RU2044560C1 - Способ получения восстановленной каталитической композиции и восстановленная каталитическая композиция - Google Patents
Способ получения восстановленной каталитической композиции и восстановленная каталитическая композиция Download PDFInfo
- Publication number
- RU2044560C1 RU2044560C1 SU904894060A SU4894060A RU2044560C1 RU 2044560 C1 RU2044560 C1 RU 2044560C1 SU 904894060 A SU904894060 A SU 904894060A SU 4894060 A SU4894060 A SU 4894060A RU 2044560 C1 RU2044560 C1 RU 2044560C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- temperature
- recovery
- copper
- aluminum
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 82
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 34
- 239000010949 copper Substances 0.000 claims abstract description 33
- 238000010438 heat treatment Methods 0.000 claims abstract description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 238000011084 recovery Methods 0.000 claims abstract description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000010936 titanium Substances 0.000 claims abstract description 10
- 239000011701 zinc Substances 0.000 claims abstract description 10
- 230000004913 activation Effects 0.000 claims abstract description 9
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 8
- 239000011777 magnesium Substances 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 6
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 239000011135 tin Substances 0.000 claims abstract description 6
- 229910052718 tin Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 24
- 230000002829 reductive effect Effects 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 18
- 150000001298 alcohols Chemical class 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract 2
- 230000000630 rising effect Effects 0.000 abstract 1
- 239000007858 starting material Substances 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- 238000006722 reduction reaction Methods 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 6
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 5
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- DKMROQRQHGEIOW-UHFFFAOYSA-N Diethyl succinate Chemical compound CCOC(=O)CCC(=O)OCC DKMROQRQHGEIOW-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000008240 homogeneous mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical class [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- UJZFSXMRXQWURN-YSMBQZINSA-N C(C)O.C(\C=C/C(=O)OCC)(=O)OCC Chemical compound C(C)O.C(\C=C/C(=O)OCC)(=O)OCC UJZFSXMRXQWURN-YSMBQZINSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910017767 Cu—Al Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- JGDFBJMWFLXCLJ-UHFFFAOYSA-N copper chromite Chemical compound [Cu]=O.[Cu]=O.O=[Cr]O[Cr]=O JGDFBJMWFLXCLJ-UHFFFAOYSA-N 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- -1 dialkyl maleates Chemical class 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009666 routine test Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C27/00—Processes involving the simultaneous production of more than one class of oxygen-containing compounds
- C07C27/04—Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
- C07C27/06—Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/835—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Furan Compounds (AREA)
Abstract
Использование: в каталитической химии в частности в способе получения катализатора и его композиции для гидрогенизации веществ в соответствующие спирты. Сущность изобретения: способ включает гидрогенизацию соответствующих веществ в спирты при контактировании их с соосажденным катализатором, содержащим медь, алюминий и металл, выбираемый из группы, включающей магний, цинк, титан, цирконий, олово, никель, кобальт и их смеси, который был восстановлен. Восстановление ведут при нагревании в присутствии восстанавливающего газа в условиях активации, характеризующихся постепенным увеличением температуры от начального значения около 40-75°С до конечного значения около 150-250°С. 2 с. и 10 з. п. ф-лы, 8 табл.
Description
Изобретение относится к восстановленной каталитической композиции и к способам получения восстановленных медьсодержащих катализаторов и может быть использовано в процессе каталитической гидрогенизации в паровой фазе органических кислородсодержащих соедине- ний, в частности, для гидрогенизации сложных эфиров.
Известны композиция и способ восстановления медьсодержащего катализатора путем нагревания его в токе водорода при температуре до 225оС с последующим выдерживанием в течение часа и охлаждением в токе водорода [1]
Известны композиция и способ восстановления соосажденного медьсодержащего катализатора путем восстановления водородсодержащим газом при 200оС, с постепенным увеличением концентрации водорода до 100% Обычно наблюдается разогрев катализатора до 300оС [2]
Известны также композиция и способ восстановления никельсодержащего катализатора восстанавливающим газом при 450оС в течение 8 ч, в том числе с использованием контролируемой скорости нагрева (50оС/ч) [3]
Известны композиция и способ восстановления медьсодержащего катализатора путем обработки его разбавленным водородом при температуре ниже 250оС. При этом катализатор вначале нагревают в азоте до 150оС, а затем восстанавливают водородом при возрастающей его концентрации при температуре, не превышающей 240оС. Затем азотоводородную смесь удаляют и заменяют синтез-газом. Восстановление проводят при давлении 50 атм и скорости газового потока 40,000 ч-1 [4]
Наиболее близким к изобретению по технической сущности и достигаемому эффекту является способ получения восстановленной медьсодержащей композиции путем быстрого нагревания катализатора до конечной температуры восстановления с последующим поддержанием этой температуры на постоянном уровне в течение всего периода восстановления [5] При этом, например, для медно-хромового катализатора после быстрого повышения температуры до 175оС в атмосфере азота в течение 8 ч через катализатор пропускают водородсодержащую смесь (2% водорода в азоте) при давлении 42 атм, затем концентрацию водорода увеличивают до 10% за 16 ч, заменяют чистым водородом и продолжают восстановление в течение 12 ч при том же давлении.
Известны композиция и способ восстановления соосажденного медьсодержащего катализатора путем восстановления водородсодержащим газом при 200оС, с постепенным увеличением концентрации водорода до 100% Обычно наблюдается разогрев катализатора до 300оС [2]
Известны также композиция и способ восстановления никельсодержащего катализатора восстанавливающим газом при 450оС в течение 8 ч, в том числе с использованием контролируемой скорости нагрева (50оС/ч) [3]
Известны композиция и способ восстановления медьсодержащего катализатора путем обработки его разбавленным водородом при температуре ниже 250оС. При этом катализатор вначале нагревают в азоте до 150оС, а затем восстанавливают водородом при возрастающей его концентрации при температуре, не превышающей 240оС. Затем азотоводородную смесь удаляют и заменяют синтез-газом. Восстановление проводят при давлении 50 атм и скорости газового потока 40,000 ч-1 [4]
Наиболее близким к изобретению по технической сущности и достигаемому эффекту является способ получения восстановленной медьсодержащей композиции путем быстрого нагревания катализатора до конечной температуры восстановления с последующим поддержанием этой температуры на постоянном уровне в течение всего периода восстановления [5] При этом, например, для медно-хромового катализатора после быстрого повышения температуры до 175оС в атмосфере азота в течение 8 ч через катализатор пропускают водородсодержащую смесь (2% водорода в азоте) при давлении 42 атм, затем концентрацию водорода увеличивают до 10% за 16 ч, заменяют чистым водородом и продолжают восстановление в течение 12 ч при том же давлении.
Известные способы восстановления не позволяют добиться повышения активности с контролируемой селективностью в процессе гидрирования.
Целью изобретения является получение катализатора с повышенной активностью и селективностью.
Цель достигается способом получения восстановленной каталитической композиции, содержащей медь, алюминий и металл Х, выбираемый из группы, состоящей из магния, цинка, титана, циркония, олова, никеля, кобальта и их смесей, путем восстановления смеси оксидов меди, алюминия и металла Х при нагревании в присутствии восстанавливающего газа в условиях активации при постепенном увеличении температуры от начального значения 40-75оС до конечного значения 150-250оС.
Частными признаками способа являются осуществление восстановления при скорости увеличения температуры 3-18оС/ч или 3-6оС/ч при постепенном увеличении температуры от начального значения 50оС до конечного значения 180оС, при использовании комбинаций различных скоростей увеличения температуры; при массовом соотношении Cu:Al:X в катализаторе в пределах 10-80:1-30:10-80.
