[go: up one dir, main page]

KR101913897B1 - 이차전지용 양극활물질 및 이를 포함하는 이차전지 - Google Patents

이차전지용 양극활물질 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
KR101913897B1
KR101913897B1 KR1020150137918A KR20150137918A KR101913897B1 KR 101913897 B1 KR101913897 B1 KR 101913897B1 KR 1020150137918 A KR1020150137918 A KR 1020150137918A KR 20150137918 A KR20150137918 A KR 20150137918A KR 101913897 B1 KR101913897 B1 KR 101913897B1
Authority
KR
South Korea
Prior art keywords
active material
shell
core
cathode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020150137918A
Other languages
English (en)
Other versions
KR20170038485A (ko
Inventor
이상욱
정왕모
박병천
신주경
류지훈
박상민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020150137918A priority Critical patent/KR101913897B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017560215A priority patent/JP6562576B2/ja
Priority to PCT/KR2016/010862 priority patent/WO2017057900A1/ko
Priority to CN201680012341.8A priority patent/CN107251282B/zh
Priority to PL16852046T priority patent/PL3249723T3/pl
Priority to US15/550,133 priority patent/US10862156B2/en
Priority to EP16852046.8A priority patent/EP3249723B1/en
Publication of KR20170038485A publication Critical patent/KR20170038485A/ko
Application granted granted Critical
Publication of KR101913897B1 publication Critical patent/KR101913897B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M2/1072
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 이차전지용 양극활물질 및 이를 포함하는 이차전지에 관한 것으로, 상기 양극활물질은 코어; 상기 코어를 둘러싸며 위치하는 쉘; 및 상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고, 상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 복수 개의 결정립을 포함하는 하기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하며, 상기 결정립은 평균 결정 크기가 50nm 내지 150nm인 것이다.
[화학식 1]
LiaNi1-x-yCoxM1yM3zM2wO2
(상기 화학식 1에서, M1, M2, M3, a, x, y, z 및 w는 명세서 중에서 정의한 바와 같다)
상기 양극활물질은 결정립 크기의 제어로 고출력 특성, 특히 저온에서 우수한 출력 특성을 나타낼 수 있다.

