[go: up one dir, main page]

KR100852843B1 - Method for manufacture reflection type panel - Google Patents

Method for manufacture reflection type panel Download PDF

Info

Publication number
KR100852843B1
KR100852843B1 KR1020020014953A KR20020014953A KR100852843B1 KR 100852843 B1 KR100852843 B1 KR 100852843B1 KR 1020020014953 A KR1020020014953 A KR 1020020014953A KR 20020014953 A KR20020014953 A KR 20020014953A KR 100852843 B1 KR100852843 B1 KR 100852843B1
Authority
KR
South Korea
Prior art keywords
forming
organic insulating
liquid crystal
crystal injection
insulating layer
Prior art date
Application number
KR1020020014953A
Other languages
Korean (ko)
Other versions
KR20030075627A (en
Inventor
전진영
안성준
Original Assignee
비오이 하이디스 테크놀로지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비오이 하이디스 테크놀로지 주식회사 filed Critical 비오이 하이디스 테크놀로지 주식회사
Priority to KR1020020014953A priority Critical patent/KR100852843B1/en
Publication of KR20030075627A publication Critical patent/KR20030075627A/en
Application granted granted Critical
Publication of KR100852843B1 publication Critical patent/KR100852843B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

본 발명은 반사형 패널 제조 방법에 관한 것으로, 각 배선위에 액정 주입 통로를 형성하여 액정 주입을 용이하게 함으로써, 셀 공정에서 발생되는 액정 주입 불량을 제거할 수 있는 기술을 제공한다. 이를 위한 본 발명의 반사형 패널 제조 방법은 투명 기판위에 복수개의 게이트 신호 배선을 형성한 후 게이트 절연막을 형성하고 그 위에 활성층 및 데이타 신호 배선을 형성하는 단계와, 상기 구조물 위에 채널 보호를 위하여 패시베이션막을 형성하는 단계와, 상기 패시베이션막 위에 유기 절연막을 형성하는 단계와, 상기 구조물 위에 신호 배선간 연결, 소오스 전극과 화소 전극과의 연결을 위하여 비아 콘택홀을 형성하는 단계와, 상기 유기 절연막 위에 시야각 특성 개선을 위하여 엠보싱 패턴을 형성하되, 각 신호 배선 위에, 일정한 폭을 가지며 상기 엠보싱 패턴의 최소 유기 절연막 두께와 동일한 유기 절연막 두께를 갖는 액정 주입 통로를 게이트 신호 배선 및 데이타 신호 배선중 한쪽 또는 양쪽에 형성하는 단계와, 상기 구조물 위에 반사판 역할을 하는 화소 전극을 형성하는 단계를 구비한 것을 특징으로 한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a reflective panel, and provides a technique for eliminating liquid crystal injection defects generated in a cell process by forming a liquid crystal injection passage on each wiring to facilitate liquid crystal injection. The reflective panel fabrication method of the present invention comprises forming a plurality of gate signal lines on a transparent substrate, forming a gate insulating film, and forming an active layer and data signal lines thereon, and forming a passivation layer on the structure for channel protection. Forming an organic insulating layer on the passivation layer, forming a via contact hole for connecting the signal wires on the structure, and connecting the source electrode and the pixel electrode, and a viewing angle characteristic on the organic insulating layer. An embossing pattern is formed for improvement, and a liquid crystal injection passage is formed on one or both of the gate signal wiring and the data signal wiring having a predetermined width and having an organic insulating thickness equal to the minimum organic insulating thickness of the embossing pattern. And reflector station over the structure And in that it includes the steps of forming the pixel electrodes characterized in that.

Description

반사형 패널 제조 방법{METHOD FOR MANUFACTURE REFLECTION TYPE PANEL} Reflective panel manufacturing method {METHOD FOR MANUFACTURE REFLECTION TYPE PANEL}

도 1a는 유기 절연막 및 엠보싱 패턴이 삽입되는 일반적인 반사형 TFT LCD의 화소 평면도Fig. 1A is a plan view of a pixel of a typical reflective TFT LCD into which an organic insulating film and an embossing pattern are inserted.

