 2003-05-23 | 2012-12-19 | Nissan Motor Co., Ltd. | Piston for internal combustion engine |
EP1482190B1 (en) | 2003-05-27 | 2012-12-05 | Nissan Motor Company Limited | Rolling element |
JP2005008851A (ja) * | 2003-05-29 | 2005-01-13 | Nissan Motor Co Ltd | 硬質炭素薄膜付き機械加工工具用切削油及び硬質炭素薄膜付き機械加工工具 |
JP2004360649A (ja) | 2003-06-06 | 2004-12-24 | Nissan Motor Co Ltd | エンジン用ピストンピン |
US7033670B2 (en) * | 2003-07-11 | 2006-04-25 | Siemens Power Generation, Inc. | LCT-epoxy polymers with HTC-oligomers and method for making the same |
US7781063B2 (en) | 2003-07-11 | 2010-08-24 | Siemens Energy, Inc. | High thermal conductivity materials with grafted surface functional groups |
JP4863152B2 (ja) | 2003-07-31 | 2012-01-25 | 日産自動車株式会社 | 歯車 |
EP1666573B1 (en) | 2003-08-06 | 2019-05-15 | Nissan Motor Company Limited | Low-friction sliding mechanism and method of friction reduction |
JP2005054617A (ja) | 2003-08-08 | 2005-03-03 | Nissan Motor Co Ltd | 動弁機構 |
JP4973971B2 (ja) | 2003-08-08 | 2012-07-11 | 日産自動車株式会社 | 摺動部材 |
JP4117553B2 (ja) | 2003-08-13 | 2008-07-16 | 日産自動車株式会社 | チェーン駆動装置 |
DE602004008547T2 (de) | 2003-08-13 | 2008-05-21 | Nissan Motor Co., Ltd., Yokohama | Struktur zur Verbindung von einem Kolben mit einer Kurbelwelle |
US7771821B2 (en) | 2003-08-21 | 2010-08-10 | Nissan Motor Co., Ltd. | Low-friction sliding member and low-friction sliding mechanism using same |
JP4539205B2 (ja) | 2003-08-21 | 2010-09-08 | 日産自動車株式会社 | 冷媒圧縮機 |
EP1508611B1 (en) | 2003-08-22 | 2019-04-17 | Nissan Motor Co., Ltd. | Transmission comprising low-friction sliding members and transmission oil therefor |
US20050274774A1 (en) * | 2004-06-15 | 2005-12-15 | Smith James D | Insulation paper with high thermal conductivity materials |
US7309526B2 (en) * | 2004-06-15 | 2007-12-18 | Siemens Power Generation, Inc. | Diamond like carbon coating on nanofillers |
US7592045B2 (en) * | 2004-06-15 | 2009-09-22 | Siemens Energy, Inc. | Seeding of HTC fillers to form dendritic structures |
US7776392B2 (en) * | 2005-04-15 | 2010-08-17 | Siemens Energy, Inc. | Composite insulation tape with loaded HTC materials |
US7553438B2 (en) * | 2004-06-15 | 2009-06-30 | Siemens Energy, Inc. | Compression of resin impregnated insulating tapes |
US20050277721A1 (en) | 2004-06-15 | 2005-12-15 | Siemens Westinghouse Power Corporation | High thermal conductivity materials aligned within resins |
US20080050580A1 (en) * | 2004-06-15 | 2008-02-28 | Stevens Gary C | High Thermal Conductivity Mica Paper Tape |
US8216672B2 (en) * | 2004-06-15 | 2012-07-10 | Siemens Energy, Inc. | Structured resin systems with high thermal conductivity fillers |
US7553781B2 (en) * | 2004-06-15 | 2009-06-30 | Siemens Energy, Inc. | Fabrics with high thermal conductivity coatings |
DE102004033321B4 (de) * | 2004-07-09 | 2006-03-30 | Brueninghaus Hydromatik Gmbh | Axialkolbenmaschine mit Verschleißschutzschicht |
US7651963B2 (en) * | 2005-04-15 | 2010-01-26 | Siemens Energy, Inc. | Patterning on surface with high thermal conductivity materials |
US7846853B2 (en) * | 2005-04-15 | 2010-12-07 | Siemens Energy, Inc. | Multi-layered platelet structure |
US20060280946A1 (en) * | 2005-05-20 | 2006-12-14 | United Technologies Corporation | Metal-containing diamond-like-carbon coating compositions |
US7655295B2 (en) | 2005-06-14 | 2010-02-02 | Siemens Energy, Inc. | Mix of grafted and non-grafted particles in a resin |
US7851059B2 (en) * | 2005-06-14 | 2010-12-14 | Siemens Energy, Inc. | Nano and meso shell-core control of physical properties and performance of electrically insulating composites |
US7955661B2 (en) * | 2005-06-14 | 2011-06-07 | Siemens Energy, Inc. | Treatment of micropores in mica materials |