Отличием предложенного способа является использование для восстановления смеси оксидов меди, алюминия и вышеуказанного металла и восстановление путем нагревания в присутствии восстанавливающего газа в условиях активации при постепенном увеличении температуры от начального значения 40-75оС до конечного значения 150-250оС, а также указанные выше частные признаки.
Использование предложенного способа обеспечивает высокую степень превращения исходного эфира и дает возможность получать желаемые продукты гидрирования, например, диэтилмалеата этанол, тетрагидрофуран, 1,4-бутанол и γ-бути- ролактон.
Изобретение относится также к активной каталитической композиции для гидрогенизации, получаемой восстановлением материала, являющегося исходным сырьем для катализатора и содержащего однородную смесь оксидов алюминия, меди и металла Х, выбираемого из группы, включающей магний, цинк, титан, цирконий, олово, никель, кобальт и их смеси, посредством нагревания в присутствии восстанав- ливающего газа в условиях активации, характеризующихся постепенным повышением температуры от начального уровня в 40-75оС до конечного значения примерно 150-250оС. Катализатор применим в процессе гидрогенизации сложных эфиров в паровой фазе, в частности, и соединений, содержащих связанный кислород, вообще, в процессе осуществляют контактирование исходных веществ в соответствующих условиях с получением различных продуктов гидрогенизации, таких как спирты.
Катализатор, применяемый в предлагаемом способе, представляет собой восстановленное соединение меди, алюминия и металла Х, выбираемого из группы, включающей магний, цинк, титан, цирконий, олово, никель, кобальт и их смеси.
Весовое соотношение Cu: Al: X в катализаторе широко варьируется. В активных катализаторах элементные весовые соотношения Cu:Al:X в расчете, когда за основу берется 100 ч. металла, составляют 10-80:1-30:10-80. Предпочтительнее, чтобы катализатор содержал примерно 10-20 мас. Al, а остальное составляли медь и металл Х. В наиболее предпочтительном варианте весовые соотношения Cu: Al:X в расчете, когда за основу берется 100 ч. металла, составляют примерно 10-70:15-20:10-70.
Катализатор может быть получен путем контролируемого восстановления материала, являющегося исходным сырьем для его производства и содержащего более или менее однородную смесь оксидов меди, алюминия и металла Х. Исходный материал для катализатора может быть получен путем соосаждения из водорастворимых солей и/или смешивания тонкоизмельченных оксидов меди, алюминия и металла Х в нужном весовом соотношении. Предпочтительным является соосаждение.
К числу рассматриваемых водорастворимых солей относятся сульфаты и нитраты меди и алюминия. Предпочтительными являются нитратные соли каждого компонента. Например, катализатор из меди, алюминия и титана может быть получен путем растворения нитратов меди и алюминия в воде с последующим добавлением диоксида титана предпочтительно в виде тонкоизмельченного порошка или коллоида до образования суспензии. Затем посредством осаждения меди и алюминия из этой суспензии, например, за счет добавления карбоната натрия, получают осажденный катализатор. Этот осажденный катализатор высушивают при слегка повышенной температуре, например примерно 80-120оС, и кальцинируют на воздухе при 550оС с образованием материала, являющегося исходным сырьем для получения катализатора и содержащего однородную смесь оксидов меди, алюминия и титана. Если требуется, то могут использоваться другие способы образования тщательно перемешанной и в значительной мере однородной смеси солей металлов и/или их оксидов, служащей исходным сырьем для получения катализатора.
Предлагаемые в соответствии с изобретением катализаторы получают нагреванием кальцинированной смеси меди, алюминия и металла Х (т.е. содержащего оксиды металлов исходного материала для получения катализатора) при пониженном давлении и постепенно увеличивающейся температуре, при этом начальная температура составляет примерно 40-75оС, а конечная примерно 160-220оС. В наиболее предпочтительном варианте начальная температура составляет приблизительно 50оС, а конечная примерно 180оС. Температуру постепенно увеличивают обычно путем повышения температуры восстанавливающего газа, со скоростью не выше примерно 24оС/ч (0,4оС/мин), предпочтительно 3--18оС/ч (около 0,05-0,3оС/мин), наиболее предпочтительно примерно 3-6оС/ч (0,05-0,1оС/мин). Обычно скорость нагревания и условия выбирают так, чтобы получить каталитическую композицию, обладающую высокой активностью с точки зрения максимизации эффективности гидрогенизации, например, в отношении образования спиртов. Однако в определенных случаях, например при гидрогенизации диэфиров, таких как диалкилмалеаты, может оказаться желательным оптимизировать условия ведения реакции таким образом, чтобы по- лучить катализатор, избирательно стимулирующий образование одного или нескольких продуктов гидрогенизации. Например, в случае гидрогенизации диэтилмалеата условия восстановления могут выбираться с целью получения катализатора, стимулирующего образование тетрагидрофурана или γ-бутиролактона в большей степени, чем этанола или 1,4-бутандиола.
Скорость нагревания также должна выбираться с целью минимизации или предотвращения подъема температуры катализатора в результате экзотермической реакции, которая может произойти при восстановлении катализаторов Cu-Al.
Предлагаемый процесс восстановления может соответствующим образом регулироваться во избежание экзотермического эффекта путем сравнения скорости изменения температуры слоя катализатора со скоростью увеличения температуры, которая была бы возможна при отсутствии экзотермического восстановления, являющегося следствием нагревания с помощью внешних средств, например нагретого восстанавливающего газа, резисторных нагревателей, расположенных вокруг и/или проходящих через слой катализатора и т.д.
Если необходимо, для получения предлагаемого катализатора применяется переменная скорость увеличения температуры, например, за счет комбинирования различных скоростей увеличения температуры в вышеуказанных пределах. Так, восстановление исходного материала для получения катализатора может осуществляться в течение первых двух часов при скорости увеличения температуры 0,06оС/ч, а затем в последующие три часа при скорости 0,5оС/ч и т.д.
Примерами восстанавливающих газов, помимо известных специалистам в данной области, являются водород, моноксид углерода и их смеси. Восстанавливающий газ можно подавать под давлением примерно 1-20 атм и, возможно, в смеси с инертным газом. Если используется инертный газ, то объемное соотношение восстанавливающего и инертного газов может составлять примерно 0,1: 20-10: 1. К числу подходящих инертных газов, среди прочих, относятся аргон, азот и метан.
Среднечасовая скорость подачи газа на стадии восстановления может находиться в пределах примерно от 100 до 100000 ч-1.
Продолжительность периода восстановления зависит от начальной и конечной температуры и скорости ее увеличения. Обычно восстановление (активация) исходного материала для получения катализатора длится в течение 12-48 ч. Получаемый катализатор пригоден для катализирования гидрогенизации содержащих связанный кислород органических соединений, в частности сложных эфиров, для производства спиртов и других целевых продуктов.
Изобретение иллюстрируется примерами.
Получение исходного материала для изготовления катализатора.
Приготовление активного катализатора реакции гидрогенизации в соответствии с данным изобретением начинают с получения каталитической композиции, являющейся исходным материалом для его (катализатора) образования. Затем этот исходный материал подвергают активирующей (восстанавливающей) обработке в тщательно контролируемых условиях в соответствии с данным изобретением.