Description

이차전지용 양극활물질 및 이를 포함하는 이차전지{POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY AND SECONDARY BATTERY COMPRISING THE SAME}
본 발명은 고출력 특성을 나타낼 수 있는 이차전지용 양극활물질 및 이를 포함하는 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
그러나, 리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해 되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다.
이에 따라 현재 활발하게 연구 개발되어 사용되고 있는 리튬 이차전지용 양극활물질은 층상구조의 LiCoO2이다. LiCoO2는 수명특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 낮아 전지의 고용량화 기술에 적용되기에는 한계가 있다.
이를 대체하기 위한 양극활물질로서, LiNiO2, LiMnO2, LiMn2O4, LiFePO4, Li(NixCoyMnz)O2 등의 다양한 리튬 전이금속 산화물이 개발되었다. 이중, LiNiO2의 경우 높은 방전용량의 전지 특성을 나타내는 장점이 있으나, 간단한 고상반응으로는 합성이 어렵고, 열적 안정성 및 사이클 특성이 낮은 문제점이 있다. 또, LiMnO2, 또는 LiMn2O4 등의 리튬 망간계 산화물은 열적안전성이 우수하고, 가격이 저렴하다는 장점이 있지만, 용량이 작고, 고온 특성이 낮은 문제점이 있다. 특히, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3 +로 인한 구조변형(Jahn-Teller distortion) 때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(hybrid electric vehicle, HEV)용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.
이 같은 사정으로 인해, LiCoO2의 대체 양극활물질로 최근 가장 각광받고 있는 물질은 리튬 니켈망간코발트 산화물, Li(NixCoyMnz)O2 (이때, 상기 x, y, z는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<x≤1, 0<y≤1, 0<z≤1, 0<x+y+z≤1임)이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율 특성(rate capability) 및 고온에서의 수명특성이 좋지 않은 단점을 갖고 있다.
이에 따라 리튬 전이금속 산화물내 조성의 변화 또는 결정 구조의 제어를 통해 리튬 이차전지의 성능을 향상시킬 수 있는 양극 활물질의 제조방법이 절실히 요구되고 있는 실정이다.
한국특허공개 제2003-0083476호 (공개일: 2003.10.30)
본 발명이 해결하고자 하는 제1기술적 과제는, 결정립 크기의 제어로 고출력 특성을 나타낼 수 있는 이차전지용 양극활물질 및 이의 제조방법을 제공하는 것이다.
또, 본 발명이 해결하고자 하는 제2기술적 과제는, 상기 양극활물질을 포함하는 이차전지용 양극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 코어; 상기 코어를 둘러싸며 위치하는 쉘; 및 상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고, 상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 복수 개의 결정립을 포함하는 하기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하며, 상기 결정립의 평균 결정 크기가 50nm 내지 150nm인 것인 이차전지용 양극활물질이 제공된다.
[화학식 1]
LiaNi1-x-yCoxM1yM3zM2wO2
(상기 화학식 1에서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.0005≤z≤0.03, 0≤w≤0.02, 0<x+y≤0.7이다)
본 발명의 다른 일 실시예에 따르면, 니켈 원료물질, 코발트 원료물질 및 M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)을 혼합하여 제조한 전이금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하여 pH 11 내지 pH 13에서 공침반응시켜, 전구체 포함 반응용액을 준비하는 단계, 상기 전구체 포함 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 pH 11 미만이 될 때까지 첨가하여 상기 전구체를 성장시키는 단계, 및 상기 성장된 전구체를 리튬 원료물질과 혼합한 후 500℃ 내지 700℃에서의 1차 소성 및 700℃ 내지 900℃에서의 2차 소성을 수행하는 단계를 포함하며, 상기 전이금속 함유 용액의 제조시, 및 상기 성장된 전구체와 리튬 원료물질과의 혼합시 중 적어도 어느 하나의 공정시 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)을 더 첨가하는, 상기한 이차전지용 양극활물질의 제조방법이 제공된다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 양극활물질을 포함하는 이차전지용 양극, 리튬 이차전지, 전지모듈 및 전지팩이 제공된다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 이차전지용 양극활물질은 결정립 크기의 제어로 우수한 출력 특성, 특히 저온에서 우수한 출력 특성을 나타낼 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 이차전지용 양극활물질을 개략적으로 나타낸 단면구조도이다.
도 2는 실시예 1에서 제조한 전구체를 전계 방사형 전자현미경(field emission scanning electron microscopy, FE-SEM)으로 관찰한 사진이다.
도 3은 실시예 1에서 제조한 양극활물질을 FE-SEM으로 관찰한 사진이다(관찰배율=30000배).
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서는 코어-쉘 구조를 갖는 입자에서의 코어와 쉘 사이에 상기 코어 및 쉘과 연결된 3차원 망목 구조의 완충층이 형성된 구조의 이차전지용 양극활물질의 제조시, 결정립의 크기 제어를 통해 이차전지의 출력 특성 및 수명 특성을 향상시킬 수 있다.
즉, 본 발명의 일 실시예에 따른 이차전지용 양극활물질은, 코어; 상기 코어를 둘러싸며 위치하는 쉘; 및 상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고,
상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 복수 개의 결정립을 포함하는 하기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하며,
상기 결정립은 평균 결정 크기가 50nm 내지 150nm 이다:
[화학식 1]
LiaNi1-x-yCoxM1yM3zM2wO2
상기 화학식 1에서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소를 포함하고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.0005≤z≤0.03, 0≤w≤0.02, 0<x+y≤0.7이다.
상기 화학식 1의 리튬 복합금속 산화물의 조성은 양극활물질 입자 전체의 평균조성이다.
보다 구체적으로, 상기 화학식 1에 있어서, M3은 주기율표 6족(VIB족)에 해당하는 원소로서, 활물질 입자의 제조시 소성 공정 중 입자 성장을 억제하는 역할을 한다. 상기 M3은 양극활물질의 결정 구조에 있어서, Ni, Co 또는 M1의 일부를 치환하여 이들 원소가 존재해야 할 위치에 존재할 수도 있고, 또는 리튬과 반응하여 리튬 산화물을 형성할 수도 있다. 이에 따라 M3의 함량 및 투입 시기의 조절을 통해 결정립의 크기를 제어할 수 있다. 구체적으로, 상기 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있으며, 보다 구체적으로는 W 및 Cr중 적어도 어느 하나의 원소일 수 있다.
이와 같은 상기 M3은 상기 화학식 1의 리튬 복합금속 산화물 중 z에 해당하는 함량, 즉 0.0005≤z≤0.03으로 포함될 수 있다. z가 0.0005 미만이거나 또는 0.03을 초과할 경우 전술한 특성을 충족하는 활물질의 구현이 용이하지 않고, 그 결과 출력 및 수명 특성 개선효과가 미미할 수 있다. M3 원소의 함량 제어에 따른 입자 구조 구현 및 그에 따른 전지 특성 개선효과의 현저함을 고려할 때 보다 구체적으로, 0.001≤z≤0.01일 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Li은 a에 해당하는 함량, 즉 1.0≤a≤1.5으로 포함될 수 있다. A가 1.0 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때 상기 Li는 보다 구체적으로 1.0≤a≤1.15의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Co는 x에 해당하는 함량, 즉 0<x≤0.5의 함량으로 포함될 수 있다. x가 0일 경우 용량 특성이 저하될 우려가 있고, 또 0.5를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.10≤x≤0.35의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있으며, 보다 구체적으로는 Al 또는 Mn일 수 있다. 상기 M1은 y에 해당하는 함량, 즉 0<y≤0.5의 함량으로 포함될 수 있다. y가 0이면 M1 포함에 따른 개선효과를 얻을 수 없고, 0.5를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있다. M1 원소의 포함에 따른 전지 특성 개선 효과의 현저함을 고려할 때, 상기 M1은 보다 구체적으로 0.1≤y≤0.3의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물 또는 상기 리튬 복합금속 산화물에서의 Ni, Co 및 M1의 원소는, 활물질내 금속 원소의 분포 조절을 통한 전지 특성 개선을 위해, 또 다른 원소, 즉 M2에 의해 일부 치환되거나 도핑될 수도 있다. 상기 M2는 구체적으로 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있으며, 보다 구체적으로는 Zr 또는 Ti일 수 있다.
상기 M2의 원소는 양극활물질의 특성을 저하시키지 않는 범위내에서 w에 해당하는 양, 즉 0≤w≤0.02의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물은 복수 개의 결정립을 포함하는 다결정 화합물로서, 그 제조시 상기 리튬 복합금속 산화물 내 포함되는 M3 원소의 함량과 소성 조건의 제어를 통해, 고출력 특성을 나타낼 수 있도록 결정 입자크기를 최적화한 것이다. 구체적으로, 상기 다결정 리튬 복합금속 산화물을 구성하는 결정립의 평균 결정 크기는 50nm 내지 150nm이며, 결정 크기 제어에 따른 출력 특성 개선효과의 현저함을 고려할 때, 1차 입자의 평균 결정 크기는 보다 구체적으로는 80nm 내지 120nm일 수 있다.
본 발명에 있어서, 다결정(polycrystal)이란 둘 이상의 결정 입자들이 모여서 이루어진 결정체를 의미한다. 또, 본 발명에 있어서, 결정립의 평균 결정 크기는 상기 리튬 복합금속 산화물 입자를 X-선 회절 분석을 이용하여 정량적으로 분석할 수 있다. 예를 들면, 상기 다결정 리튬 복합금속 산화물 입자를 홀더에 넣고, X-선을 상기 입자에 조사하여 나오는 회절 격자를 분석함으로써, 1차입자의 평균 결정 크기를 정량적으로 분석할 수 있다.