US8357433B2 (en) * | 2005-06-14 | 2013-01-22 | Siemens Energy, Inc. | Polymer brushes |
US20070026221A1 (en) * | 2005-06-14 | 2007-02-01 | Siemens Power Generation, Inc. | Morphological forms of fillers for electrical insulation |
US7781057B2 (en) * | 2005-06-14 | 2010-08-24 | Siemens Energy, Inc. | Seeding resins for enhancing the crystallinity of polymeric substructures |
WO2007070026A1 (en) * | 2005-12-13 | 2007-06-21 | United Technologies Corporation | Process for deposition of amorphous carbon |
EP1884978B1 (en) * | 2006-08-03 | 2011-10-19 | Creepservice S.à.r.l. | Process for the coating of substrates with diamond-like carbon layers |
US7547847B2 (en) * | 2006-09-19 | 2009-06-16 | Siemens Energy, Inc. | High thermal conductivity dielectric tape |
US7879203B2 (en) * | 2006-12-11 | 2011-02-01 | General Electric Company | Method and apparatus for cathodic arc ion plasma deposition |
CN101200802B (zh) * | 2006-12-13 | 2010-05-12 | 上海坤孚企业(集团)有限公司 | 发动机内壁陶瓷化处理方法 |
US8076617B2 (en) * | 2007-04-06 | 2011-12-13 | Norwood Robert A | Nanoamorphous carbon-based photonic crystal infrared emitters |
WO2010020274A1 (en) * | 2008-08-18 | 2010-02-25 | Metso Paper, Inc. | Coating for lowering friction effect and improving wear resistance of a component in a fibre web machine and process of producing the same |
CN101806928B (zh) * | 2010-03-31 | 2011-11-16 | 西安交通大学 | 一种树脂镜片、有机玻璃镜片表面超硬涂层镀膜方法 |
JP5360603B2 (ja) * | 2010-05-27 | 2013-12-04 | 住友電気工業株式会社 | 非晶質炭素被覆部材の製造方法 |
JP5640942B2 (ja) * | 2011-10-06 | 2014-12-17 | トヨタ自動車株式会社 | 摺動部材およびその製造方法 |
US8575565B2 (en) | 2011-10-10 | 2013-11-05 | Guardian Industries Corp. | Ion source apparatus and methods of using the same |
JP2016101658A (ja) * | 2013-03-06 | 2016-06-02 | 株式会社ニコン | 金属光沢を有する装飾膜を備えた複合部材 |
JP5997417B1 (ja) * | 2015-06-24 | 2016-09-28 | キヤノンアネルバ株式会社 | 真空アーク成膜装置および成膜方法 |
CN107709605B (zh) * | 2015-06-24 | 2020-03-20 | 佳能安内华股份有限公司 | 真空电弧成膜装置及成膜方法 |
CZ201660A3 (cs) | 2016-02-05 | 2017-03-22 | Platit A.S. | Způsob nanášení otěruvzdorné DLC vrstvy |
RU2651836C1 (ru) * | 2017-04-13 | 2018-04-24 | Олег Андреевич Стрелецкий | Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на изделия медицинского назначения из материала с термомеханической памятью формы |
CN110205589B (zh) * | 2019-07-12 | 2023-12-08 | 江苏徐工工程机械研究院有限公司 | 一种脉冲碳离子激发源装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5527596A (en) * | 1990-09-27 | 1996-06-18 | Diamonex, Incorporated | Abrasion wear resistant coated substrate product |
GB9224697D0 (en) | 1992-11-25 | 1993-01-13 | Amaratunga Gehan A J | Doping of highly tetrahedral diamond-like amorphous carbon |
US5401543A (en) * | 1993-11-09 | 1995-03-28 | Minnesota Mining And Manufacturing Company | Method for forming macroparticle-free DLC films by cathodic arc discharge |
TW353758B (en) * | 1996-09-30 | 1999-03-01 | Motorola Inc | Electron emissive film and method |
-
1997
- 1997-05-30 RU RU97108626A patent/RU2114210C1/ru active
-
1998
- 1998-05-28 EP EP98924681A patent/EP0985057A1/en not_active Withdrawn
- 1998-05-28 KR KR1019997010940A patent/KR20010012970A/ko not_active Application Discontinuation
- 1998-05-28 JP JP50054099A patent/JP2002501575A/ja active Pending
- 1998-05-28 CN CN98805586.4A patent/CN1258322A/zh active Pending
- 1998-05-28 AU AU76785/98A patent/AU7678598A/en not_active Abandoned
- 1998-05-28 WO PCT/NO1998/000158 patent/WO1998054376A1/en not_active Application Discontinuation
- 1998-05-28 US US09/424,763 patent/US6261424B1/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