Исходный материал для получения катализатора может быть получен путем растворения нитрата меди, нитрата алюминия и совместной с ними водорастворимой соли металла Х в деионизированной воде при 25оС. Раствор солей этих металлов и отдельный раствор карбоната натрия нагревают раздельно до температуры примерно 45--75оС. Раствор карбоната быстро добавляют к раствору солей металлов при интенсивном перемешивании для того, чтобы вызвать осаждение. Осажденную смесь перемешивают в процессе охлаждения до 25оС. Затем осадок отделяют, промывают деионизированной водой, высушивают на воздухе при повышенной температуре, например, примерно 80-120оС, а затем кальцинируют на воздухе при 300-550оС. Полученный продукт, содержащий исходный материал, для образования катализатора, прессуют в форме пеллет и измельчают до частиц размером примерно 30-40 меш. Следует отметить, что в случае необходимости стадии высушивания и кальцинирования могут быть объединены.
П р и м е р 1. Исходный материал для получения катализатора Cu (56):Al (46): X (28) может быть приготовлен следующим образом. Первый раствор (раствор A) получают растворением соответствующих количеств Cu(NO3)2˙3H2O˙Al(NO3)3˙H2O и Zn(NO3)2˙6H2O в 200 мл деионизированной воды (25оС). Второй раствор (раствор B) получают растворением Na2CO3 (30 г) в 100 мл деионизированной воды (25оС). Растворы A и B нагревают до 60оС. Затем раствор B быстро добавляют при интенсивном перемешивании к раствору A, что приводит к образованию осадка. Эту суспензию перемешивают в течение примерно 3 ч, при этом температура ее снижается до 25оС. Осадок отделяют и промывают в 1000 мл деионизированной воды (25оС). Затем осадок высушивают на воздухе при 100оС в течение 18 ч и кальцинируют также на воздухе при 400оС в течение 2 ч. Полученный материал, представляющий собой исходное сырье для приготовления катализатора, прессуют в пеллеты и измельчают до частиц размером 30-40 меш.
Исходные материалы для получения катализатора гидрогенизации, использованные в последующих примерах, были приготовлены по существу таким же способом, что описан выше, с той разницей, что вместо Zn брали соответствующие количества других приемлемых металлов (см.табл.1). В случае исходного материала для катализатора Cu-Al-Ti нитраты меди и алюминия сначала растворяют в воде, а затем добавляют к ним коллоидный раствор TiO2, что приводит к образованию суспензии. Все остальные стадии являются аналогичными вышеописанным.
Процедуры восстановления и гидрогенизации.
Исходный материал для получения катализатора, приготовленный описанным способом, затем восстанавливают в соответствии с данным изобретением. Если в последующих примерах не имеется других указаний, то 0,5 или 1 см3 исходного материала для получения катализатора (невосстановленного) загружают в заднюю треть реакционной трубы из нержавеющей стали. Реакционная труба представляет собой U-образную конструкцию, первые две трети которой заполнены шариками из инертного стекла. Эта передняя секция выступает в роли зоны предварительного подогрева газа и жидкости. Исходный материал для по-лучения катализатора активируют in situ сме- сью, содержащей 0,5% водорода в потоке азота, при стандартной среднечасовой объемной скорости подачи газа (GHSV) 1800 ч-1. Начальная температура при этом составляет примерно 50оС, а затем ее постепенно увеличивают со скоростью 0,05оС/мин (30оС/ч)-0,1оС/мин (6оС/ч) до примерно 180оС в печи, оборудованной таким образом, чтобы можно было использовать четыре реакционные трубы.
После завершения восстановительной активации начинают подавать чистый водород, а давление и скорость потока регулируют в соответствии с требующимися для гидрогенизации условиями. Скорость по- дачи жидкого сырья, т.е. сложного эфира с разбавителем (гексаном), регулируют до достижения нужного уровня. Объемное соотношение разбавителя и сырья в примерах составляет 1:1. Благодаря прохождению через секцию предварительного нагревания эфирное сырье испаряется и контактирует с катализатором в паровой фазе. Если в примерах не имеется специальных указаний, то гидрогенизацию проводили при температуре 220оС, давлении 450 фунтов/кв.дюйм, почасовой объемной скорости подачи жидкости 0,5 ч-1, газа 15000 ч-1.
Эти условия реакции гидрогенизации поддерживают в течение 20 ч. В первые 4 часа продукты гидрогенизации собирают путем пропускания реакционного потока через ряд конденсационных ловушек, содержащих изопропанол при температуре 0-(-75)оС. Продукты анализируют с помощью капиллярного газового хроматографа, используя капилляры с размерами 30х0,32 мм. Количественные показатели для продуктов в примерах показаны в мас. при этом не учитываются изопропанол или инертный разбавитель.
В примерах 1,2,4,5 и 7-12 исходные материалы для получения катализатора нагревают с низкой постоянной скоростью с тем, чтобы добиться увеличения температуры с 50 до 180оС, в присутствии восстанавливающей атмосферы, содержащей 1% Н2 в N2. Катализаторы из примеров 3 и 6 получают путем активирования исходных материалов для их получения в соответствии с процедурой, описанной в ЕР N 143634 для медно-хромитного катализатора. Согласно процедуре из ЕР исходный материал катализатора быстро нагревают (в течение 10 мин) до 150оС в атмосфере, содержащей 0,5% Н2 в N2, и выдерживают при 150оС в течение 22 ч.
Данные о влиянии изменения скорости нагревания катализатора в процессе активации (восстановления) на его эксплуатационные свойства показаны в табл. 1. Весовые соотношения элементов катализатора показаны в скобках. А также показано время, которое необходимо для нагревания от 50 до 180оС с заданной скоростью.
В табл. 1 и последующих таблицах, относящихся к другим примерам, дано весовое содержание в процентах различных компонентов в потоке гидрогенизированного продукта: в том числе этанола (EtOH) тетрагидрофурана (THF), бутанола (BuOH), γ-бутиролактона (g-BL), 1,4-бутандиола (BD) и диэтилсукцината (DES). Уровень DES, являющегося нежелательным продуктом в гидрогенизированной смеси, указывает на степень активности катализатора. Чем ниже уровень DES в продукте гидрогенизации, тем выше гидрогенизированная активность катализаторов.
Исходя из количества DES в смеси продуктов, следует отметить, что большинство катализаторов, активированных согласно данному изобретению, способствует образованию смеси продуктов также более желательного состава в сравнении с катализаторами из примеров 3 и 6, при восстановлении которых использовали постоянную температуру.
1 оС/мин в интервале 50-180оС. Процедура восстановления по ЕР: катализатор нагревают за 10 мин до 150оС и выдерживают в течение 22 ч.
2 время в часах для нагревания от 50 до 180оС.
Табл.1 содержит данные о влиянии скорости нагревания на активность и селективность катализатора в сравнении с процессом восстановления, проводимом при постоянной температуре. Не все катализаторы при одной и той же скорости нагревания достигают максимальной активности и селективности. Для определения оптимальной скорости нагревания для данной композиции не требуется ничего, кроме обычных испытаний.
Влияние измерения среднечасовой объемной скорости подачи H2/N2 при постоянной скорости нагревания в процессе восстановления на гидрогенизационную активность катализатора Cu-Al-X показано в табл.2, на примерах 13-18.
Если процесс проводить без контроля, то очевидно, что теплота, образующаяся в результате экзотермической реакции восстановления, может вызвать чрезмерно быстрое ее протекание, и следствием этого может стать отрицательное воздействие на каталитические свойства восстановленного катализатора.