한편, 본 발명의 일 실시예에 따른 리튬이차전지용 양극활물질은, 상기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하는 코어 및 상기 코어를 둘러싸며 위치하며, 상기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하는 쉘을 포함하고, 또 상기 코어와 쉘 사이에 상기 코어를 둘러싸며 위치하며, 공극, 및 상기 코어와 쉘을 연결하는 상기 화학식 1의 다결정 리튬 복합금속 산화물의 3차원 망목구조체를 포함하는 완충층을 더 포함한다.
이와 같이, 본 발명의 일 실시예에 따른 이차전지용 양극활물질은, 코어-쉘 구조를 갖는 입자에서의 코어와 쉘 사이에 상기 코어 및 쉘과 연결된 3차원 망목 구조의 완충층이 형성됨으로써, 전극 제조시 압연공정에 의한 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화하며, 또 쉘을 형성하는 입자가 리튬이온의 삽입 및 탈리가 용이한 배향의 결정구조를 가져 이차전지의 출력 특성 및 수명 특성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 리튬이차전지용 양극활물질을 개략적으로 나타낸 단면구조도이다. 도 1은 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다.
도 1을 참조하여 설명하면, 본 발명의 일 실시예에 따른 이차전지용 양극활물질(10)은 코어(1), 상기 코어를 둘러싸는 쉘(2), 그리고 코어와 쉘 사이에 상기 코어를 둘러싸며 위치하는 완충층(3)을 포함하며, 상기 완충층(3)은 공극(3a)과 3차원 망목구조체(3b)를 포함한다.
구체적으로, 상기 양극활물질(10)에 있어서, 상기 코어(1)는 상기한 화학식 1의 다결정 리튬 복합금속 산화물(이하 제1리튬 복합금속 산화물이라 함)을 포함한다.
또, 상기 코어(1)는 상기한 제1리튬 복합금속 산화물의 단일 입자로 이루어질 수도 있고, 또는 상기 제1리튬 복합금속 산화물의 1차 입자들이 응집된 2차 입자로 이루어질 수도 있다. 이때 1차 입자들은 균일할 수도 있고, 불균일 할 수도 있다.
또, 상기 양극활물질(10)에 있어서, 상기 쉘(2)은 상기한 다결정의 리튬 복합금속 산화물(이하 제2리튬 복합금속 산화물이라 함)을 포함한다.
상기 제2리튬 복합금속 산화물은 양극활물질의 중심에서부터 외부로 방사형으로 성장된, 결정배향성 입자일 수 있다. 이와 같이, 쉘을 형성하는 제2리튬 복합금속 산화물의 입자가 리튬의 삽입 및 탈리가 원활한 방향으로의 결정배향성을 가짐으로써, 동일 조성의 결정배향성을 갖지 않는 입자에 비해 높은 출력특성을 구현할 수 있다.
구체적으로, 상기 쉘(2)에 있어서 상기 제2리튬 복합금속 산화물의 입자는 육면체 등의 다각형, 원기둥, 섬유상, 또는 인편상 등의 다양한 형상을 가질 수 있다. 구체적으로는 1.5 이상의 종횡비(aspect ratio)를 갖는 섬유상일 수 있다. 쉘을 구성하는 제2리튬 복합금속 산화물의 입자의 종횡비가 1.5 미만이면 균일한 입자 성장이 이루어지지 않아 전기화학 특성이 저하될 우려가 있다. 이때, 상기 종횡비는 제2리튬 복합금속 산화물 입자의 장축방향의 길이에 대한 단축방향의 길이의 비를 의미한다. 또, 상기 쉘(2)은 제2리튬 복합금속 산화물의 입자 사이에 형성되는 공극을 더 포함할 수도 있다.
또, 상기한 코어(1)와 쉘(2) 사이에는, 공극(3a), 및 상기 코어와 쉘 사이를 연결하는 3차원 망목구조체(3b)를 포함하는 완충층(3)이 위치한다.
상기 완충층(3)에 있어서, 공극(3a)은 활물질의 제조시 반응물의 pH를 제어함에 따라 활물질 입자가 중공형 구조로 변환되는 과정에서 형성되는 것으로, 상기 코어(1)와 쉘(2) 사이에 공간을 형성하여 전극 제조를 위한 압연시 완충작용을 한다. 또 활물질 내부로까지 전해액이 용이하게 투과되어 코어와 반응할 수 있도록 함으로써 활물질의 전해액과의 반응면적을 증가시키는 역할을 한다. 이와 같은 공극(3a)은 양극활물질 총 부피에 대하여 30부피% 이하, 보다 구체적으로는 2 내지 30부피%로 포함될 수 있다. 상기 범위 내로 포함될 때, 활물질의 기계적 강도의 저하없이 우수한 완충작용 및 전해액과의 반응면적 증가 효과를 나타낼 수 있다. 상기 공극 형성에 따른 개선효과의 현저함을 고려할 때 상기 공극(3a)은 보다 구체적으로 양극활물질 총 부피에 대하여 5 내지 20부피%로 포함될 수 있다. 이때 완충층의 공극율은 집속이온빔(focused ion beam, FIB)을 이용한 입자의 단면 분석 또은 수은압입법에 의해 측정할 수 있다.
또, 상기 완충층(3)에 있어서, 3차원 망목구조체(3b)는 활물질의 제조시 활물질 입자가 중공형 구조로 변환되며 내부 코어를 생성하는 과정에서 형성되는 것으로, 코어와 쉘 사이에 연결되어 코어(1)와 쉘(2) 사이의 공간을 지지하는 역할을 한다. 이에 따라 상기 3차원 망목구조체(3b)는 코어(1) 및 쉘(2)과 마찬가지로 상기한 화학식 1의 다결정 리튬 복합금속 산화물(이하 제3리튬 복합금속 산화물이라 함)을 포함한다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 화학식 1의 다결정 리튬 복합금속 산화물내 포함되는 니켈, M1 및 코발트 중 적어도 어느 하나의 금속원소는, 상기 활물질 입자 내에서 증가하거나 또는 감소하는 농도구배로 분포할 수 있다.
본 발명에 있어서, 활물질내 금속원소의 농도구배 또는 농도 프로파일이란 X축이 입자표면에서 중심부의 깊이를 나타내고, Y축이 금속원소의 함유량을 나타낼 때, 입자 표면에서 중심부의 깊이에 따른 금속원소의 함유량을 나타내는 그래프를 의미한다. 일례로, 농도 프로파일의 평균 기울기가 양이라는 것은 입자 중심부 구간이 입자 표면 부분 보다 해당 금속 원소가 상대적으로 많이 위치하는 것을 의미하고, 평균 기울기가 음이라는 것은 입자 중심부 구간 보다 입자 표면 부분에 금속원소가 상대적으로 많이 위치하고 있는 것을 의미한다. 본 발명에 있어서, 활물질 입자내에서의 금속의 농도구배 및 농도 프로파일은 X선 광전자 분광법(X-ray Photoelectron Spectroscopy(XPS), ESCA(Electron Spectroscopy for Chemical Analysis)라고도 함), 전자선 마이크로 애널라이저(Electron Probe Micro Analyzer, EPMA), 유도결합 플라스마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 또는 비행 시간형 2차 이온 질량분석기(Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 등의 방법을 이용하여 확인할 수 있으며, 구체적으로는 XPS를 이용하여 활물질내 금속원소의 프로파일을 확인하는 경우, 입자 표면에서 중심부 방향으로 활물질을 에칭(etching time)하면서, 에칭시간 별로 금속원소비(atomic ratio)를 측정하고, 이로부터 금속원소의 농도 프로파일을 확인할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 양극활물질에 있어서, 니켈, 코발트 및 M1 중 적어도 하나의 금속원소는 활물질 입자 전체에 걸쳐 금속의 농도가 점진적으로 변화하는 농도구배를 가질 수 있으며, 금속원소의 농도구배 기울기는 하나 이상의 값을 나타낼 수 있다. 이와 같이 연속적인 농도구배를 가짐으로써, 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다. 또, 금속의 농도구배 기울기가 일정할 경우, 구조 안정성 개선효과가 더욱 향상될 수 있다. 또, 농도구배를 통해 활물질 입자 내에서의 각 금속의 농도를 달리함으로써, 해당 금속의 특성을 용이하게 활용하여 양극활물질의 전지성능 개선효과를 더욱 향상시킬 수 있다.
본 발명에 있어서 "금속의 농도가 점진적으로 변화하는 농도 구배를 나타낸다"란, 금속의 농도가 입자 전체에 걸쳐 단계적으로 변화하는 농도 분포로 존재한다는 것을 의미한다. 구체적으로, 상기 농도 분포는 입자 내에서 1㎛당 금속 농도의 변화가, 활물질 입자 내 포함되는 해당 금속의 총 원자량을 기준으로, 각각 0.1원자% 내지 30원자%, 보다 구체적으로는 0.1원자% 내지 20원자%, 보다 더 구체적으로는 1원자% 내지 10 원자%의 차이가 있는 것일 수 있다.
보다 구체적으로는, 상기 양극활물질에 있어서, 활물질내 포함된 니켈의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 감소할 수 있다. 이때 상기 니켈의 농도구배 기울기는 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이 활물질 입자 내 입자 중심에서 니켈의 농도가 고농도를 유지하고, 입자 표면측으로 갈수록 농도가 감소하는 농도 구배를 포함하는 경우, 양극활물질의 열안정성을 개선시킬 수 있다.
또, 상기 양극활물질에 있어서, 활물질내 포함된 M1의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이때 상기 M1의 농도구배 기울기는 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이, 활물질 입자 내에 입자 중심에서 M1, 특히 망간의 농도가 저농도를 유지하고, 입자 표면측으로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 양극활물질의 용량 감소 없이 열안정성을 개선시킬 수 있다. 보다 구체적으로 상기 M1은 Mn일 수 있다.
또, 상기 양극활물질에 있어서, 활물질내 포함된 코발트의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이때 상기 활물질의 농도구배 기울기는 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이 활물질 입자 내에 입자 중심에서 코발트의 농도가 저농도를 유지하고, 표면측으로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 코발트의 사용량을 감소시키면서도 양극활물질의 용량 특성을 개선시킬 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 니켈의 함량이 쉘 내에 포함되는 니켈의 함량보다 많을 수 있으며, 구체적으로 상기 코어는 코어 내 포함되는 전이 금속원소 총 몰에 대하여 60몰% 이상 100몰% 미만의 함량으로 니켈을 포함하고, 상기 쉘은 쉘 내 포함되는 전이 금속원소 총 몰에 대하여 30몰% 이상 65몰% 미만의 함량으로 니켈을 포함할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 망간의 함량이 쉘 내에 포함되는 망간의 함량 보다 적을 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 코발트의 함량이 쉘 내에 포함되는 코발트의 함량 보다 적을 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 니켈, 망간 및 코발트는 활물질 입자 전체에 걸쳐 각각 독립적으로, 연속적으로 변화하는 농도구배를 나타내고, 상기 니켈의 농도는 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 감소하고, 그리고 상기 코발트 및 망간의 농도는 각각 독립적으로 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 니켈, 망간 및 코발트는 코어 및 쉘 내에서 각각 독립적으로 연속적으로 변화하는 농도구배를 나타내고, 상기 니켈의 농도는 코어의 중심에서부터 코어와 완충층의 계면까지, 그리고 완충층과 쉘의 계면에서부터 쉘 표면까지 연속적인 농도구배를 가지면서 감소하고, 그리고 상기 코발트 및 망간의 농도는 각각 독립적으로 코어의 중심에서부터 코어와 완충층의 계면까지, 그리고 완충층과 쉘의 계면에서부터 쉘 표면까지 연속적인 농도구배를 가지면서 증가할 수 있다.
이와 같이, 활물질 내에 부분적으로 또는 전체에 걸쳐 양극활물질 입자의 표면측으로 갈수록 니켈의 농도는 감소하고, 망간 및 코발트의 농도는 증가하는 조합된 농도구배를 포함함으로써, 용량 특성을 유지하면서도 열안정성을 나타낼 수 있다.