도 1b는 도 1a에 도시된 A-A'선의 단면도FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A

도 2a는 본 발명에 의한 액정 주입통로를 갖는 화소의 평면도2A is a plan view of a pixel having a liquid crystal injection passage according to the present invention;

도 2b는 도 2a에 도시된 B-B'선의 단면도FIG. 2B is a cross-sectional view taken along the line BB ′ shown in FIG. 2A

도 2c는 도 2b에 도시된 C-C'선의 단면도FIG. 2C is a cross-sectional view taken along the line C-C 'shown in FIG. 2B

(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

31 : 투명 기판 32 : 게이트 절연막31 transparent substrate 32 gate insulating film

33 : 데이터 신호 배선 34 : 패시베이션막33: data signal wiring 34: passivation film

35 : 유기 절연막 36 : 화소전극35 organic insulating film 36 pixel electrode

41 : 게이터 신호 배선 50 : 액정 주입 통로41: gator signal wiring 50: liquid crystal injection passage

본 발명은 반사형 패널 제조 방법에 관한 것으로, 특히 각 배선위에 액정 주입 통로를 형성하여 액정 주입을 용이하게 함으로써, 셀 공정에서 발생되는 액정 주입 불량을 제거할 수 있는 반사형 패널 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a reflective panel, and more particularly, to a method for manufacturing a reflective panel capable of eliminating liquid crystal injection defects generated in a cell process by forming a liquid crystal injection passage on each wiring to facilitate liquid crystal injection. .

반사형 박막 트랜지스터 액정표시장치(TFT-LCD : Thin Film Transistor Liquid Crystal Display)에서 저 유전상수를 갖는 유기 절연막(Resin)을 층간 절연막으로 이용하는 방법이 현 산업에 이용되어 지고 있다. 이러한 유기 절연막(Resin)을 적용하여 제작되는 패널은 개구율 증가 및 시야각 개선 패턴(엠보싱(Embossing))의 형성 등 많은 이점을 가지고 있으나, 상대적으로 두꺼운 유기 절연막(Resin)을 적용함으로써 공정 상의 많은 어려움이 존재한다. 대표적으로, 어레이 공정에서의 공정 증가, 유기물 층간 절연막 적용에 따른 홀(hole) 형성 어려움, 셀(Cell) 공정에서의 액정 주입 문제등이 바로 그것이다.Background Art A method of using an organic insulating film (Resin) having a low dielectric constant as an interlayer insulating film in a thin film transistor liquid crystal display (TFT-LCD) has been used in the present industry. The panel manufactured by applying the organic insulating layer (Resin) has many advantages, such as increasing the aperture ratio and forming the viewing angle improvement pattern (embossing), but the process has a lot of difficulties in the process by applying a relatively thick organic insulating layer (Resin) exist. Representative examples include an increase in process in an array process, difficulty in forming holes due to the application of an organic interlayer insulating film, and a liquid crystal injection problem in a cell process.

반사형 TFT LCD에서 층간 절연막으로 유기 절연막을 사용하는 방법은, 투과형 TFT LCD 대비 상대적으로 적은 광효율에 기인하는 것으로써, 이를 극복하기 위해 최대한의 개구율 확보 필요성으로부터 대두 되었다. 즉, 높은 개구율을 갖는 투과형 TFT LCD에 적용되는 기술인 유기 절연막 적용 기술{저유전 상수를 갖는 유기 절연막을 매트릭스(Matrix) 형태로 형성되는 각 신호배선위에 형성함으로써, 개구율을 증가시키고, 그 위에 형성되는 화소 전극과 신호배선과의 용량결합에 의한 화면품위 저하를 방지하느 기술}을 반사형에 접목함으로써, 개구율을 증가시켜 광효율을 향상 시키고자 하는 것이다. 여기에 시야각 개선을 개선하기 위한 엠보싱 패턴(Embossing Pattern)의 형성이 첨가되어 현재의 많은 반사형 패널에서 적용되어지고 있다. The method of using the organic insulating film as the interlayer insulating film in the reflective TFT LCD is due to the relatively low light efficiency compared to the transmissive TFT LCD, and has emerged from the necessity of securing the maximum aperture ratio to overcome this. That is, an organic insulating film application technique, which is a technology applied to a transmissive TFT LCD having a high aperture ratio (by forming an organic insulating layer having a low dielectric constant on each signal wiring formed in a matrix form, the aperture ratio is increased and formed thereon. The technique of preventing screen deterioration due to capacitive coupling between the pixel electrode and the signal wiring is applied to the reflection type to increase the aperture ratio to improve the light efficiency. In addition to this, the formation of an embossing pattern for improving the viewing angle has been added, and it has been applied in many current reflective panels.