CuO + H2->>Cuo + H2O + теплота
Ряд катализаторов восстановили при скорости нагревания 0,1оС/мин (50-180оС), варьируя среднечасовую объемную ско-рость подачи газовой смеси, содержащей Н2 и 1% N2: в пределах 600-5400 ч-1. Восстановленные катализаторы испытали, используя в качестве эфирного сырья диэтилмалеат, при стандартных рабочих условиях гидрогенизации. Результаты испытаний показаны в табл.2.
Ряд катализаторов восстановили при скорости нагревания 0,1оС/мин (50-180оС), варьируя среднечасовую объемную ско-рость подачи газовой смеси, содержащей Н2 и 1% N2: в пределах 600-5400 ч-1. Восстановленные катализаторы испытали, используя в качестве эфирного сырья диэтилмалеат, при стандартных рабочих условиях гидрогенизации. Результаты испытаний показаны в табл.2.
Объемная скорость подачи газа на стадии восстановления оказывает такое же влияние на степень активности катализатора, как и скорость нагревания. Предпочтительное сочетание скорости подачи газа и скорости нагревания может быть определено специалистом в данной области путем обычного экспериментирования.
Примеры 19-38 демонстрируют функционирование ряда катализаторов Cu-Al-X, восстановленных (активированных) в соответствии с данным изобретением. Результаты показаны в табл.3. Приготовили и испытали группу различных катализаторов Cu-Al-X. Примеры для Х Ti, Zn и Mg приведены ниже. В процессе восстановления и гидрогенизации использовали стандартные условия. Особенно активные катализаторы получают при содержании Al 10-20 мас. Наибольшая активность наблюдается (содержание диэтилсукцианата менее 5%) независимо от уровней Cu и металла Х до тех пор, пока содержание Al находится в пределах 10-20 мас. Различные комбинации Х Mg + Zn и Mg + Ti также дают активные катализаторы гидрогенизации.
П р и м е р ы 39-58. Эти примеры иллюстрируют функционирование в процессе гидрогенизации различных других катализаторов Cu-Al-X, полученных с использованием стандартных процедур. Катализатор использовали для гидрогенизации диэтилмалеата. Результаты показаны в табл.4. В каждом случае реакцию гидрогенизации проводили при стандартных условиях (температура 220оС, давление 450 фунтов/кв. дюйм, среднечасовая объемная скорость подачи жидкости 0,6 ч-1, среднечасовая объемная скорость подачи газа 15000 ч-1).
П р и м е р ы 59-67. В этих примерах используют катализаторы Cu-Al-X различного состава из предшествующих примеров для гидрогенизации дибутилмалеата (DBM). Гидрогенизацию проводят в стандартных условиях (температура 220оС, давление 450 фунтов/кв. дюйм, среднечасовая скорость подачи 15000 ч-1). Результаты показаны в табл.5.
П р и м е р ы 68-72. В этих примерах проводят гидрогенизацию дибутилацетата (BuOAc) с использованием различных катализаторов Cu-Al-X. В этом случае целевыми продуктами являются этанол (EtOH) и н-бутанол (BuOH), получаемые в соответствии со следующей реакцией:
CH3C(O)OCH2CH2CH2CH3 +
+ H2 ->>CH3CH2OH + CH3CH2CH2CH2OH
Реакцию гидрогенизации проводили при стандартных условиях (температура 220оС, давление 450 фунтов/кв. дюйм, среднечасовая объемная скорость подачи газа 15000 ч-1). Результаты показаны в табл.6.
CH3C(O)OCH2CH2CH2CH3 +
+ H2 ->>CH3CH2OH + CH3CH2CH2CH2OH
Реакцию гидрогенизации проводили при стандартных условиях (температура 220оС, давление 450 фунтов/кв. дюйм, среднечасовая объемная скорость подачи газа 15000 ч-1). Результаты показаны в табл.6.
Результаты показывают, что сложные моноэфиры легко гидрогенизируют до соответствующих спиртов при использовании предлагаемых в соответствии с данным изобретением катализаторов Cu-Al-X.
П р и м е р ы 73-76. В этих примерах используют катализатор Cu (27) Al (12) Ti (61) в процессе гидрогенизации диэтилмалеата при различных условиях. В каждом случае катализатор восстанавливают при стандартных условиях, используя постепенное повышение температуры (со скоростью 0,1оС/мин) от 50 до 180оС.
Результаты гидрогенизации показаны в табл.7.
П р и м е р ы 77-80. Готовят катализаторы Cu-Al-X различного состава в соответствии со стандартными процедурами и исследуют их при гидрогенизации диэтилмалеата. В каждом случае реакцию гидрогенизации проводят в стандартных условиях (температура 220оС, давление 450 фунтов/кв.дюйм, среднечасовая объемная скорость подачи газа 15000 ч-1). Результаты показаны в табл.8.
Claims (12)
1. Способ получения восстановленной каталитической композиции, содержащей медь, алюминий и металл X, выбираемый из группы, состоящей из магния, цинка, титана, циркония, олова, никеля, кобальта и их смесей, например, для процесса гидрирования органических соединений, содержащих связанный кислород, отличающийся тем, что восстанавливают смесь оксидов, меди, алюминия и металла X путем нагревания ее в присутствии восстанавливающего газа в условиях активации, характеризующихся постепенным увеличением температуры от начального значения примерно 40 75oС, до конечного значения примерно 150 250oС.
2. Способ по п.1, отличающийся тем, что восстановление осуществляют при скорости увеличения температуры примерно 3 18oС/ч.
3. Способ по п.1, отличающийся тем, что восстановление осуществляют при скорости увеличения температуры 3 6oС/ч.
4. Способ по п.1, отличающийся тем, что восстановление осуществляют при постепенном увеличении температуры от начального значения примерно 50oС до конечного значения примерно 180oС.
5. Способ по п. 4, отличающийся тем, что восстановление проводят при использовании комбинации различных скоростей увеличения температуры.
6. Способ по п.1, отличающийся тем, что массовое соотношение Cu Al X в катализаторе находится в пределах 10 80 1 30 10 80.
7. Восстановленная каталитическая композиция, содержащая медь, алюминий и металл X, выбираемый из группы, состоящей из магния, цинка, титана, циркония, олова, никеля, кобальта и их смесей, отличающаяся тем, что ее получают восстановлением смеси оксидов меди, алюминия и металла X путем нагревания последней в присутствии восстанавливающего газа в условиях активации, характеризующихся постепенным увеличением температуры от начального значения примерно 40 75 oC до конечного значения, примерно 150 250oС, причем массовое соотношение меди, алюминия и металла X в каталитической композиции составляет 10 80 1 30 10 80.
8. Композиция по п.7, отличающаяся тем, что ее получают восстановлением при скорости увеличения температуры примерно 3 18oС/ч.
9. Композиция по п.7, отличающаяся тем, что ее получают восстановлением при скорости увеличения температуры примерно 3 6oС/ч.
10. Композиция по п.7, отличающаяся тем, что ее получают восстановлением при постепенном увеличении температуры от начального значения примерно 50oС до конечного значения примерно 180oС.
11. Композиция по п.10, отличающаяся тем, что ее восстановление проводят при скорости увеличения температуры примерно 3 6oС/ч.