또, 상기 활물질에 있어서, 니켈, M1 및 코발트는 활물질 입자 전체에 걸쳐 각각 독립적으로, 변화하는 농도구배를 나타내고, 상기 니켈의 농도는 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 감소하고, 그리고 상기 코발트 및 M1의 농도는 각각 독립적으로 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이와 같이, 활물질 전체에 걸쳐 활물질 입자의 표면측으로 갈수록 니켈의 농도는 감소하고, M1 및 코발트의 농도는 증가하는 조합된 농도구배를 포함함으로써, 양극활물질의 용량 특성을 유지하면서도 열안정성을 개선시킬 수 있다.
상기와 같은 구조를 갖는 본 발명의 일 실시예에 따른 상기 양극활물질은, 1차 입자가 조립된 2차 입자일 수 있다.
구체적으로 상기 양극활물질은 평균 입자 직경(D50)이 2㎛ 내지 20㎛, 보다 구체적으로는 3㎛ 내지 15㎛인 것일 수 있다. 양극활물질의 평균 입자 직경이 2㎛ 미만이면 다결정 리튬 복합금속 산화물 입자의 안정성이 저하될 우려가 있고, 20㎛를 초과하면 이차전지의 출력특성이 저하될 우려가 있다. 또 본 발명에 따른 상기 양극활물질은 상기한 결정립 크기와 함께 2차 입자의 평균 입자 직경을 동시에 충족함으로써 우수한 구조 안정성과 함께 전지 적용시 보다 개선된 출력 특성을 나타낼 수 있다.
본 발명에 있어서, 상기 양극활물질의 평균 입자 직경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명에 있어서 양극활물질 입자의 평균 입자 직경(D50)은 예를 들어, 주사전자 현미경(scanning electron microscopy, SEM) 또는 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM) 등을 이용한 전자 현미경 관찰이나, 또는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 레이저 회절법에 의해 측정시, 보다 구체적으로는, 양극활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.
또, 상기 양극활물질에 있어서, 양극활물질의 반지름에 대한 코어 반지름의 비가 0초과 0.4미만, 보다 구체적으로는 0.01 내지 0.2, 보다 더 구체적으로는 0.1 내지 0.2이고, 양극활물질의 반지름에 대한, 양극활물질 중심에서 완충층과 쉘의 계면까지의 길이 비가 0초과 0.7미만, 보다 구체적으로는 0.01 내지 0.5, 보다 더 구체적으로는 0.1 내지 0.3일 수 있다.
또, 상기 양극활물질에 있어서, 양극활물질의 반지름에 대한 쉘의 두께의 비를 쉘 영역이라고 할때, 하기 수학식 1에 따라 결정되는 쉘 영역이 0.2 내지 1, 보다 구체적으로는 0.25 내지 0.7, 보다 구체적으로는 0.5 내지 0.6일 수 있다.
[수학식 1]
쉘 영역=(양극활물질의 반지름-코어 반지름-완충층 두께)/양극활물질의 반지름
상기한 바와 같은 비율로 양극활물질내 코어, 완충층 및 쉘이 형성되고, 또 각각의 영역 내에서 금속원소의 농도구배가 형성될 경우, 활물질 입자내 니켈, 코발트 및 망간의 분포가 보다 최적화되어 제어됨으로써, 전극 제조시 압연공정에 의한 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화함으로써 이차전지의 출력 특성 및 수명 특성을 더욱 더 향상시킬 수 있다.
본 발명에 있어서, 코어부의 입경은 집속 이온빔(forced ion beam, fib)를 이용한 입자 단면 분석을 통해 측정할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 BET 비표면적이 0.1m2/g 내지 1.9m2/g인 것일 수 있다. 상기 양극활물질의 BET 비표면적이 1.9m2/g를 초과하면 양극활물질간 응집으로 인한 활물질층내 양극활물질의 분산성 저하 및 전극내 저항 증가의 우려가 있고, 또 BET 비표면적이 0.1m2/g 미만일 경우, 양극활물질 자체의 분산성 저하 및 용량 저하의 우려가 있다.
본 발명에 있어서, 양극활물질의 비표면적은 BET(Brunauer-Emmett-Teller) 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 상기한 평균 입자 직경 및 BET 비표면적 조건을 동시에 중촉함으로써 우수한 용량 및 충방전 특성을 나타낼 수 있다. 보다 구체적으로, 상기 양극활물질은 3㎛ 내지 15㎛의 평균 입자 직경(D50) 및 0.15m2/g 내지 1.5m2/g의 BET 비표면적을 가질 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 1.2g/cc 이상, 혹은 1.2g/cc 내지 2.5g/cc의 탭 밀도를 가질 수 있다. 상기한 범위의 높은 탭밀도를 가짐으로써, 고용량 특성을 나타낼 수 있다. 본 발명에 있어서, 양극활물질의 탭밀도는 통상의 탭밀도 측정기를 이용하여 측정할 수 있으며, 구체적으로는 탭밀도 시험기(tap density tester)를 이용하여 측정할 수 있다.
상기와 같은 구조 및 물성적 특성을 갖는 본 발명의 일 실시예에 따른 양극활물질은, 니켈 원료물질, 코발트 원료물질 및 M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소를 포함함)을 혼합하여 제조한 전이금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하여 pH 11 내지 pH 13에서 공침반응시켜, 전구체 포함 반응용액을 준비하는 단계(단계 1), 상기 전구체 포함 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 pH 11 미만이 될 때까지 첨가하여 상기 전구체를 성장시키는 단계(단계 2), 및 상기 성장된 전구체를 리튬 원료물질과 혼합한 후 500℃ 내지 700℃에서의 1차 소성 및 700℃ 내지 900℃에서의 2차 소성을 수행하는 단계(단계 3)를 포함하며, 상기 전이금속 함유 용액의 제조시, 및 상기 성장된 전구체와 리튬 원료물질과의 혼합시 중 적어도 어느 하나의 공정시 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)을 더 첨가하는 제조방법에 의해 제조될 수 있다. 이때, 상기 양극활물질이 M2((이때, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소임)를 더 포함하는 경우, 상기 단계 1에서의 각 금속원소의 원료물질 혼합시 M2 원료물질이 첨가될 수도 있고, 또는 단계 2에서 리튬 원료물질과 혼합시 M2 원료물질이 첨가될 수도 있다. 이에 따라 본 발명의 다른 일 실시예에 따르면 상기한 양극활물질의 제조방법이 제공된다.
이하 각 단계별로 상세히 설명하면, 상기 양극활물질의 제조를 위한 제조방법에 있어서 단계 1은, 니켈 원료물질, 코발트 원료물질, M1 원료물질 및 선택적으로 M3 또는 M2 원료물질을 이용하여 전구체를 준비하는 단계이다.
구체적으로, 상기 전구체는 니켈 원료물질, 코발트 원료물질, M1 원료물질, 및 선택적으로 M3 또는 M2 원료물질을 혼합하여 제조한 전이금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하여 공침반응시킴으로써 제조될 수 있다. 이때 각 원료물질의 혼합비는 최종 제조되는 양극활물질에서의 각 금속원소의 함량 조건을 충족하도록 하는 범위내에서 적절히 결정될 수 있다.
상기 전이금속 함유 용액은 각각 니켈 원료물질, 코발트 원료물질, M1 함유 원료물질 그리고 선택적으로 M3 또는 M2 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물에 첨가하여 제조할 수도 있고, 또는 각각의 금속 함유 원료물질을 포함하는 용액, 구체적으로는 수용액을 제조한 후 이를 혼합하여 사용할 수도 있다.
상기한 금속 함유 원료물질로는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다.
일례로 상기 코발트 원료물질로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O 또는 Co(SO4)2ㆍ7H2O 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 니켈 원료물질로는 Ni(OH)2, NiO, NiOOH, NiCO3·2Ni(OH)2·4H2O, NiC2O2·2H2O, Ni(NO3)2·6H2O, NiSO4, NiSO4·6H2O, 지방산 니켈염 또는 니켈 할로겐화물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 망간 원료물질로는 Mn2O3, MnO2, 및 Mn3O4 등의 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간 및 지방산 망간염과 같은 망간염; 옥시 수산화물, 그리고 염화 망간 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 알루미늄 원료물질로는 AlSO4, AlCl, 또는 AlNO3 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 M3 원료물질로는 M3 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있다. 일례로 M3이 W인 경우, 산화텅스텐이 사용될 수 있다. 상기 M3 원료물질은 최종 제조되는 양극활물질에서의 M3원소의 함량 조건을 충족할 수 있도록 하는 범위로 사용될 수 있다.
또, 상기 암모늄 양이온 함유 착물 형성제는 구체적으로 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 또는 NH4CO3 등일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 암모늄 양이온 함유 착물 형성제는 상기 금속염 용액 1몰에 대하여 0.5 내지 1의 몰비가 되도록 하는 양으로 첨가될 수 있다. 일반적으로 킬레이팅제는 금속과 1:1 몰비 이상으로 반응하여 착제를 형성하지만, 형성된 착체 중 염기성 수용액과 반응하지 않은 미반응 착체가 중간 생성물로 변하여 킬레이팅제로 회수되어 재사용될 수 있기 때문에 본 발명에서는 통상에 비해 킬레이팅 사용량을 낮출 수 있다. 그 결과, 양극활물질의 결정성을 높이고, 안정화할 수 있다.
또, 상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물 또는 이들의 수화물일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
또, 상기 공침반응은, pH가 11 내지 13인 조건에서 수행될 수 있다. pH가 상기한 범위를 벗어날 경우, 제조되는 전구체의 크기를 변화시키거나 입자 쪼개짐을 유발할 우려가 있다. 또 전구체 표면에 금속 이온이 용출되어 부반응에 의해 각종 산화물을 형성할 우려가 있다. 보다 구체적으로는 혼합용액의 pH가 11 내지 12인 조건에서 수행될 수 있다.
또, 상기한 pH 범위를 충족하도록 하기 위해 상기 암모늄 양이온 함유 착물 형성제와 염기성 화합물은 1:10 내지 1:2의 몰비로 사용될 수 있다. 이때 상기 pH값은 액체의 온도 25에서의 pH값을 의미한다.
또, 상기 공침반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 40℃ 내지 70℃의 온도에서 수행될 수 있다. 또, 상기 반응시 반응 속도를 증가시키기 위하여 교반 공정이 선택적으로 수행될 수 있으며, 이때 교반 속도는 100 rpm 내지 2000 rpm일 수 있다.
또, 최종 제조되는 양극활물질내 금속원소의 농도구배를 형성하고자 하는 경우에는, 상기한 전이금속 함유 용액과는 서로 다른 농도로 니켈, 코발트, M1 함유 금속염 그리고 선택적으로 M2 함유 금속염을 포함하는 제2전이금속 함유 용액을 준비한 후, 상기 전이금속 함유 용액과 상기 제2 전이금속 함유 용액의 혼합 비율이 100부피%:0부피% 에서 0부피%:100부피%까지 점진적으로 변화되도록 상기 제1 전이금속 함유 용액에 상기 제2 전이금속 함유 용액을 첨가하는 동시에, 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 반응시킴으로서 수행될 수 있다.
