JPWO2014077366A1 - 集電体、電極構造体、蓄電部品および集電体用組成物 - Google Patents
集電体、電極構造体、蓄電部品および集電体用組成物 Download PDFInfo
- Publication number
- JPWO2014077366A1 JPWO2014077366A1 JP2014547053A JP2014547053A JPWO2014077366A1 JP WO2014077366 A1 JPWO2014077366 A1 JP WO2014077366A1 JP 2014547053 A JP2014547053 A JP 2014547053A JP 2014547053 A JP2014547053 A JP 2014547053A JP WO2014077366 A1 JPWO2014077366 A1 JP WO2014077366A1
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- resin
- polyolefin
- emulsion particles
- power storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/668—Composites of electroconductive material and synthetic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/68—Current collectors characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/666—Composites in the form of mixed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/581—Devices or arrangements for the interruption of current in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/10—Temperature sensitive devices
- H01M2200/106—PTC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品の電極構造体に用いた場合に、PTC機能を発現した後に温度がさらに上昇した場合であってもPTC機能を安定的に維持し続けることができる、安全性の高い集電体、電極構造体、蓄電部品および集電体用組成物を提供する。導電性基材103と、その導電性基材103の少なくとも片面に設けられている樹脂層105と、を備える集電体100が提供される。そして、その樹脂層105は、ポリオレフィン系エマルション粒子125と、導電材121と、架橋剤131と、を含むペーストをその導電性基材103上に塗装して架橋させたものである。また、そのポリオレフィン系エマルション粒子125は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂129を含有する。
Description
本発明は、集電体、電極構造体、蓄電部品(非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を含む)および集電体用組成物に関する。
車載等に用いられるリチウムイオン電池には、通常使用時には高速充放電特性(ハイレート特性)が、故障等の不慮の事故の際には、自発的かつ安全に充放電を停止する所謂シャットダウン機能(PTC機能)の付与が求められている。前者には活物質の小粒径化や集電体上へ導電層を形成する技術などがあり、後者には電池の安全性を向上させる手段として、安全弁による内圧上昇の防止や、温度上昇に伴い抵抗値が増加するPTC(Positive Temperature Coefficient)素子を組み込み、発熱時に電流を遮断する機構も設けることが行われている。電池のPTC機能としてはセパレータに付与することが知られており、高温で溶融してセパレータの微細孔が閉塞し、Liイオンを遮断することによって異常発熱時に電極反応を止めるように設計されているものが提案されている。しかし、セパレータによるシャットダウンが不完全でセパレータの融点よりさらに温度が上昇する場合や、外部温度の上昇によりセパレータが融解して内部短絡が発生する場合もある。このような場合、セパレータのシャットダウン機能はもはや期待できず、電池は熱暴走に至る。
そこで、通常使用時は充放電特性の付与に用い、故障等の不慮の事故時に安全性を高めるための技術が提案されている。例えば、特許文献1には導電層に融解開始温度が130℃以上155℃未満であり、α晶とβ晶との質量比(α/β)が0.35〜0.56であるポリフッ化ビニリデンを用い、温度上昇時に抵抗を上昇させることが記載されている。
特許文献2には導電層に融点が100℃〜120℃になるポリオレフィン系の結晶性熱可塑性樹脂を含んだ導電層を用い、温度上昇時に抵抗を100Ωcm以上にすることが記載されている。
しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を残し、確実な安全性の付与に問題を有していた。
第一に、特許文献1においては導電層に使用される樹脂の結晶状態に依存しており、活物質層塗工時の加熱温度や、水分を除くための乾燥工程などにおける電極の熱履歴により、結晶状態が変化し、抵抗値が上昇しにくい場合があった。
第二に、特許文献2では高速充放電の所謂ハイレート特性が十分ではなく通常時での高速充放電に不向きであった。また、用いる樹脂が熱可塑性樹脂であるため、活物質塗工時等に100℃以上になると、電解液の有無に関わらず電極層の膨張によって抵抗値が上昇し、さらに樹脂が溶融した場合には溶融前と異なる状態となるため、生産時には100℃以上に上げることができず、生産性を著しく低下させる場合があった。