12. Композиция по п.7, отличающаяся тем, что ее восстановление проводят при использовании различных скоростей увеличения температуры.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US454456 | 1989-12-21 | ||
US07/454,456 US5008235A (en) | 1989-12-21 | 1989-12-21 | Catalysts of Cu-Al-third metal for hydrogenation |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2044560C1 true RU2044560C1 (ru) | 1995-09-27 |
Family
ID=23804677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU904894060A RU2044560C1 (ru) | 1989-12-21 | 1990-12-20 | Способ получения восстановленной каталитической композиции и восстановленная каталитическая композиция |
Country Status (16)
Country | Link |
---|---|
US (1) | US5008235A (ru) |
EP (1) | EP0434062B1 (ru) |
JP (1) | JPH0421638A (ru) |
KR (1) | KR950008885B1 (ru) |
CN (2) | CN1028094C (ru) |
AU (1) | AU625589B2 (ru) |
BR (1) | BR9006478A (ru) |
CA (1) | CA2032777A1 (ru) |
DE (1) | DE69010170T2 (ru) |
ES (1) | ES2055290T3 (ru) |
PL (1) | PL288363A1 (ru) |
PT (1) | PT96301A (ru) |
RU (1) | RU2044560C1 (ru) |
TW (1) | TW232681B (ru) |
YU (1) | YU46974B (ru) |
ZA (1) | ZA9010294B (ru) |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5395989A (en) * | 1990-11-06 | 1995-03-07 | Mitsubishi Gas Chemical Company, Inc. | Process for producing neopentyl glycol |
JP2964621B2 (ja) * | 1990-11-06 | 1999-10-18 | 三菱瓦斯化学株式会社 | ネオペンチルグリコールの製造方法 |
DE4141199A1 (de) * | 1991-12-13 | 1993-06-17 | Sued Chemie Ag | Chromfreier katalysator fuer die hydrierung von organischen verbindungen, die die carbonylfunktionen enthalten |
DE4142900A1 (de) * | 1991-12-23 | 1993-06-24 | Sued Chemie Ag | Verwendung von kupferoxid-aluminiumoxid-magnesiumoxid-katalysatoren zur konvertierung von kohlenmonoxid |
DE4206750A1 (de) * | 1992-03-04 | 1993-09-09 | Hoechst Ag | Verfahren zur herstellung von alkoholen oder aminen |
US5334779A (en) * | 1993-06-01 | 1994-08-02 | Eastman Kodak Company | Catalyst compositions and the use thereof in the hydrogenation of carboxylic acid esters |
CN1046100C (zh) * | 1994-02-19 | 1999-11-03 | 中国科学院山西煤碳化学研究所 | 糠醛气相催化加氢制糠醇催化剂 |
MY129140A (en) * | 1994-11-07 | 2007-03-30 | Shell Int Research | Process and a catalyst for the direct hydrogenation of carboxylic esters |
US5977010A (en) * | 1995-06-15 | 1999-11-02 | Engelhard Corporation | Shaped hydrogenation catalyst and processes for their preparation and use |
DE19611142A1 (de) * | 1996-03-21 | 1997-09-25 | Bayer Ag | Verfahren zur Herstellung von Hydroxymethylcyclopropan |
DE19807268A1 (de) * | 1998-02-20 | 1999-08-26 | Basf Ag | Verfahren zur Herstellung von Alkoholen |
CN1114490C (zh) * | 2000-05-12 | 2003-07-16 | 石油大学(华东) | 一种仲辛酮加氢制仲辛醇的方法及催化剂 |
DE10241529A1 (de) | 2002-09-05 | 2004-03-11 | Basf Ag | Adsorptionsmasse und Verfahren zur Entfernung von Kohlenmonoxid aus Stoffströmen |
DE10313702A1 (de) * | 2003-03-27 | 2004-10-07 | Basf Ag | Katalysator und Verfahren zur Hydrierung von Carbonylverbindungen |
BR0305444A (pt) * | 2003-08-07 | 2005-08-30 | Formil Quimica Ltda | Catalisadores de óxido misto de cobre, alumìnio e um metal alcalino terroso (magnésio ou cálcio) sem a presença de cromo; processo para a preparação dos ditos catalisadores e processos de hidrogenação utilizando os ditos catalisadores |
CN100343213C (zh) * | 2004-07-06 | 2007-10-17 | 烟台大学 | 一种用于苯酚羟基化制对苯二酚和邻苯二酚的催化剂 |
DE102004033556A1 (de) * | 2004-07-09 | 2006-02-16 | Basf Ag | Katalysatorformkörper und Verfahren zur Hydrierung von Carbonylverbindungen |
JP5095633B2 (ja) | 2006-02-14 | 2012-12-12 | ビーエーエスエフ ソシエタス・ヨーロピア | 吸着組成物および流体からのcoの除去方法 |
CA2642592A1 (en) | 2006-03-03 | 2007-09-07 | Basf Se | Process for the preparation of 1,2-propanediol |
EP2035118B1 (de) | 2006-06-21 | 2017-04-12 | Basf Se | Verfahren zur entfernung von co aus stoffströmen |
KR101384407B1 (ko) | 2006-07-17 | 2014-04-10 | 바스프 에스이 | 구리 및 아연을 포함하는 촉매의 존재하에 불포화 탄화수소를 수소화하는 방법 |
CN101134713B (zh) * | 2006-08-31 | 2011-05-18 | 中国石油化工股份有限公司 | 1,3-丙二醇的制备方法 |
US8236264B2 (en) | 2006-12-01 | 2012-08-07 | Basf Se | Adsorption composition and process for removing CO from material streams |
CN101204658B (zh) * | 2006-12-21 | 2010-10-06 | 南化集团研究院 | 缩合还原烷基化催化剂及其制备方法和用途 |
PL2200958T3 (pl) | 2007-08-31 | 2016-04-29 | Basf Se | Sposób wytwarzania 1,2-propanodiolu drogą uwodorniania glicerolu w dwustopniowej kaskadzie reaktorów |
BRPI0815784B1 (pt) | 2007-08-31 | 2017-05-16 | Basf Se | processo para a preparação de 1,2-propanodiol |
CN101848884B (zh) | 2007-08-31 | 2013-05-01 | 巴斯夫欧洲公司 | 通过在至少三个连续的反应器中将甘油氢化制备1,2-丙二醇的方法 |
US8471075B2 (en) | 2008-07-31 | 2013-06-25 | Celanese International Corporation | Processes for making ethanol from acetic acid |
US7863489B2 (en) | 2008-07-31 | 2011-01-04 | Celanese International Corporation | Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst |
US20100197486A1 (en) * | 2008-07-31 | 2010-08-05 | Celanese International Corporation | Catalysts for making ethyl acetate from acetic acid |
US8309772B2 (en) | 2008-07-31 | 2012-11-13 | Celanese International Corporation | Tunable catalyst gas phase hydrogenation of carboxylic acids |
US8546622B2 (en) | 2008-07-31 | 2013-10-01 | Celanese International Corporation | Process for making ethanol from acetic acid using acidic catalysts |
US7608744B1 (en) | 2008-07-31 | 2009-10-27 | Celanese International Corporation | Ethanol production from acetic acid utilizing a cobalt catalyst |
US8338650B2 (en) | 2008-07-31 | 2012-12-25 | Celanese International Corporation | Palladium catalysts for making ethanol from acetic acid |
US8501652B2 (en) * | 2008-07-31 | 2013-08-06 | Celanese International Corporation | Catalysts for making ethanol from acetic acid |
US8637714B2 (en) | 2008-07-31 | 2014-01-28 | Celanese International Corporation | Process for producing ethanol over catalysts containing platinum and palladium |