도 1a는 유기 절연막 및 엠보싱 패턴이 삽입되는 일반적인 반사형 TFT LCD의 화소 평면도로서, 부호 1은 엠보싱을 나타내고, 부호 2는 TFT 영역을 나타낸다. Fig. 1A is a plan view of a pixel of a typical reflective TFT LCD into which an organic insulating film and an embossing pattern are inserted, in which 1 denotes embossing and 2 denotes a TFT region.

도 1b는 도 1a에 도시된 A-A'선의 단면도이다. FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A.

도시된 바와 같이, 투명 기판(11)위에 복수의 게이트 신호 배선을 형성하고 게이트 절연막(12)이 형성한다. 그 다음, 상기 게이트 절연막(12) 위에 활성층 및 데이타 신호 배선(13)을 형성한다. 그 다음, 상기 전체 구조물 위에 채널을 보호하기 위해 패시베이션막(14)을 형성하고, 유기 절연체막(15)을 형성한다. 그 다음, 신호 배선간 연결, 소오스 전극과 화소 전극과의 연결등의 목적을 위하여 비아 콘택홀을 형성한다. 그 다음, 시야각 특성 개선을 위한 엠보싱 패턴을 형성한다. 그 다음, 반사판 역할을 하는 화소 전극(17)을 형성하게 된다.As shown, a plurality of gate signal wirings are formed on the transparent substrate 11 and the gate insulating film 12 is formed. Next, an active layer and a data signal line 13 are formed on the gate insulating layer 12. Next, a passivation film 14 is formed on the entire structure to protect the channel, and an organic insulator film 15 is formed. Then, via contact holes are formed for the purpose of connecting the signal wires and connecting the source electrode and the pixel electrode. An embossing pattern is then formed for improving viewing angle characteristics. Next, the pixel electrode 17 serving as a reflector is formed.

한편, 엠보싱 패턴은 최대 높이(a)와 최소 높이(b)가 약 1㎛정도의 차이를 보이며 형성되게 된다. 일반적으로 이러한 엠보싱 패턴은 TFT 영역과 신호 배선 영역을 제외하고 형성된다.On the other hand, the embossed pattern is formed with a difference of about 1 μm between the maximum height (a) and the minimum height (b). In general, such an embossing pattern is formed except for the TFT region and the signal wiring region.

그러나, 이와 같이 종래의 방법에 의해 제작된 반사형 TFT LCD는 다음과 같은 문제점을 가지고 있다.However, the reflective TFT LCD manufactured by the conventional method as described above has the following problems.

도 1a 및 도 1b에 도시된 바와 같이, 개구율 증가를 위하여 각 신호 배선(게이트와 데이타 신호 배선)위에 형성되어 있는 유기 절연막(15)이 두껍게 형성되어 있다. 그리고, 배선과 화소 전극(일반적으로 반사면) 사이의 용량 결합 문제를 해결하기 위해 이 영역에서는 엠보싱 패턴이 형성이 되지 않는 경우, 또한 여기에 TFT 영역에서도 두꺼운 엠보싱 패턴이 형성되지 않는 경우, 하나의 화소가 마치 주변이 높은 벽에 둘러 싸여있는 형태가 되며, 이는 셀 공정에서의 액정 주입시 액정의 흐름을 방해하는 요소가 된다.As shown in Figs. 1A and 1B, the organic insulating film 15 formed on each signal wiring (gate and data signal wiring) is formed thick to increase the aperture ratio. In order to solve the capacitive coupling problem between the wiring and the pixel electrode (typically the reflecting surface), when an embossing pattern is not formed in this region and a thick embossing pattern is not formed in the TFT region, The pixel is surrounded by a wall with high periphery, which becomes an element that obstructs the flow of the liquid crystal during the liquid crystal injection in the cell process.

따라서, 본 발명은 상기 문제점을 해결하기 위하여 이루어진 것으로, 본 발명의 목적은 각 배선위에 액정 주입 통로를 형성하여 액정 주입을 용이하게 함으로써, 셀 공정에서 발생되는 액정 주입 불량을 제거할 수 있는 반사형 패널 제조 방법을 제공하는데 있다.Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to form a liquid crystal injection passage on each wiring to facilitate liquid crystal injection, thereby eliminating a liquid crystal injection defect generated in a cell process. It is to provide a panel manufacturing method.