이와 같이 상기 전이금속 함유 용액에 대한 제2 전이금속 함유 용액의 투입량을 연속적으로 증가시키며 반응속도 및 반응시간을 제어함으로써, 하나의 공침 반응 공정으로 니켈, 코발트 및 M1이 각각 독립적으로 입자의 중심에서부터 표면까지 연속적으로 변화하는 농도구배를 나타내는 복합금속 수산화물을 제조할 수 있다. 이때 생성되는 수산화물 내에서의 금속의 농도구배와 그 기울기는 전이금속 함유 용액 및 제2 전이금속 함유 용액의 조성과 혼합 공급 비율에 의해 용이하게 조절될 수 있으며, 특정 금속의 농도가 높은 고밀도 상태를 만들기 위해서는 반응시간을 길게 하고, 반응속도를 낮추는 것이 바람직하고, 특정 금속의 농도가 낮은 저밀도 상태를 만들기 위해서는 반응시간을 짧게 하고, 반응속도를 증가시키는 것이 바람직하다.
구체적으로, 상기 전이금속 함유 용액에 첨가되는 제2 전이금속 함유 용액의 속도는 초기 투입속도 대비 1 내지 30%의 범위 내에서 연속적으로 증가시키며 수행될 수 있다. 구체적으로, 전이금속 함유 용액의 투입속도는 150ml/hr 내지 210ml/hr일 수 있고, 상기 제2 전이금속 함유 용액의 투입속도는 120ml/hr 내지 180ml/hr일 수 있으며, 상기 투입 속도 범위내에서 초기 투입속도 대비 1% 내지 30%의 범위내에서 제2전이금속 함유 용액의 투입속도가 연속적으로 증가될 수 있다. 이때 상기 반응은 40℃ 내지 70℃에서 수행될 수 있다. 또, 상기 제1 전이금속 함유 용액에 대한 제2 전이금속 함유 용액의 공급량 및 반응시간을 조절함으로써 전구체 입자의 크기를 조절할 수 있다.
상기와 같은 공정에 의해 전구체로서, 복합금속 수산화물의 입자가 생성되어 반응용액 중에 석출되게 된다. 구체적으로 상기 전구체는 하기 화학식 2의 화합물을 포함할 수 있다.
[화학식 2]
Ni1 -x- yCoxM1yM3zM2wOH
(상기 화학식 2에서, M1, M2, M3, x, y, z 및 w는 앞서 정의한 바와 같다)
상기 반응의 결과로 침전된 전구체에 대해서는 통상의 방법에 따라 분리 후, 건조 공정이 선택적으로 수행될 수 있다.
상기 건조공정은 통상의 건조 방법에 따라 실시될 수 있으며, 구체적으로는 100℃ 내지 200℃의 온도범위에서의 가열처리, 열풍주입 등의 방법으로 15 내지 30시간 수행될 수 있다.
다음으로, 상기 양극활물질의 제조를 위한 제조방법에 있어서, 단계 3은 상기 단계 2에서 제조한 전이금속 함유 수산화물의 입자를 성장시키는 공정이다.
구체적으로 상기 전이금속함유 수산화물의 입자는, 상기 전이금속 함유 수산화물의 입자가 생성된 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 공침 반응시의 pH보다 낮아질 때까지 첨가함으로써 성장될 수 있다.
구체적으로 니켈 이온, 코발트 이온 및 망간 이온의 합계 몰수가 0.5 내지 2.5M, 혹은 1 내지 2.2M일 수 있다. 또, 이 같은 이온 농도가 유지되도록 전이금속 수산화물의 석출 속도에 맞추어 전이금속의 원료물질을 연속적으로 공급하는 것이 바람직하다.
또, 상기 단계 3에서의 전이금속 함유 수산화물의 입자 성장 단계는, 단계 1에서의 전이금속 함유 수산화물의 입자 생성 단계보다 낮은 pH에서 실시될 수 있으며, 구체적으로는 단계 2에서의 pH 보다 낮은, pH 8 이상이고 pH 11 미만, 보다 구체적으로는 pH 8 내지 10.5의 범위에서 실시될 수 있다.
또, 상기 니켈-코발트-망간의 복합금속 함유 수산화물 입자의 성장 단계는 반응물의 pH를 시간당 pH 1 내지 2.5의 속도로 변화시키며 수행될 수 있다. 이와 같이 공침 반응시에 비해 낮은 pH에서 상기와 같은 pH 변화속도로 수행됨으로써 원하는 입자 구조를 용이하게 형성할 수 있다.
또, 상기 전이금속 함유 수산화물의 입자가 생성된 반응용액에 대한 암모늄 양이온 함유 착물 형성제와 염기성 화합물의 투입시, 동일 속도로 투입할 수도 있고, 또는 투입 속도를 연속적으로 감소시키며 투입할 수 있다. 투입속도를 감소시키며 투입할 경우, 20% 이상 100% 미만의 속도 감소율로 투입속도를 감소시키며 투입할 수 있다.
상기와 같이 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 투입 속도와 농도, 그리고 반응온도를 제어함으로써, 입자 성장 단계에서의 전이금속 수산화물의 석출속도를 단계 1에서의 리튬 전이금속 수산화물의 석출속도 보다 빠르게 할 수 있다. 그 결과 전구체가 되는 전이금속 수산화물의 입자의 외표면 근방부의 밀도를 낮게 하여 후속의 열처리 공정시 입자 성장 방향을 용이하게 유도할 수 있다.
상기 단계 3의 공정은 비활성 분위기 하에서 실시될 수 있다.
상기 단계 3의 공정 후, 성장된 전이금속 수산화물의 입자를 반응용액으로부터 분리한 후 세정 및 건조하는 공정이 선택적으로 더 실시될 수 있다.
상기 건조공정은 통상의 건조 방법에 따라 실시될 수 있으며, 구체적으로는 100℃ 내지 120℃의 온도범위에서의 가열처리, 열풍주입 등의 방법으로 실시될 수 있다.
상기 양극활물질의 제조를 위한 제조방법에 있어서 단계 4는, 상기 단계 3에서 성장시킨 전이금속 함유 수산화물의 입자를 리튬 원료물질 및 선택적으로 M3 또는 M2 원료물질과 혼합한 후 소성 처리함으로써 양극활물질을 제조하는 단계이다. 이때 M3 및 M2 원료물질은 앞서 설명한 바와 동일하다.
상기 리튬 원료물질로는 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또, 상기 리튬 함유 원료물질의 사용량은 최종 제조되는 리튬 복합금속 산화물에서의 리튬과 전이금속의 함량에 따라 결정될 수 있으며, 구체적으로는 리튬 원료물질내 포함되는 리튬과 복합금속 수산화물내 포함되는 금속원소(Me)와 몰비(리튬/금속원소(Me)의 몰비)가 1.0 이상이 되도록 하는 양으로 사용될 수 있다.
또, 상기 소성 공정은 250℃ 내지 500℃에서의 1차 소성 및 700℃ 내지 900℃에서 2차 소성의 다단계로 수행될 수 있다.
상기 1차 소성은 2차 소성시 소성율을 높이기 위한 것이며, 이후 1차 소성시에 비해 고온에서 2차 소성을 수행함으로써 전술한 결정립 크기를 비롯한 물성적 특성의 구현이 가능하다. 보다 구체적으로, 상기 소성 공정은 400℃ 내지 500℃에서의 1차 소성 및 750℃ 내지 850℃에서 2차 소성의 2단계로 수행될 수 있다.
또, 상기 소성 공정은 공기 분위기 또는 산소 분위기(예를 들면, O2 등)에서 가능하며, 보다 구체적으로는 산소 분압 20부피% 이상의 산소 분위기 하에서 수행될 수 있다. 또, 상기 소성 공정은 상기한 조건에서 5시간 내지 48시간, 혹은 10시간 내지 20시간 실시될 수 있다.
또, 상기 소성 공정시 소결 보조제가 선택적으로 더 첨가될 수 있다.
소결 보조제의 첨가시 저온에서 결정을 쉽게 성장시킬 수 있고, 또 건식 혼합시 불균일 반응을 최소화할 수 있다. 또 상기 소결 보조제는 리튬 복합금속 산화물 1차 입자의 모서리 부분을 둔하게 하여 둥근 곡선 형태의 입자로 만드는 효과가 있다. 일반적으로 망간을 포함하는 리튬 산화물계 양극활물질에서는 입자의 모서리로부터 망간의 용출이 빈번히 발생하며, 이러한 망간 용출로 인해 이차전지의 특성 특히 고온시의 수명특성이 감소된다. 이에 대해 소결보조제를 사용할 경우, 1차 입자의 모서리를 둥글게 함으로써 망간의 용출 부위를 감소시킬 수 있고, 그 결과 이차전지의 안정성 및 수명특성을 향상시킬 수 있다.
구체적으로, 상기 소결보조제는, 붕산, 사붕산리튬, 산화붕소 및 붕산암모늄 등의 붕소 화합물; 산화코발트(Ⅱ), 산화코발트(Ⅲ), 산화코발트(Ⅳ) 및 사산화삼코발트 등의 코발트 화합물; 산화 바나듐 등의 바나듐 화합물; 산화 란타늄 등의 란타늄 화합물; 붕화 지르코늄, 규산칼슘 지르코늄 및 산화 지르코늄 등의 지르코늄 화합물; 산화이트륨 등의 이트륨 화합물; 또는 산화 갈륨 등의 갈륨 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 소결 보조제는 전구체의 총 중량 대비 0.2 중량부 내지 2 중량부, 보다 구체적으로는 0.4 중량부 내지 1.4 중량부의 양으로 사용될 수 있다.
또, 상기 소성 공정시 수분제거제가 선택적으로 더 첨가될 수도 있다. 구체적으로 상기 수분제거제로는 구연산, 주석산, 글리콜산 또는 말레인산 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 수분제거제는 전구체 총 중량에 대하여 0.01 내지 2중량부의 함량으로 사용될 수 있다.
상기 단계 2 및 3을 통해 생성, 성장된 전이금속 함유 수산화물의 입자는 그 제조 공정시의 공정 조건, 즉, pH 등의 차이로 인해 입자의 내부와 이후 입자 성장에 의해 형성된 입자 외부의 결정이 서로 다른 성질을 갖는다. 이에 따라, pH가 높을 때 만들어진 내부의 결정은 상기와 같은 소성 공정 동안에 수축하고, 낮은 pH 및 온도에서 만들어진 결정은 성장을 함으로써, 수축된 결정은 코어를 형성하고, 외부로 성장한 결정은 쉘을 형성한다. 그리고, 이 같은 코어와 쉘의 형성으로 상기 코어와 쉘 사이에 공극이 형성되는 동시에, 코어와 쉘 사이에 위치하는 결정은 상기 입자의 내부와 외부를 연결하는 3차원 망목 구조가 형성되게 된다. 또, 상기 입자 외부의 결정은 입자의 중심에서 외부로 방사형으로 성장하여 결정배향성을 갖게 된다.
상기한 제조방법에 따라 제조된 양극활물질은, 반응물의 pH, 농도 및 속도를 제어하여 코어와 쉘 사이에 공극을 포함하는 완충층을 포함함으로써, 전극 제조 공정에서의 압연시 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화하며, 또 쉘을 형성하는 입자가 리튬이온의 삽입 및 탈리가 용이한 배향의 결정구조를 가져 이차전지의 저항 감소 및 수명 특성을 향상시킬 수 있다. 동시에 상기 양극활물질은 활물질 입자 전체에 걸쳐 전이금속의 분포가 제어됨으로써, 전지 적용시 고용량, 고수명 및 열안정성을 나타내는 동시에 고전압시 성능 열화를 최소화 할 수 있다.
또, 상기와 같은 공정에 의해 제조되는 양극활물질은, 전술한 바와 같은 결정립 크기의 제어로 고출력 특성, 특히 저온에서 우수한 출력 특성을 나타낼 수 있다. 또, 상기 양극활물질내 전이금속의 분포가 추가적으로 제어될 수 있으며, 그 결과로서 열안정성이 개선되어 고전압시 성능 열화를 최소화 할 수 있다.