US8680317B2 (en) * | 2008-07-31 | 2014-03-25 | Celanese International Corporation | Processes for making ethyl acetate from acetic acid |
US7816565B2 (en) | 2008-07-31 | 2010-10-19 | Celanese International Corporation | Direct and selective production of acetaldehyde from acetic acid utilizing a supported metal catalyst |
JP5562541B2 (ja) * | 2008-09-11 | 2014-07-30 | 花王株式会社 | 触媒の調製方法 |
JP5562542B2 (ja) * | 2008-09-11 | 2014-07-30 | 花王株式会社 | 触媒の調製方法 |
CN101747189B (zh) * | 2008-12-03 | 2012-07-11 | 中国科学院大连化学物理研究所 | 一种马来酸二烷基酯加氢制丁二酸二烷基酯的方法 |
CN101445426B (zh) * | 2008-12-19 | 2012-06-13 | 上海工程技术大学 | 草酸二甲酯加氢制乙二醇的方法 |
US8450535B2 (en) | 2009-07-20 | 2013-05-28 | Celanese International Corporation | Ethanol production from acetic acid utilizing a cobalt catalyst |
WO2011009936A2 (en) | 2009-07-24 | 2011-01-27 | Basf Se | Process for the preparation of 1,2-propanediol from glycerol |
US8680321B2 (en) * | 2009-10-26 | 2014-03-25 | Celanese International Corporation | Processes for making ethanol from acetic acid using bimetallic catalysts |
US8710277B2 (en) * | 2009-10-26 | 2014-04-29 | Celanese International Corporation | Process for making diethyl ether from acetic acid |
US8728179B2 (en) | 2010-02-02 | 2014-05-20 | Celanese International Corporation | Ethanol compositions |
US8314272B2 (en) | 2010-02-02 | 2012-11-20 | Celanese International Corporation | Process for recovering ethanol with vapor separation |
US8460405B2 (en) * | 2010-02-02 | 2013-06-11 | Celanese International Corporation | Ethanol compositions |
US8575403B2 (en) | 2010-05-07 | 2013-11-05 | Celanese International Corporation | Hydrolysis of ethyl acetate in ethanol separation process |
US8222466B2 (en) | 2010-02-02 | 2012-07-17 | Celanese International Corporation | Process for producing a water stream from ethanol production |
US8541633B2 (en) * | 2010-02-02 | 2013-09-24 | Celanese International Corporation | Processes for producing anhydrous ethanol compositions |
US8932372B2 (en) | 2010-02-02 | 2015-01-13 | Celanese International Corporation | Integrated process for producing alcohols from a mixed acid feed |
US8858659B2 (en) * | 2010-02-02 | 2014-10-14 | Celanese International Corporation | Processes for producing denatured ethanol |
US8668750B2 (en) | 2010-02-02 | 2014-03-11 | Celanese International Corporation | Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels |
US8747492B2 (en) | 2010-02-02 | 2014-06-10 | Celanese International Corporation | Ethanol/fuel blends for use as motor fuels |
US8637668B2 (en) | 2010-06-15 | 2014-01-28 | Basf Se | Process for preparing a cyclic tertiary methylamine |
CN102933549B (zh) | 2010-06-15 | 2015-08-12 | 巴斯夫欧洲公司 | 制备环状叔甲基胺的方法 |
CN103189365B (zh) | 2010-10-14 | 2015-01-07 | 巴斯夫欧洲公司 | 制备环状叔胺的方法 |
US8933223B2 (en) | 2010-10-14 | 2015-01-13 | Basf Se | Process for preparing a cyclic tertiary amine |
US8436169B2 (en) | 2010-10-29 | 2013-05-07 | Basf Se | Process for preparing 1,4-bishydroxyethylpiperazine |
CN103201272B (zh) | 2010-10-29 | 2015-08-05 | 巴斯夫欧洲公司 | 制备1,4-双羟乙基哌嗪的方法 |
US8350098B2 (en) | 2011-04-04 | 2013-01-08 | Celanese International Corporation | Ethanol production from acetic acid utilizing a molybdenum carbide catalyst |
US9073816B2 (en) | 2011-04-26 | 2015-07-07 | Celanese International Corporation | Reducing ethyl acetate concentration in recycle streams for ethanol production processes |
US8895786B2 (en) | 2011-08-03 | 2014-11-25 | Celanese International Corporation | Processes for increasing alcohol production |
US9109174B2 (en) | 2011-09-20 | 2015-08-18 | Phillips 66 Company | Advanced cellulosic renewable fuels |
US8536382B2 (en) | 2011-10-06 | 2013-09-17 | Celanese International Corporation | Processes for hydrogenating alkanoic acids using catalyst comprising tungsten |
US8658843B2 (en) | 2011-10-06 | 2014-02-25 | Celanese International Corporation | Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation |
TWI564072B (zh) | 2011-11-09 | 2017-01-01 | China Petrochemical Technology Co Ltd | Hydrogenation catalyst and preparation method thereof |
US8703868B2 (en) | 2011-11-28 | 2014-04-22 | Celanese International Corporation | Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol |
US8575406B2 (en) | 2011-12-22 | 2013-11-05 | Celanese International Corporation | Catalysts having promoter metals and process for producing ethanol |
US9333496B2 (en) | 2012-02-29 | 2016-05-10 | Celanese International Corporation | Cobalt/tin catalyst for producing ethanol |
US9079172B2 (en) | 2012-03-13 | 2015-07-14 | Celanese International Corporation | Promoters for cobalt-tin catalysts for reducing alkanoic acids |
US8455702B1 (en) | 2011-12-29 | 2013-06-04 | Celanese International Corporation | Cobalt and tin catalysts for producing ethanol |
US8865609B2 (en) | 2012-01-06 | 2014-10-21 | Celanese International Corporation | Hydrogenation catalysts |
US8981164B2 (en) | 2012-01-06 | 2015-03-17 | Celanese International Corporation | Cobalt and tin hydrogenation catalysts |
US9051235B2 (en) | 2012-02-07 | 2015-06-09 | Celanese International Corporation | Process for producing ethanol using a molar excess of hydrogen |
US9050585B2 (en) | 2012-02-10 | 2015-06-09 | Celanese International Corporation | Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol |
US8729317B2 (en) | 2012-02-15 | 2014-05-20 | Celanese International Corporation | Ethanol manufacturing process over catalyst with cesium and support comprising tungsten or oxides thereof |
US9126194B2 (en) | 2012-02-29 | 2015-09-08 | Celanese International Corporation | Catalyst having support containing tin and process for manufacturing ethanol |
US8927786B2 (en) | 2012-03-13 | 2015-01-06 | Celanese International Corporation | Ethanol manufacturing process over catalyst having improved radial crush strength |
US8536383B1 (en) | 2012-03-14 | 2013-09-17 | Celanese International Corporation | Rhodium/tin catalysts and processes for producing ethanol |