상기 목적을 달성하기 위한 본 발명의 반사형 판넬 제작 방법은,Reflective panel manufacturing method of the present invention for achieving the above object,

투명 기판위에 복수개의 게이트 신호 배선을 형성한 후 게이트 절연막을 형성하고 그 위에 활성층 및 데이타 신호 배선을 형성하는 단계와, Forming a gate insulating film after forming a plurality of gate signal wirings on the transparent substrate, and forming an active layer and a data signal wiring thereon;

상기 구조물 위에 채널 보호를 위하여 패시베이션막을 형성하는 단계와,Forming a passivation film on the structure to protect the channel;

상기 패시베이션막 위에 유기 절연막을 형성하는 단계와,Forming an organic insulating film on the passivation film;

상기 구조물 위에 신호 배선간 연결, 소오스 전극과 화소 전극과의 연결을 위하여 비아 콘택홀을 형성하는 단계와,Forming a via contact hole on the structure for connection between signal lines and connection between a source electrode and a pixel electrode;

상기 유기 절연막 위에 시야각 특성 개선을 위하여 엠보싱 패턴을 형성하되, 각 신호 배선 위에, 일정한 폭을 가지며 상기 엠보싱 패턴의 최소 유기 절연막 두께와 동일한 유기 절연막 두께를 갖는 액정 주입 통로를 게이트 신호 배선 및 데이타 신호 배선중 한쪽 또는 양쪽에 형성하는 단계와,An embossing pattern is formed on the organic insulating layer to improve viewing angle characteristics, and a liquid crystal injection path having a predetermined width and having an organic insulating thickness equal to the minimum organic insulating layer thickness of the embossing pattern is formed on each signal wiring. Forming on one or both of

상기 구조물 위에 반사판 역할을 하는 화소 전극을 형성하는 단계를 구비한 것을 특징으로 한다. And forming a pixel electrode serving as a reflector on the structure.                     

상기 액정 주입 통로가 존재하는 상기 유기 절연막의 두께는 상기 유기 절연막의 최고 두께의 80% 이하인 것을 특징으로 한다.The thickness of the organic insulating layer having the liquid crystal injection path is 80% or less of the maximum thickness of the organic insulating layer.

상기 액정 주입 통로가 존재하는 상기 유기 절연막의 두께는 0∼2㎛의 범위인 것을 특징으로 한다.The thickness of the organic insulating layer having the liquid crystal injection passage is in the range of 0 to 2 μm.

이하, 본 발명의 실시예에 관하여 첨부도면을 참조하면서 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a는 본 발명에 의한 액정 주입통로를 갖는 화소의 평면도이고, 도 2b는 도 2a에 도시된 B-B'선의 단면도이고, 도 2c는 도 2b에 도시된 C-C'선의 단면도이다. 도 2a의 부호 21은 엠보싱을 나타내고, 부호 22는 TFT 영역을 나타내는 것이며, 일반적인 유기 절연막 적용 반사형 TFT LCD의 구조와 제작 방법은 동일하다. FIG. 2A is a plan view of a pixel having a liquid crystal injection passage according to the present invention, FIG. 2B is a cross sectional view taken along the line B-B 'shown in FIG. 2A, and FIG. 2C is a cross sectional view taken along the line C-C' shown in FIG. 2B. Reference numeral 21 in FIG. 2A denotes embossing, reference numeral 22 denotes a TFT region, and the structure and fabrication method of a typical organic insulating film applied reflective TFT LCD are the same.

먼저, 투명 기판(31)위에 복수의 게이트 신호 배선(41)을 형성하고, 게이트 절연막(32)을 형성하며, 다음으로 활성층 및 데이타 신호 배선(33)을 형성한다. First, a plurality of gate signal wires 41 are formed on the transparent substrate 31, a gate insulating film 32 is formed, and then an active layer and data signal wires 33 are formed.

그 다음, 채널 보호를 위하여 패시베이션막(Passivation Layer)(34)을 형성한 후 유기 절연층(35)을 형성한다. Next, a passivation layer 34 is formed to protect the channel, and then an organic insulating layer 35 is formed.

그 다음, 신호 배선간 연결, 소오스 전극과 화소 전극과의 연결 등을 위하여 비아(VIA) 콘택홀을 형성한다. Next, a via (VIA) contact hole is formed for the connection between the signal lines and the connection between the source electrode and the pixel electrode.