이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 양극활물질을 포함하는 양극, 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극집전체 및 상기 양극집전체 위에 형성되며, 상기한 양극 활물질을 포함하는 양극활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극활물질층은 앞서 설명한 양극활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극활물질층은 일례로서 음극집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[ 실시예 1: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 망간 설페이트 및 텅스텐 함유 원료물질로서 소듐 텅스테이트 디하이드레이트(sodium tungstate dehydrate)를 물 중에서 80:10:10:0.25의 몰비로 혼합하여 2M 농도의 제1 금속염 용액을 준비하고, 또 니켈 설페이트, 코발트 설페이트, 망간 설페이트 및 텅스텐 함유 원료물질로서 소듐 텅스테이트 디하이드레이트(sodium tungstate dehydrate)를 물 중에서 20:50:30:0.25의 몰비로 혼합하여 2M 농도의 제2 금속염 수용액을 준비하였다. 제1금속염이 담겨있는 용기는 반응기로 들어가도록 연결하고, 제2금속염이 담겨있는 용기는 제1금속염 용기로 들어가도록 연결하였다. 추가로 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 제1 금속염을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 제1금속염의 수산화물의 씨드를 형성하였다. 이후 시간당 pH 2의 속도로 pH를 낮추어 pH를 9.5로 변화시킴과 동시에 제2금속염을 제1금속염의 용기로 150ml/hr로 투입시켜 수산화물 입자의 성장을 유도함과 동시에 입자 내부에 농도구배가 생기도록 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과, 리튬(Li):복합금속(Me)의 몰비가 1:1.07의 몰비가 되도록 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[실시예 2: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 망간 설페이트 및 텅스텐 함유 원료물질로서 소듐 텅스테이트 디하이드레이트(sodium tungstate dehydrate)를 물 중에서 60:20:20:0.25의 몰비로 혼합하여 2M 농도의 금속염 용액을 준비하였다. 금속염 용액이 담겨있는 용기는 반응기로 들어가도록 연결하고, 추가로 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 금속염 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 금속염의 수산화물의 씨드를 형성하였다. 이후 NaOH 수용액 및 NH4OH 수용액을 시간당 pH 2의 속도로 pH를 낮추어 투입함으로서 pH를 9.5로 변화시킴과 동시에 수산화물 입자의 성장을 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과 1:1.07의 몰비로 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[비교예 1: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 및 망간 설페이트를 물 중에서 60:20:20의 몰비로 혼합하여 2M 농도의 금속염 용액을 준비하였다. 상기 금속염 용액이 담겨있는 용기는 반응기로 들어가도록 연결하고, 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 금속염 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 금속염의 수산화물 씨드를 형성하였다. 이후 NaOH 수용액 및 NH4OH 수용액을 시간당 pH 2의 속도로 pH를 낮추어 투입함으로써 pH를 9.5로 변화시킴과 동시에 수산화물 입자의 성장을 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과 1:1.07의 몰비로 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[참고예: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 망간 설페이트를 물 중에서 80:10:10의 몰비로 혼합하여 2M 농도의 제1금속염 용액을 준비하고, 또 니켈 설페이트, 코발트 설페이트, 망간 설페이트를 물 중에서 20:50:30의 몰비로 혼합하여 2M 농도의 제2금속염 용액을 준비하였다. 상기 제1금속염 용액이 담겨있는 용기는 반응기로 들어가도록 연결하고, 제2금속염 용액이 담겨있는 용기는 제1금속염 용기로 들어가도록 연결하였다. 추가로 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 제1금속염 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 제1금속염의 수산화물의 씨드를 형성하였다. 이후 시간당 pH 2의 속도로 pH를 낮추어 pH를 9.5로 변화시킴과 동시에 제2금속염 용액을 제1금속염의 용기로 150ml/hr로 투입시켜 수산화물 입자의 성장을 유도함과 동시에 입자 내부에 농도구배가 생기도록 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과 1:1.07의 몰비로 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[제조예: 리튬 이차전지의 제조]
상기 실시예 1~2, 비교예 1 및 참고예에서 제조한 양극활물질을 각각 이용하여 리튬 이차전지를 제조하였다.
상세하게는, 상기 실시예 1~2, 비교예 1 및 및 참고예에서 제조한 각각의 양극활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 형성용 조성물(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
또, 음극활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[실험예 1: 양극활물질의 구조 관찰]
상기 실시예 1에 따른 양극활물질의 전구체로서 제조한 니켈망간코발트계 복합금속 수산화물의 입자에 대해 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM)으로 관찰하고, 그 결과로부터 코어 및 쉘의 반직경(쉘의 경우 두께에 해당함)과 부피를 각각 계산하였다. 그 결과를 도 2 및 하기 표 1에 나타내었다.
반직경(㎛) 부피(㎛3)
코어 0.94 3.5
1.085 31.3
전체 2.025 34.8
또, 상기 실시예 1에서 제조한 양극활물질에 대하여 이온 밀링(ion milling)을 이용하여 가공한 후, FE-SEM을 이용하여 양극활물질 단면 구조를 관찰하였다. 그 결과를 도 3에 나타내었다.
단면 구조를 확인한 결과, 코어 및 쉘 부 내에 3차원 망목 구조체를 포함하는 완층층의 형성을 확인할 수 있으며, 또 쉘내 입자가 입자 중심으로부터 표면방향으로 결정배향성을 나타내고 있음을 확인할 수 있다. 또, 양극활물질의 총 입경은 4.3㎛ 이었으며, 양극활물질의 반지름 2.15㎛에서, 코어부의 두께(반지름)은 0.4㎛이고, 완층충의 두께는 0.6㎛, 쉘의 두께는 1.15㎛ 이었다. 이로부터 부피비를 환산하여 공극율을 계산한 결과, 양극활물질내 완충층의 공극율은 약 10부피%이었다.
추가적으로, 상기 실시예 1에서 제조한 양극활물질에 대해 BET 비표면적 및 탭 밀도를 각각 측정하였다.
상기 BET 비표면적은 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출하였고, 탭밀도는 탭밀도 시험기(tap density tester)를 이용하여 측정하였다.
측정 결과 상기 실시예 1에서 제조한 양극활물질의 BET 비표면적은 0.92m2/g이고, 탭밀도는 1.75g/m3이었다.
[실험예 2: 양극활물질의 결정 크기 관찰]
실시예 1~2, 비교예 1 및 참고예의 다결정 리튬 복합금속 산화물 입자에 대해 XRD 결정 분석에 의해 입자의 결정크기를 측정하였다.
상세하게는, 상기 실시예 1~2, 비교예 1 및 참고예의 다결정 리튬 복합금속 산화물 입자를 각각 홀더에 5g 정도로 넣고 X-선을 입자에 조사하여 나오는 회절 격자를 분석한 후, 주 피크(main peak) 또는 3개 이상의 피크의 반가폭으로부터 결정립 크기 및 리튬 사이트내에 삽입된 니켈(Ni)의 함량을 구하였다. 그 결과를 하기 표 2에 나타내었다.
a-axis
(Å)
c-axis
(Å)
단위격자 셀 부피
(Å8)
c/a 결정립 크기(nm) 밀도
(g/cc)
Ni occ. @ Li site (몰%)
실시예 1
(W도핑&농도구배)
2.868 14.220 101.26 4.959 106 4.769 1.1
실시예 2
(W도핑)
2.867 14.216 101.19 4.959 108 4.772 1.0
비교예 1
(bare)
2.866 14.210 101.1 4.959 178 4.777 1.1
참고예
(농도구배)
2.867 14.212 101.14 4.958 157 4.774 0.6
실험결과, W 도핑에 의해 활물질을 구성하는 다결정 리튬 복합금속 산화물의 결정립 크기가 제어된 실시예 1 및 2의 양극활물질은 거의 동등 수준의 결정립 크기 및 리튬 사이트내 삽인된 니켈 함량을 나타내었다. 한편, 결정립의 크기가 제어되지 않은 비교예 1 및 참고예의 양극활물질은 150nm 이상의 큰 결정립 크기를 나타내었으며, 또, 참고예의 양극활물질은 실시예 1에 비해 낮은 리튬 사이트내에 삽입된 니켈(Ni)의 함량을 나타내었다.
[실험예 3: 양극활물질 내 금속원소의 농도구배 확인]
상기 실시예 1에서 제조한 양극활물질에 대하여 EPMA를 이용하여 성분분석을 실시하였다. 그 결과를 하기 도 3 및 표 3에 나타내었다.
Scan Ni(mol%) Co(mol%) Mn(mol%)
코어 01 68 18 14
완충층 02 65 20 15
03 62 21 16
04 60 22 16
05 58 24 19
전체 60 23 17
상기 표 3에서 scan의 위치는 도 3에 나타난 바와 같다.
도 3 및 표 3에 나타난 바와 같이, 양극활물질에서도 농도값의 차이가 있기는 하나 전구체에서와 마찬가지로, 입자의 중심에서부터 표면으로 갈수록 Ni의 농도는 감소하고, Co 및 Mn의 농도는 증가하는 농도구배를 확인할 수 있다.
[실험예 4: 리튬 이차전지의 전지 특성 평가]
상기 제조예에서 제조한, 상기 실시예 1~2, 비교예 1 및 참고예에서의 양극활물질을 각각 포함하는 리튬 이차전지에 대해 하기와 같은 방법으로 전지 특성을 평가하였다.
상세하게는, 상기 리튬이차전지에 대해 25℃의 온도에서 2.8 내지 4.15V 구동전압 범위내에서 1C/2C의 조건으로 충/방전을 800회 실시하였다.
또, 출력 특성을 평가하기 위하여 상온(25℃)에서 충방전한 전지를 SOC 50%를 기준으로 충전하여 저항을 측정하였으며, 저온(-30℃)에서는 SOC 50%를 기준으로 전류인가시 전압이 강하되는 폭을 측정하였다.
그 결과로서, 상온(25℃) 및 저온(-30℃)에서의 저항, 그리고 상온에서의 충방전 800회 실시 후의 초기용량에 대한 800 사이클째의 방전용량의 비율인 사이클 용량유지율(capacity retention)을 각각 측정하고, 하기 표 4에 나타내었다.
상온(25℃) 저항(mohm) 저온(-30℃)에서의 전압 강하(V) 상온(25℃)에서의 800회 사이클 용량유지율 (%)
실시예 1 1.18 1.02 94.5
실시예 2 1.23 1.11 92.8
비교예 1 1.45 1.59 92.5
참고예 1.34 1.25 95.4
실험결과, 본 발명에 따라 코어와 쉘 사이에 3차원 망목 구조체 및 공극을 갖는 완충층이 형성되고, 활물질 입자 전체에 걸쳐 니켈, 망간 및 코발트의 금속원소가 각각 농도구배로 분포하며, 또 활물질을 구성하는 다결정 리튬 복합금속 산화물의 결정립 크기가 제어된 실시예 1의 양극활물질을 포함하는 리튬 이차전지 및 상기 실시예 1과 비교하여 금속원소가 농도구배를 갖지 않는 것을 제외하고는 동일한 실시예 2의 양극활물질을 포함하는 리튬 이차전지는, 코어-쉘 구조를 가지지 않고, 금속원소의 농도구배가 형성되지 않으며, 또 활물질의 구성하는 리튬 복합금속 산화물의 결정립 크기가 제어되지 않은 비교예 1의 양극활물질을 포함하는 리튬 이차전지와 비교하여, 상온에서의 저항 및 저온에서의 전압 강하가 크게 감소되고 용량 유지율이 향상되었다. 이로부터 본 발명에 따른 양극활물질이 우수한 출력특성 및 수명 특성 개선 효과를 나타냄을 알 수 있다.
또, 실시예 1의 양극활물질을 포함하는 리튬 이차전지는, 코어-쉘 구조 및 완충층을 포함하고, 활물질 입자내 금속원소가 농도구배를 가지며 분포하지만, 활물질의 구성하는 리튬 복합금속 산화물의 결정립 크기가 제어되지 않은 참고예의 양극활물질을 포함하는 리튬 이차전지와 비교하여, 개선된 상온 및 저온에서의 출력특성을 나타내면서도 동등 수준의 우수한 용량 유지율, 즉 수명특성을 나타내었다.
또, 실시예 1의 양극활물질을 포함하는 리튬 이차전지는 상기 실시예 1과 비교하여 금속원소가 농도구배를 갖지 않는 것을 제외하고는 동일한 실시예 2의 양극활물질을 포함하는 리튬 이차전지와 비교하여 보다 우수한 출력특성 및 수명 특성 개선 효과를 나타내었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니며, 이하의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
1 코어
2 쉘
3 완충층
3a 공극
3b 3차원 망목구조체
10 양극활물질