US9073042B2 (en) | 2012-03-14 | 2015-07-07 | Celanese International Corporation | Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter |
US8975452B2 (en) | 2012-03-28 | 2015-03-10 | Celanese International Corporation | Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration |
US8884015B2 (en) | 2012-06-01 | 2014-11-11 | Basf Se | Process for the preparation of a mono-N-alkypiperazine |
JP6242878B2 (ja) | 2012-06-01 | 2017-12-06 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | モノ−n−アルキル−ピペラジンの製造方法 |
US8981093B2 (en) | 2012-06-06 | 2015-03-17 | Basf Se | Process for preparing piperazine |
DE102012019123B4 (de) | 2012-09-28 | 2021-10-21 | Clariant International Ltd. | Hydrierkatalysator und Verfahren zu dessen Herstellung durch die Verwendung von unkalziniertem Ausgangsmaterial |
US8772553B2 (en) | 2012-10-26 | 2014-07-08 | Celanese International Corporation | Hydrogenation reaction conditions for producing ethanol |
US8853469B2 (en) | 2012-11-20 | 2014-10-07 | Celanese International Corporation | Combined column for separating products of different hydrogenation reactors |
JP6238530B2 (ja) * | 2013-02-28 | 2017-11-29 | クラリアント触媒株式会社 | レブリン酸/エステルの水素化触媒、それを用いたラクトン合成反応、及びラクトン製造設備 |
CN103724300B (zh) * | 2013-12-18 | 2016-01-13 | 江苏大学 | 一种顺酐加氢与乙醇脱氢耦合制备四氢呋喃的方法 |
DE102014004413A1 (de) | 2014-03-26 | 2015-10-01 | Clariant International Ltd. | Hydrierkatalysator und Verfahren zu dessen Herstellung |
CN105820034A (zh) * | 2016-04-14 | 2016-08-03 | 江苏大学 | 一种乙酸乙酯加氢制备乙醇的方法 |
CN108144619A (zh) * | 2016-12-04 | 2018-06-12 | 中国科学院大连化学物理研究所 | 一种用于苯羧酸酯加氢制备苯甲醇的催化剂和制备方法 |
CN107245026A (zh) * | 2017-06-22 | 2017-10-13 | 江苏飞翔化工股份有限公司 | 无溶剂由内酯制备二醇的方法 |
CN109569629B (zh) * | 2017-09-28 | 2021-11-19 | 中国石油化工股份有限公司 | 用于醋酸酯加氢的催化剂及其制备方法和醋酸酯加氢制醇的方法 |
CN109569602A (zh) * | 2018-12-06 | 2019-04-05 | 吉林大学 | 一种Cu/MxOy/Al2O3催化剂、制备方法及其在制备苯甲醇中的应用 |
DE102019131569A1 (de) | 2019-11-22 | 2021-05-27 | Clariant International Ltd | Chromfreier wasser- und saeurestabiler katalysator fuer hydrierungen |
DE102020106964A1 (de) | 2020-03-13 | 2021-09-16 | Clariant International Ltd | Chromfreier hydrierkatalysator mit erhoehter wasser- und saeurestabilitaet |
WO2022112328A1 (en) | 2020-11-24 | 2022-06-02 | Topsoe A/S | Process and catalyst for the catalytic hydrogenation of organic carbonyl compounds |
US11547991B2 (en) * | 2020-11-30 | 2023-01-10 | Phillips 66 Company | Catalyst activation for selective hydrogenation of contaminants in a light olefin stream |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1830705A (en) * | 1926-11-27 | 1931-11-03 | Ig Farbenindustrie Ag | Catalysts |
US1813953A (en) * | 1928-01-21 | 1931-07-14 | Ig Farbenindustrie Ag | Production of ketones |
US2109844A (en) * | 1932-02-27 | 1938-03-01 | Du Pont | Catalytic hydrogenation of glycerides of aliphatic carboxylic acids |
US2110483A (en) * | 1934-07-07 | 1938-03-08 | Firm Chemical Works Formerly S | Process for the manufacture of high molecular aliphatic alcohols |
US2290439A (en) * | 1938-07-21 | 1942-07-21 | Ass Of American Soap & Glyceri | Hydrogenolysis process |
US2297769A (en) * | 1941-08-22 | 1942-10-06 | Universal Oil Prod Co | Hydrogenation of alkyl aryl ketones |
US2586535A (en) * | 1948-12-29 | 1952-02-19 | Universal Oil Prod Co | Catalytic hydrogenation of aromatic hydrocarbons in a stainless steel reactor |
US2627506A (en) * | 1949-05-07 | 1953-02-03 | Standard Oil Dev Co | Preparation of metal oxide gel catalysts |
US2825743A (en) * | 1955-08-30 | 1958-03-04 | Celanese Corp | Catalytic hydrogenation of unsaturated aldehydes and ketones |
US2895920A (en) * | 1955-11-29 | 1959-07-21 | Sun Oil Co | Process for catalyst preparation |
US3267157A (en) * | 1960-10-27 | 1966-08-16 | Kao Corp | Hydrogenation of fatty acids and lower alkyl esters thereof and activation of copper catalysts therefor |
NL130969C (ru) * | 1964-06-01 | 1900-01-01 | ||
US3759845A (en) * | 1970-09-16 | 1973-09-18 | Gaf Corp | Catalyst for preparing 1,4-butanediol |
US3790505A (en) * | 1971-05-04 | 1974-02-05 | Catalysts & Chem Inc | Low temperature methanol synthesis catalyst |
US3767595A (en) * | 1971-10-28 | 1973-10-23 | Grace W R & Co | Process for producing copper chromite catalysts |
DE2228332B2 (de) * | 1972-06-10 | 1978-09-28 | Basf Ag, 6700 Ludwigshafen | Verfahren zur selektiven Härtung von Fetten und ölen |
US4009124A (en) * | 1975-09-15 | 1977-02-22 | Basf Aktiengesellschaft | Basic mixed carbonate of copper and aluminum and process for manufacturing a copper-containing catalyst |
DE2455617C3 (de) * | 1974-11-23 | 1982-03-18 | Basf Ag, 6700 Ludwigshafen | Verfahren zur Herstellung von Butandiol und/oder Tetrahydrofuran über die Zwischenstufe des γ-Butyrolactons |
US3933930A (en) * | 1975-03-06 | 1976-01-20 | Celanese Corporation | Hexanediol from cyclohexane |
DE2538253C2 (de) * | 1975-08-28 | 1978-06-01 | Ruhrchemie Ag, 4200 Oberhausen | Verfahren zur Herstellung von Kupfer-Trägerkatalysatoren |
US4250111A (en) * | 1976-07-12 | 1981-02-10 | Nalco Chemical Company | Mixed catalyst for the hydrolysis of nitriles to amides |
JPS5944896B2 (ja) * | 1977-01-25 | 1984-11-01 | 花王株式会社 | 銅−鉄−アルミニウム触媒の製法 |
US4209424A (en) * | 1977-12-12 | 1980-06-24 | Societe Chimique de la Grande Paroisse, Azote et Products Chimiques | Catalyst for manufacturing amines from alcohols |
US4593015A (en) * | 1978-05-15 | 1986-06-03 | The Standard Oil Company | Catalyst for the preparation of alcohols from synthesis gas |
JPS595013B2 (ja) * | 1978-07-03 | 1984-02-02 | 花王株式会社 | 銅−鉄−アルミニウム触媒の製造方法 |
JPS5531428A (en) * | 1978-08-28 | 1980-03-05 | Nikki Kagaku Kk | Production of copper-aluminum oxide catalyst for hydrogenation |
FR2446127A1 (fr) * | 1979-01-12 | 1980-08-08 | Gallaher Ltd | Catalyseur d'oxydation a base de cuivre et son procede de fabrication |
JPS5850775B2 (ja) * | 1979-03-30 | 1983-11-12 | 花王株式会社 | 銅−鉄−アルミニウム触媒の製法 |