그 다음, 시야각 특성 개선을 위하여 엠보싱 패턴을 형성한다. 이 때, 각 배선 위에는 화면 품위를 저하시키지 않고(배선과 화소전극간의 용량 결합에 의한 저하) 액정의 주입이 용이하도록 일정한 폭을 갖는 액정 주입 통로(50)를 형성한다. 이 통로(50)는 액정 주입시 기존 배리어(Barrier) 역할을 했던 배선위의 유기 절연막(35)중 일부분을 엠보싱 패턴의 최소 높이와 동일하게 형성한다. 따라서 추가의 공정이 발생되지는 않는다. Then, an embossing pattern is formed to improve viewing angle characteristics. At this time, a liquid crystal injection passage 50 having a constant width is formed on each wiring so as to easily inject the liquid crystal without degrading the screen quality (degradation due to capacitive coupling between the wiring and the pixel electrode). The passage 50 forms a portion of the organic insulating layer 35 on the wiring, which used as a barrier during the liquid crystal injection, to be equal to the minimum height of the embossing pattern. Thus no further processing takes place.                     

그 다음, 반사판 역할을 하는 화소 전극(36)을 형성한다.Next, a pixel electrode 36 serving as a reflector is formed.

본 발명은 에치 스톱퍼(Etch Stopper) 공정을 이용한 반사형 제조시에도 적용 될 수 있다. The present invention can also be applied to the reflective manufacturing using the etch stopper process.

이상에서 자세히 설명된 바와 같이, 본 발명에 의한 반사형 패널 제조 방법에 의하면, 각 배선위에 액정 주입 통로를 형성함으로써, 셀 공정에서 발생되는 액정 주입 불량을 제거 할 수 있다.As described in detail above, according to the reflective panel manufacturing method according to the present invention, by forming a liquid crystal injection passage on each wiring, it is possible to eliminate the liquid crystal injection failure generated in the cell process.

아울러 본 발명의 바람직한 실시예들은 예시의 목적을 위해 개시된 것이며, 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가등이 가능할 것이며, 이러한 수정 변경등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.In addition, preferred embodiments of the present invention are disclosed for the purpose of illustration, those skilled in the art will be able to various modifications, changes, additions, etc. within the spirit and scope of the present invention, these modifications and changes should be seen as belonging to the following claims. something to do.

Claims (3)

투명 기판위에 복수개의 게이트 신호 배선을 형성한 후 게이트 절연막을 형성하고 그 위에 활성층 및 데이타 신호 배선을 형성하는 단계와, Forming a gate insulating film after forming a plurality of gate signal wirings on the transparent substrate, and forming an active layer and a data signal wiring thereon; 상기 구조물 위에 채널 보호를 위하여 패시베이션막을 형성하는 단계와,Forming a passivation film on the structure to protect the channel; 상기 패시베이션막 위에 유기 절연막을 형성하는 단계와,Forming an organic insulating film on the passivation film; 상기 구조물 위에 신호 배선간 연결, 소오스 전극과 화소 전극과의 연결을 위하여 비아 콘택홀을 형성하는 단계와,Forming a via contact hole on the structure for connection between signal lines and connection between a source electrode and a pixel electrode; 상기 유기 절연막 위에 시야각 특성 개선을 위하여 엠보싱 패턴을 형성하되, 각 신호 배선 위에, 일정한 폭을 가지며 상기 엠보싱 패턴의 최소 유기 절연막 두께와 동일한 유기 절연막 두께를 갖는 액정 주입 통로를 게이트 신호 배선 및 데이타 신호 배선중 한쪽 또는 양쪽에 형성하는 단계와,An embossing pattern is formed on the organic insulating layer to improve viewing angle characteristics, and a liquid crystal injection path having a predetermined width and having an organic insulating thickness equal to the minimum organic insulating layer thickness of the embossing pattern is formed on each signal wiring. Forming on one or both of 상기 구조물 위에 반사판 역할을 하는 화소 전극을 형성하는 단계를 구비한 것을 특징으로 하는 반사형 패널 제조 방법.And forming a pixel electrode acting as a reflector on the structure. 제 1 항에 있어서,The method of claim 1, 상기 액정 주입 통로가 존재하는 상기 유기 절연막의 두께는 상기 유기 절연막의 최고 두께의 80% 이하인 것을 특징으로 하는 반사형 패널 제조 방법.And a thickness of the organic insulating layer having the liquid crystal injection path is 80% or less of the maximum thickness of the organic insulating layer. 제 1 항에 있어서,The method of claim 1, 상기 액정 주입 통로가 존재하는 상기 유기 절연막의 두께는 0∼2㎛의 범위인 것을 특징으로 하는 반사형 패널 제조 방법.The thickness of the organic insulating film having the liquid crystal injection passage is in the range of 0 to 2㎛, reflective panel manufacturing method.
KR1020020014953A 2002-03-20 2002-03-20 Method for manufacture reflection type panel KR100852843B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020014953A KR100852843B1 (en) 2002-03-20 2002-03-20 Method for manufacture reflection type panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020014953A KR100852843B1 (en) 2002-03-20 2002-03-20 Method for manufacture reflection type panel