Claims (29)

  1. 코어;
    상기 코어를 둘러싸며 위치하는 쉘; 및
    상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고,
    상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 복수 개의 결정립을 포함하는 하기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하며,
    상기 결정립은 평균 결정 크기가 50nm 내지 150nm인 것인 이차전지용 양극활물질.
    [화학식 1]
    LiaNi1-x-yCoxM1yM3zM2wO2
    (상기 화학식 1에서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소를 포함하고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.0005≤z≤0.03, 0≤w≤0.02, 0<x+y≤0.7이다)
  2. 제1항에 있어서,
    상기 니켈, 코발트 및 M1 중 적어도 어느 하나의 금속원소는, 상기 활물질 입자 내에서 변화하는 농도구배를 나타내는 것인 이차전지용 양극활물질.
  3. 제1항에 있어서,
    상기 코어 내에 포함되는 니켈의 함량이 쉘 내에 포함되는 니켈의 함량 보다 많은 것인 이차전지용 양극활물질.
  4. 제1항에 있어서,
    상기 코어 내에 포함되는 망간의 함량이 쉘 내에 포함되는 망간의 함량 보다 적은 것인 이차전지용 양극활물질.
  5. 제1항에 있어서,
    상기 코어 내에 포함되는 코발트의 함량이 쉘 내에 포함되는 코발트의 함량 보다 적은 것인 이차전지용 양극활물질.
  6. 제1항에 있어서,
    상기 코어 내에 포함되는 니켈의 함량이 쉘 내에 포함되는 니켈의 함량 보다 많으며,
    상기 코어는 코어 내 포함되는 전이 금속원소 총 몰에 대하여 60몰% 이상 100몰% 미만의 함량으로 니켈을 포함하고,
    상기 쉘은 쉘 내 포함되는 전이 금속원소 총 몰에 대하여 30몰% 이상 65몰% 미만의 함량으로 니켈을 포함하는 것인 이차전지용 양극활물질.
  7. 제1항에 있어서,
    상기 니켈, 코발트 및 M1은 활물질 입자 전체에 걸쳐 각각 독립적으로 변화하는 농도구배로 분포하고,
    상기 니켈은 활물질 입자의 중심에서부터 표면 방향으로 감소하는 농도구배로 분포하고, 그리고
    상기 코발트 및 M1은 각각 독립적으로 활물질 입자의 중심에서부터 표면 방향으로 증가하는 농도구배로 분포하는 것인 이차전지용 양극활물질.
  8. 제1항에 있어서,
    상기 쉘은 양극활물질의 중심에서부터 표면 방향으로 방사형으로 성장된 결정배향성의 다결정 리튬 복합금속 산화물의 입자를 포함하는 것인 이차전지용 양극활물질.
  9. 제1항에 있어서,
    상기 양극활물질의 반지름에 대한 코어 반지름의 비가 0.01 내지 0.2이고, 상기 양극활물질의 반지름에 대한, 양극활물질 중심에서 완충층과 쉘의 계면까지의 길이의 비가 0.01 내지 0.5인 것인 이차전지용 양극활물질.
  10. 제1항에 있어서,
    하기 수학식 1에 따라 결정되는 양극활물질의 반지름에 대한 쉘 두께의 비인 쉘 영역이 0.25 내지 0.7인 것인 이차전지용 양극활물질.
    [수학식 1]
    쉘 영역=(양극활물질의 반지름-코어 반지름-완충층 두께)/양극활물질의 반지름
  11. 제1항에 있어서,
    상기 M1이 망간(Mn) 또는 알루미늄(Al)인 것인 이차전지용 양극활물질.
  12. 제1항에 있어서,
    평균 입자 직경(D50)이 2㎛ 내지 20㎛인 것인 이차전지용 양극활물질.
  13. 제1항에 있어서,
    BET 비표면적이 0.1m2/g 내지 1.9m2/g 것인 이차전지용 양극활물질.
  14. 제1항에 있어서,
    1.2g/cc 내지 2.5 g/cc의 탭밀도를 갖는 것인 이차전지용 양극활물질.
  15. 니켈 원료물질, 코발트 원료물질 및 M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소를 포함함)을 혼합하여 제조한 전이금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하여 pH 11 내지 pH 13에서 공침반응시켜, 전구체 포함 반응용액을 준비하는 단계,
    상기 전구체 포함 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 pH 11 미만이 될 때까지 첨가하여 상기 전구체를 성장시키는 단계; 및
    상기 성장된 전구체를 리튬 원료물질과 혼합한 후 500℃ 내지 700℃에서의 1차 소성 및 700℃ 내지 900℃에서의 2차 소성을 수행하는 단계를 포함하며,
    상기 전이금속 함유 용액의 제조시, 또는 상기 성장된 전구체와 리튬 원료물질과의 혼합시에 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)을 더 첨가하는, 제1항에 따른 이차전지용 양극활물질의 제조방법.
  16. 제15항에 있어서,
    상기 전구체 포함 반응용액의 준비 단계는 40℃ 내지 70℃에서 수행되는 것인 이차전지용 양극활물질의 제조방법.
  17. 제15항에 있어서,
    상기 암모늄 양이온 함유 착물 형성제는 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 및 NH4CO3로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 이차전지용 양극활물질의 제조방법.
  18. 제15항에 있어서,
    상기 염기성 화합물은 알칼리 금속의 수화물, 알칼리 금속의 수산화물, 알칼리 토금속의 수화물 및 알칼리 토금속의 수산화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 이차전지용 양극활물질의 제조방법.
  19. 제15항에 있어서,
    상기 전구체의 성장 단계는 반응물의 pH를 시간당 pH 1 내지 2.5의 속도로 변화시키며 수행되는 것인 이차전지용 양극활물질의 제조방법.
  20. 제15항에 있어서,
    상기 리튬 원료물질은 리튬 원료물질내 포함되는 리튬과 상기 전구체 내 포함되는 금속원소(Me)와의 몰비(리튬/금속원소(Me)의 몰비)가 1.0 이상이 되도록 사용되는 것인 이차전지용 양극활물질의 제조방법.
  21. 제15항에 있어서,
    상기 전구체 포함 반응용액을 준비 단계시, 상기 전이금속 함유 용액과는 서로 다른 농도로 니켈 원료물질, 코발트 원료물질 및 M1 원료물질을 포함하는 제2 전이금속 함유 용액을 더 첨가하는 이차전지용 양극활물질의 제조방법.
  22. 제15항에 있어서,
    상기 1차 및 2차 소성이 각각 독립적으로 공기 또는 산소 분위기하에서 수행되는 것인 이차전지용 양극활물질의 제조방법.
  23. 제15항에 있어서,
    상기 1차 및 2차 소성이 각각 독립적으로 산소 분압 20% 이하의 분위기하에서 수행되는 것인 이차전지용 양극활물질의 제조방법.
  24. 제1항 내지 제14항 중 어느 한 항에 따른 양극활물질을 포함하는 이차전지용 양극.
  25. 제24항에 따른 양극을 포함하는 리튬 이차전지.
  26. 제25항에 따른 리튬 이차전지를 단위셀로 포함하는 전지모듈.
  27. 제26항에 따른 전지모듈을 포함하는 전지팩.
  28. 제27항에 있어서,
    중대형 디바이스의 전원으로 사용되는 것인 전지팩.
  29. 제28항에 있어서,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지팩.
KR1020150137918A 2015-09-30 2015-09-30 이차전지용 양극활물질 및 이를 포함하는 이차전지 Active KR101913897B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020150137918A KR101913897B1 (ko) 2015-09-30 2015-09-30 이차전지용 양극활물질 및 이를 포함하는 이차전지
PCT/KR2016/010862 WO2017057900A1 (ko) 2015-09-30 2016-09-28 이차전지용 양극활물질 및 이를 포함하는 이차전지
CN201680012341.8A CN107251282B (zh) 2015-09-30 2016-09-28 二次电池用正极活性材料和包含其的二次电池
PL16852046T PL3249723T3 (pl) 2015-09-30 2016-09-28 Aktywny materiał katodowy do baterii akumulatorowej i bateria akumulatorowa zawierająca go
JP2017560215A JP6562576B2 (ja) 2015-09-30 2016-09-28 二次電池用正極活物質及びこれを含む二次電池
US15/550,133 US10862156B2 (en) 2015-09-30 2016-09-28 Positive electrode active material for secondary battery and secondary battery including the same
EP16852046.8A EP3249723B1 (en) 2015-09-30 2016-09-28 Cathode active material for secondary battery and secondary battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150137918A KR101913897B1 (ko) 2015-09-30 2015-09-30 이차전지용 양극활물질 및 이를 포함하는 이차전지