1. Jornal "Diamond and Related Materials". 1991, 1, p. 51-59. * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004104263A1 (en) * | 2003-05-22 | 2004-12-02 | Argor Aljba S.A. | A method for forming a superhard amorphous carbon coating in vacuum |
RU2518823C2 (ru) * | 2009-05-19 | 2014-06-10 | Федерал-Могул Буршайд Гмбх | Элемент скольжения |
RU2519181C2 (ru) * | 2009-05-19 | 2014-06-10 | Федерал-Могул Буршайд Гмбх | Скользящий элемент |
RU2553803C2 (ru) * | 2009-08-07 | 2015-06-20 | Эрликон Трейдинг Аг, Трюббах | Трибология в сочетании с коррозионной стойкостью: новое семейство pvd- и pacvd-покрытий |
RU2542912C2 (ru) * | 2013-07-18 | 2015-02-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" | Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп |
RU2651837C1 (ru) * | 2017-03-21 | 2018-04-24 | Олег Андреевич Стрелецкий | Способ нанесения антиадгезивного, биосовместимого и бактериостатичного покрытия на основе углерода на металлические, полимерные и текстильные изделия медицинского назначения |
RU2656312C1 (ru) * | 2017-08-14 | 2018-06-04 | Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН) | Способ нанесения твердых износостойких наноструктурных покрытий из аморфного алмазоподобного углерода |
RU2757303C1 (ru) * | 2020-08-18 | 2021-10-13 | Общество с ограниченной ответственностью "ТехноТерм-Саратов" | Способ получения аморфного наноструктурированного алмазоподобного покрытия |
RU2760018C1 (ru) * | 2020-11-03 | 2021-11-22 | ООО "ТехноТерм-Саратов" | Способ получения аморфного наноструктурированного алмазоподобного покрытия |
Also Published As
Publication number | Publication date |
---|---|
KR20010012970A (ko) | 2001-02-26 |
CN1258322A (zh) | 2000-06-28 |
US6261424B1 (en) | 2001-07-17 |
AU7678598A (en) | 1998-12-30 |
WO1998054376A1 (en) | 1998-12-03 |
EP0985057A1 (en) | 2000-03-15 |
JP2002501575A (ja) | 2002-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2114210C1 (ru) | Способ формирования углеродного алмазоподобного покрытия в вакууме | |
RU97108626A (ru) | Способ формирования углеродного алмазоподобного покрытия в вакууме | |
KR100353464B1 (ko) | 정밀표면처리용연마재및그제조방법 | |
US4749587A (en) | Process for depositing layers on substrates in a vacuum chamber | |
EP0363648A1 (en) | Method and apparatus for forming or modifying cutting edges | |
JPH0633451B2 (ja) | 被加工物の表面処理方法 | |
KR960015541B1 (ko) | 탄소 함유 재료 표면의 질화티타늄 전착용 표면 준비 및 전착 방법 | |
JP2005500440A (ja) | ナノ構造の機能層を形成する方法、およびこれにより作製される被覆層 | |
JPS6319590B2 (ru) | ||
JP3294263B2 (ja) | 被覆の製造法およびこの方法で被覆した工作物 | |
EP0730513B1 (en) | An abrasive material for precision surface treatment and a method for the manufacturing thereof | |
RU2409703C1 (ru) | Способ нанесения покрытий в вакууме на изделия из электропроводных материалов и диэлектриков | |
RU2240376C1 (ru) | Способ формирования сверхтвердого аморфного углеродного покрытия в вакууме | |
JP2004137541A (ja) | Dlc傾斜構造硬質被膜及びその製造方法 | |
JP2003082458A (ja) | 非晶質炭素被膜の形成装置及び形成方法 | |
RU2740591C1 (ru) | Способ получения многослойных износостойких алмазоподобных покрытий | |
US20010029896A1 (en) | Rotating device for plasma immersion supported treatment of substrates | |
RU2342468C1 (ru) | Способ формирования сверхтвердого легированного углеродного покрытия на кремнии в вакууме | |
RU2310013C2 (ru) | Способ получения сверхтвердых покрытий | |
JP2001192206A (ja) | 非晶質炭素被覆部材の製造方法 | |
RU2430986C2 (ru) | Способ формирования сверхтвердого аморфного углеродного покрытия в вакууме | |
RU2272088C1 (ru) | Способ вакуумного ионно-плазменного нанесения многослойных композитов, содержащих сложные карбиды | |
RU2757303C1 (ru) | Способ получения аморфного наноструктурированного алмазоподобного покрытия | |
RU2146724C1 (ru) | Способ нанесения композиционных покрытий | |
JPS6320445A (ja) | イオンプレ−テイング |