US4279781A (en) * | 1979-10-09 | 1981-07-21 | United Catalysts Inc. | Catalyst for the synthesis of methanol |
DE3005551A1 (de) * | 1980-02-14 | 1981-08-20 | Süd-Chemie AG, 8000 München | Katalysator zur synthese von methanol und hoehere alkohole enthaltenden alkoholgemischen |
EP0061891B1 (en) * | 1981-03-26 | 1985-12-11 | Gallaher Limited | Catalysts and their production |
US4393251A (en) * | 1981-06-17 | 1983-07-12 | Basf Aktiengesellschaft | Preparation of propanediols using a copper-and zinc containing hydrogenation catalyst |
DE3273974D1 (en) * | 1981-08-20 | 1986-12-04 | Davy Mckee London | Catalytic hydrogenation |
ZA831987B (en) * | 1982-03-26 | 1984-04-25 | Davy Mckee London | Process for the production of ethanol |
US4480122A (en) * | 1982-09-27 | 1984-10-30 | Celanese Corporation | Process for producing methyl formate |
GB8327933D0 (en) * | 1983-10-19 | 1983-11-23 | Ici Plc | Catalyst |
GB8331793D0 (en) * | 1983-11-29 | 1984-01-04 | Davy Mckee Ltd | Process |
CA1236682A (en) * | 1983-11-29 | 1988-05-17 | Zaida Diaz | Process for the removal of hydrogen cyanide |
EP0175558A1 (en) * | 1984-09-17 | 1986-03-26 | EASTMAN KODAK COMPANY (a New Jersey corporation) | Process for the vapor phase hydrogenation of carboxylic acids to esters and alcohols |
EP0234745B1 (en) * | 1986-01-29 | 1991-06-12 | Dyson Refractories Limited | Catalysts |
US4762817A (en) * | 1986-11-03 | 1988-08-09 | Union Carbide Corporation | Aldehyde hydrogenation catalyst |
US4801574A (en) * | 1987-12-02 | 1989-01-31 | Air Products And Chemicals, Inc. | In-situ activation of CuO/ZnO/Al2 O3 catalysts in the liquid phase |
-
1989
- 1989-12-21 US US07/454,456 patent/US5008235A/en not_active Expired - Fee Related
-
1990
- 1990-12-19 BR BR909006478A patent/BR9006478A/pt unknown
- 1990-12-20 ZA ZA9010294A patent/ZA9010294B/xx unknown
- 1990-12-20 KR KR1019900021120A patent/KR950008885B1/ko active IP Right Grant
- 1990-12-20 CA CA002032777A patent/CA2032777A1/en not_active Abandoned
- 1990-12-20 PL PL28836390A patent/PL288363A1/xx unknown
- 1990-12-20 RU SU904894060A patent/RU2044560C1/ru active
- 1990-12-20 ES ES90124964T patent/ES2055290T3/es not_active Expired - Lifetime
- 1990-12-20 AU AU68264/90A patent/AU625589B2/en not_active Ceased
- 1990-12-20 DE DE69010170T patent/DE69010170T2/de not_active Revoked
- 1990-12-20 CN CN90110438A patent/CN1028094C/zh not_active Expired - Fee Related
- 1990-12-20 EP EP90124964A patent/EP0434062B1/en not_active Revoked
- 1990-12-20 JP JP2411860A patent/JPH0421638A/ja active Pending
- 1990-12-20 YU YU240890A patent/YU46974B/sh unknown
- 1990-12-20 PT PT96301A patent/PT96301A/pt not_active Application Discontinuation
-
1991
- 1991-03-02 TW TW080101667A patent/TW232681B/zh active
-
1994
- 1994-09-22 CN CN94116270A patent/CN1105907A/zh active Pending
Non-Patent Citations (5)
Title |
---|
1. Патент США 2297769, кл. 585 - 469, 19963. * |
2. Патент США N 4593015, кл. B 01J 23/04, 1986. * |
3. Патент США N 42099424, кл. B 01J 21/04, 1980. * |
4. Европейский патент N 143634, кл. C 07C 29/136, 1985. * |
4. Патент США N 4600704, кл. B 01J 23/06, 1986. * |
Also Published As
Publication number | Publication date |
---|---|
DE69010170T2 (de) | 1994-11-10 |
ES2055290T3 (es) | 1994-08-16 |
CN1028094C (zh) | 1995-04-05 |
AU625589B2 (en) | 1992-07-16 |
US5008235A (en) | 1991-04-16 |
KR910011720A (ko) | 1991-08-07 |
PL288363A1 (en) | 1991-09-09 |
YU46974B (sh) | 1994-09-09 |
YU240890A (sh) | 1993-10-20 |
CN1105907A (zh) | 1995-08-02 |
CA2032777A1 (en) | 1991-06-22 |
AU6826490A (en) | 1991-06-27 |
DE69010170D1 (de) | 1994-07-28 |
JPH0421638A (ja) | 1992-01-24 |
EP0434062B1 (en) | 1994-06-22 |
PT96301A (pt) | 1991-09-30 |
CN1054060A (zh) | 1991-08-28 |
ZA9010294B (en) | 1991-10-30 |
KR950008885B1 (ko) | 1995-08-09 |
BR9006478A (pt) | 1991-10-01 |
TW232681B (ru) | 1994-10-21 |
EP0434062A1 (en) | 1991-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2044560C1 (ru) | Способ получения восстановленной каталитической композиции и восстановленная каталитическая композиция | |
DE60101681T2 (de) | Verfahren zur herstellung kobalt-katalysatoren | |
US6054627A (en) | Hydrogenation catalyst, process for preparing and process of using said catalyst | |
EP2561928B1 (en) | Production method for nanometer-sized copper-based catalyst | |
US5142067A (en) | Hydrogenation with Cu-Al-X catalysts | |
CA2026275C (en) | Hydrogenation catalyst, process for preparing and process of using said catalyst | |
US20080207953A1 (en) | Catalyst and Method for Hyrogenating Carbonyl Compounds | |
EP1218326A1 (de) | Katalysator und verfahren zur hydrierung von carbonylverbindungen | |
US20220152597A1 (en) | Catalysts containing copper, zinc oxide, alumina and silica | |
KR20080039411A (ko) | 카르보닐 화합물의 수소화 촉매 및 방법 | |
RU2035997C1 (ru) | Способ получения восстановленной каталитической композиции и восстановленная каталитическая композиция для гидрирования органических соединений | |
CN106944060A (zh) | 一种甲烷二氧化碳重整制合成气催化剂的制备方法 | |
DE69907934T2 (de) | Verfahren zur herstellung von wasserstoff | |
EP4221888B1 (en) | Method for making copper-containing catalysts | |
CN112517059B (zh) | 一种二甲基苄醇氢解催化剂及其制备方法 | |
US6995115B2 (en) | Catalyst for the generation of CO-free hydrogen from methane | |
CN108607562A (zh) | 用于己二酸二烷基酯制己二醇的催化剂及制备方法和应用 | |
EP4221887B1 (en) | Method for making copper-containing catalysts | |
DE4219690A1 (de) | Verfahren zur synthese von kohlenwasserstoffen aus synthesegas in gegenwart eines katalysators auf basis von kobalt | |
CN110935478A (zh) | 合成甲醇催化剂的制备方法 | |
EP2357037A1 (de) | Verfahren zur Herstellung von mechanisch stabilen Katalysatorformkörpern | |
KR102296609B1 (ko) | 탄화수소 제조용 촉매 및 이의 제조 방법 | |
DE3717111A1 (de) | Verfahren zur herstellung eines kupfer enthaltenden katalysators zur tieftemperaturkonvertierung | |
CN109937089B (zh) | 生产用于氢化羰基化合物的机械稳定催化剂的方法,所述催化剂和氢化方法 | |
CN106944082A (zh) | 一种用于甲烷二氧化碳重整制合成气催化剂的制备方法 |