Publications (2)

Publication Number Publication Date
KR20170038485A KR20170038485A (ko) 2017-04-07
KR101913897B1 true KR101913897B1 (ko) 2018-12-28

Family

ID=58427795

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150137918A Active KR101913897B1 (ko) 2015-09-30 2015-09-30 이차전지용 양극활물질 및 이를 포함하는 이차전지

Country Status (7)

Country Link
US (1) US10862156B2 (ko)
EP (1) EP3249723B1 (ko)
JP (1) JP6562576B2 (ko)
KR (1) KR101913897B1 (ko)
CN (1) CN107251282B (ko)
PL (1) PL3249723T3 (ko)
WO (1) WO2017057900A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220072178A (ko) 2020-11-25 2022-06-02 (주)포스코케미칼 배향성 구조를 갖는 리튬전지용 양극활물질 및 이의 제조방법
US11824193B2 (en) 2020-03-26 2023-11-21 Lg Chem, Ltd. Method of manufacturing positive electrode active material

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068594A1 (ko) * 2014-10-28 2016-05-06 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101918345B1 (ko) * 2015-04-30 2018-11-13 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR101913906B1 (ko) * 2015-06-17 2018-10-31 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR102006207B1 (ko) 2015-11-30 2019-08-02 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102128011B1 (ko) * 2017-04-10 2020-06-29 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조 방법, 이를 포함하는 이차전지용 양극 및 이차전지
CN109574090B (zh) * 2017-09-28 2020-09-15 比亚迪股份有限公司 氢氧化镍钴锰和正极材料及其制备方法和锂离子电池
KR102178876B1 (ko) 2017-10-20 2020-11-13 주식회사 엘지화학 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
WO2019103461A2 (ko) * 2017-11-21 2019-05-31 주식회사 엘지화학 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
KR102656223B1 (ko) * 2017-11-22 2024-04-11 주식회사 엘지에너지솔루션 리튬 이차전지용 양극활물질 및 그 제조방법
JP6426820B1 (ja) * 2017-11-30 2018-11-21 住友化学株式会社 リチウム含有遷移金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム含有遷移金属複合酸化物の製造方法
KR20220160919A (ko) 2021-05-28 2022-12-06 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102185126B1 (ko) * 2017-12-04 2020-12-01 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US11251427B2 (en) * 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11522186B2 (en) 2017-12-22 2022-12-06 Umicore Positive electrode material for rechargeable lithium ion batteries
HUE056745T2 (hu) 2017-12-22 2022-03-28 Umicore Nv Pozitív elektródaanyag újratölthetõ lítiumion-akkumulátorokhoz
WO2019132087A1 (ko) * 2017-12-29 2019-07-04 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP7238881B2 (ja) * 2018-02-22 2023-03-14 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP6550598B1 (ja) * 2018-03-23 2019-07-31 住友化学株式会社 リチウム複合金属酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US11909041B2 (en) * 2018-04-04 2024-02-20 Tesla, Inc. Method to produce cathode materials for Li-ion batteries
KR102398689B1 (ko) 2018-04-06 2022-05-17 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102302038B1 (ko) 2018-05-11 2021-09-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102256298B1 (ko) 2018-06-26 2021-05-26 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
KR102288296B1 (ko) * 2018-06-28 2021-08-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
EP3611133A1 (en) * 2018-08-14 2020-02-19 Samsung SDI Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparation method thereof, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including cathode including the nickel-based active material
CN111056577B (zh) 2018-10-16 2022-08-16 三星Sdi株式会社 基于镍的活性材料前体、其制备方法、基于镍的活性材料、和锂二次电池
KR102771682B1 (ko) * 2018-10-26 2025-02-25 주식회사 엘지에너지솔루션 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102263998B1 (ko) 2018-11-02 2021-06-11 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102530678B1 (ko) * 2019-01-21 2023-05-09 주식회사 엘지에너지솔루션 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
KR102565910B1 (ko) * 2019-01-21 2023-08-10 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법
KR102568566B1 (ko) * 2019-02-01 2023-08-22 주식회사 엘지에너지솔루션 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
EP3955337A4 (en) * 2019-04-10 2022-06-22 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE FOR SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY AND SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY
WO2020209869A1 (en) * 2019-04-12 2020-10-15 Camx Power Llc High power, extended temperature range-capable, highly abuse overcharge and discharge tolerant rechargeable battery cell and pack
US11309544B2 (en) 2019-04-12 2022-04-19 Camx Power Llc High power, extended temperature range-capable, highly abuse overcharge and discharge tolerant rechargeable battery cell and pack
WO2020210585A1 (en) 2019-04-12 2020-10-15 Camx Power Llc High power, extended temperature range-capable, highly abuse overcharge and discharge tolerant rechargeable battery cell and pack
KR102740060B1 (ko) * 2019-05-30 2024-12-09 주식회사 지엘비이 리튬이차전지용 양극소재의 제조방법
JP7531096B2 (ja) 2019-06-05 2024-08-09 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP2022108750A (ja) * 2019-06-05 2022-07-27 パナソニックIpマネジメント株式会社 正極活物質、および、電池
US20230187625A1 (en) * 2019-07-08 2023-06-15 Sumitomo Metal Mining Co., Ltd. Method for producing positive electrode active material for lithium ion secondary battery
US20220216463A1 (en) * 2019-11-28 2022-07-07 Lg Chem, Ltd. Method of Producing Positive Electrode Active Material for Lithium Secondary Battery and Positive Electrode Active Material for Lithium Secondary Battery Produced Thereby
KR102144056B1 (ko) * 2019-12-24 2020-08-12 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2021187963A1 (ko) * 2020-03-20 2021-09-23 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 양극 활물질 전구체, 이를 이용하여 제조된 양극 활물질, 양극 및 리튬 이차전지
US12159996B2 (en) 2020-03-25 2024-12-03 Samsung Sdi Co., Ltd. Positive electrode active material, positive electrode including the same, and lithium secondary battery employing the positive electrode
KR102735520B1 (ko) * 2020-07-24 2024-11-29 주식회사 엘지화학 양극 활물질 전구체 및 이의 제조 방법
CN115529825B (zh) * 2020-09-24 2024-03-08 株式会社Lg化学 单粒子形式的富镍锂复合过渡金属氧化物正极活性材料、其固相合成方法、包含其的正极和锂二次电池
CN114447328B (zh) * 2020-10-31 2024-05-14 华友新能源科技(衢州)有限公司 一种单晶外层包覆氧化物的正极材料及其制备方法
CN114804224B (zh) * 2021-01-29 2024-08-09 微宏动力系统(湖州)有限公司 正极材料前驱体的制备方法、正极材料前驱体、正极材料及电池
JP7648291B2 (ja) * 2021-03-22 2025-03-18 エルジー・ケム・リミテッド 正極活物質、これを含む正極及びリチウム二次電池
KR102820742B1 (ko) * 2021-08-18 2025-06-13 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질, 그 제조방법, 이를 포함한 리튬이차전지용 양극 및 리튬이차전지
KR102647676B1 (ko) * 2021-10-26 2024-03-14 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
CN114314692B (zh) * 2021-12-28 2023-01-24 中伟新材料股份有限公司 三元正极材料前驱体及制备方法、正极材料、正极浆料、锂离子电池及正极和涉电设备
CN114300690A (zh) * 2021-12-31 2022-04-08 珠海冠宇动力电池有限公司 一种极片及电池
KR102787045B1 (ko) 2022-03-22 2025-03-25 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이의 제조 방법과 이를 포함하는 리튬 이차 전지
KR20230172750A (ko) * 2022-06-16 2023-12-26 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2024013613A1 (ja) * 2022-07-15 2024-01-18 株式会社半導体エネルギー研究所 正極活物質の作製方法
CN116454261A (zh) * 2022-12-30 2023-07-18 北京当升材料科技股份有限公司 锂离子电池正极材料及其制备方法
CN116282207B (zh) * 2022-12-30 2025-04-25 湖南中伟新能源科技有限公司 枝晶状正极材料前驱体及其制备方法、锂离子电池正极材料、锂离子电池和用电设备
WO2024162742A1 (ko) * 2023-01-30 2024-08-08 주식회사 엘지화학 양극 활물질, 이의 제조방법, 이를 포함하는 양극 및 리튬 이차전지
KR20250034230A (ko) * 2023-09-01 2025-03-11 (주)포스코퓨처엠 리튬 이차 전지용 양극 활물질 및 이의 제조방법
CN119650611A (zh) * 2023-09-15 2025-03-18 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、正极极片、电池和用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216374A (ja) 2005-02-03 2006-08-17 Sony Corp 負極材料およびそれを用いた電池
JP2013051172A (ja) 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
JP2013134871A (ja) 2011-12-26 2013-07-08 Toyota Motor Corp 正極活物質の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083476A (ko) 2002-04-23 2003-10-30 주식회사 엘지화학 수명 특성과 안전성이 우수한 리튬 금속 복합 산화물 및이의 제조 방법
US8728666B2 (en) 2005-04-28 2014-05-20 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
KR100822012B1 (ko) * 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
KR101185366B1 (ko) 2010-01-14 2012-09-24 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법
JP5999307B2 (ja) * 2012-03-07 2016-09-28 日産自動車株式会社 正極活物質、電気デバイス用正極及び電気デバイス
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
CN103515606B (zh) 2012-06-21 2016-09-14 中国科学院宁波材料技术与工程研究所 高能量密度锂离子电池氧化物正极材料及其制备方法
JP6159395B2 (ja) 2013-05-10 2017-07-05 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
CN103326016A (zh) * 2013-07-08 2013-09-25 吉首大学 一种多重核壳结构层状富锂锰基正极材料的制备方法
JP6524651B2 (ja) * 2013-12-13 2019-06-05 日亜化学工業株式会社 非水電解液二次電池用正極活物質及びその製造方法
CN104409700B (zh) 2014-11-20 2018-07-24 深圳市贝特瑞新能源材料股份有限公司 一种镍基锂离子电池正极材料及其制备方法
WO2016204563A1 (ko) * 2015-06-17 2016-12-22 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216374A (ja) 2005-02-03 2006-08-17 Sony Corp 負極材料およびそれを用いた電池
JP2013051172A (ja) 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
JP2013134871A (ja) 2011-12-26 2013-07-08 Toyota Motor Corp 正極活物質の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11824193B2 (en) 2020-03-26 2023-11-21 Lg Chem, Ltd. Method of manufacturing positive electrode active material
KR20220072178A (ko) 2020-11-25 2022-06-02 (주)포스코케미칼 배향성 구조를 갖는 리튬전지용 양극활물질 및 이의 제조방법
KR20240007315A (ko) 2020-11-25 2024-01-16 (주)포스코퓨처엠 배향성 구조를 갖는 리튬전지용 양극활물질 및 이의 제조방법

Also Published As

Publication number Publication date
EP3249723A4 (en) 2018-05-02
JP2018521456A (ja) 2018-08-02
US20180048015A1 (en) 2018-02-15
PL3249723T3 (pl) 2019-09-30
EP3249723A1 (en) 2017-11-29
EP3249723B1 (en) 2018-12-05
US10862156B2 (en) 2020-12-08
WO2017057900A1 (ko) 2017-04-06
CN107251282B (zh) 2021-03-12
KR20170038485A (ko) 2017-04-07
JP6562576B2 (ja) 2019-08-21
CN107251282A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
KR101913897B1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101949249B1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
US11581538B2 (en) Positive electrode active material for secondary battery, and secondary battery comprising the same
KR102004457B1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101827055B1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102006207B1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101913906B1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR101927295B1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101989398B1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP2018531500A6 (ja) 二次電池用正極活物質、その製造方法およびこれを含む二次電池
KR20170063373A (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
KR20190043855A (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102391531B1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20150930

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20170329

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20150930

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180419

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20181019

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20181025

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20181025

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20210927

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20220926

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20230925

Start annual number: 6

End annual number: 6