Publications (2)

Publication Number Publication Date
KR20030075627A KR20030075627A (en) 2003-09-26
KR100852843B1 true KR100852843B1 (en) 2008-08-18

Family

ID=32225430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020014953A KR100852843B1 (en) 2002-03-20 2002-03-20 Method for manufacture reflection type panel

Country Status (1)

Country Link
KR (1) KR100852843B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100222272B1 (en) * 1994-10-14 1999-10-01 마찌다 가쯔히꼬 Liquid crystal device and its manufacturing method
KR20000029277A (en) * 1998-10-29 2000-05-25 모리시타 요이찌 Liquid crystal device, its preparation and examination method
KR20000068127A (en) * 1997-07-14 2000-11-25 하루타 히로시 Liquid crystal display
KR20000070734A (en) * 1997-12-17 2000-11-25 모리시타 요이찌 Polymer dispersion type liquid crystal display panel and its manufacturing method
KR20010081675A (en) * 2000-02-18 2001-08-29 구본준, 론 위라하디락사 Method for fabricating reflection type liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100222272B1 (en) * 1994-10-14 1999-10-01 마찌다 가쯔히꼬 Liquid crystal device and its manufacturing method
KR20000068127A (en) * 1997-07-14 2000-11-25 하루타 히로시 Liquid crystal display
KR20000070734A (en) * 1997-12-17 2000-11-25 모리시타 요이찌 Polymer dispersion type liquid crystal display panel and its manufacturing method
KR20000029277A (en) * 1998-10-29 2000-05-25 모리시타 요이찌 Liquid crystal device, its preparation and examination method
KR20010081675A (en) * 2000-02-18 2001-08-29 구본준, 론 위라하디락사 Method for fabricating reflection type liquid crystal display device

Also Published As

Publication number Publication date
KR20030075627A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US12007636B2 (en) Manufacturing method for liquid crystal display device
US20050253984A1 (en) Liquid crystal display and method for manufacturing the same
US7352431B2 (en) Liquid crystal display and manufacturing method thereof
US6597420B2 (en) Liquid crystal display device having color film on a first substrate and a method for manufacturing the same
KR100763169B1 (en) Substrate suction vacuum chuck structure
CN101154670B (en) Pixel structure and manufacturing method thereof
US20040105054A1 (en) Electro-optical device and electronic apparatus
US20230246035A1 (en) Display panel and method of manufacturing thereof
KR100852843B1 (en) Method for manufacture reflection type panel
KR20000002804A (en) Liquid crystal display device
US6770910B2 (en) Thin-film transistor array structure
JP2001051298A (en) Liquid crystal display device and method of manufacturing the same
KR20040044573A (en) Method for manufacturing lcd
KR100249191B1 (en) Manufacturing method of liquid crystal display device of display element
KR100599958B1 (en) Manufacturing method of high opening ratio and high transmittance liquid crystal display device
KR100852169B1 (en) Liquid crystal display device and method for manufacturing array substrate thereof
JP2003309122A (en) Thin-film semiconductor device and electro-optical device, their manufacturing method and reticle
KR20010004023A (en) Liquid crystal display
KR20030021383A (en) A method for manufacturing liquid crystal display

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020320

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20030228

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20070221

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20020320

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20080125

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080717

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080811

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080811

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20110621

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20120709

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20120709

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20130711

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20130711

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20160718

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20160718

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20170719

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20170719

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20180724

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20180724

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20200727

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20210728

Start annual number: 14

End annual number: 14

PC1801 Expiration of term

Termination date: 20220920

Termination category: Expiration of duration