更に、特許文献1,2の文献の電極層は、PTC機能発現後、一旦は抵抗が上昇し、PTC機能を発揮させることができるが、さらに昇温が続くと今度は逆に抵抗が低下してしまう場合があり、PTC機能の維持が困難で、安全性に問題を有するものであった。
本発明は上記事情に鑑みてなされたものであり、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品の電極構造体に用いた場合に、PTC機能を発現した後に温度がさらに上昇した場合であってもPTC機能を安定的に維持し続けることができる、安全性の高い集電体、電極構造体、蓄電部品および集電体用組成物を提供することを目的とする。
本発明者は、上記課題を解決するために鋭意検討を行った結果、集電体の構成を、導電性基材の少なくとも片面に導電性を有する樹脂層を有する構造とし、集電体用組成物を構成する樹脂に特殊なポリオレフィン系エマルション粒子を用い、このポリオレフィン系エマルション粒子を架橋剤(硬化剤を含む。以下同じ)によって架橋(硬化を含む。以下同じ)させることにより得られる集電体は、従来の集電体と異なり、リチウムイオン電池等の蓄電部品とした場合、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができることを知見し、本発明をなすに至った。
従って、本発明によれば、導電性基材と、その導電性基材の少なくとも片面に設けられている樹脂層と、を備える集電体が提供される。そして、その樹脂層は、ポリオレフィン系エマルション粒子と、導電材と、架橋剤と、を含むペーストで形成されたものである。また、そのポリオレフィン系エマルション粒子は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂を含有する。
この集電体によれば、特殊なポリオレフィン系エマルション粒子を用いているため、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品の電極構造体に用いた場合に、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
また、本発明によれば、上記の集電体と、その集電体の樹脂層上に形成されている活物質層または電極材層と、を備える、電極構造体が提供される。
この電極構造体によれば、上記の集電体を用いているため、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品に用いた場合に、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
また、本発明によれば、上記の電極構造体を用いた、蓄電部品が提供される。
この蓄電部品によれば、上記の電極構造体を用いているため、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
また、本発明によれば、導電性基材に塗布した後に架橋して集電体を得るための集電体用組成物が提供される。この集電体用組成物は、ポリオレフィン系エマルション粒子と、導電材と、架橋剤と、を含む。また、そのポリオレフィン系エマルション粒子は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂を含有する。
この集電体用組成物によれば、特殊なポリオレフィン系エマルション粒子を用いているため、導電性基材に塗布した後に架橋して集電体を得た上で、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品の電極構造体に用いた場合に、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
本発明によれば、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
<全体の構成>
図1は、本実施形態の集電体の構造を示す断面図である。図1に示すように、本実施形態の集電体100は、導電性基材103の少なくとも片面に導電性を有する樹脂層105を有する集電体100である。
図1は、本実施形態の集電体の構造を示す断面図である。図1に示すように、本実施形態の集電体100は、導電性基材103の少なくとも片面に導電性を有する樹脂層105を有する集電体100である。
図2は、本実施形態の集電体を用いて形成された電極構造体の構造を示す断面図である。図2に示すように、本実施形態の集電体100の樹脂層105上には、活物質層又は電極材層115を形成することによって、リチウムイオン電池等の非水電解質用電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用として好適な電極構造体117を形成することができる。
<PTC機能を保持するメカニズム>
図3は、本発明の一実施形態で用いるポリオレフィン系エマルション粒子の構造を示す模式図である。本実施形態で用いられるポリオレフィン系エマルション粒子125は、水系エマルション粒子であり、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂129を含有する。このポリオレフィン系樹脂129の疎水性部位は主にポリオレフィン系エマルション粒子125の中心部に分布している。一方、このポリオレフィン系樹脂129の両末端に位置している親水性の架橋基123は、主にポリオレフィン系エマルション粒子125の表面に露出している。これらの親水性の架橋基123は、カルボン酸または無水カルボン酸で修飾した際にポリオレフィン系樹脂129の両末端に導入されたものである。カルボン酸または無水カルボン酸に由来する架橋基123(例えばカルボキシル基など)は親水性が高いため、ポリオレフィン系エマルション粒子125の外側に架橋基123が出る配向が安定となる。そして、このポリオレフィン系エマルション粒子125の表面には、炭素粉末などの導電材121が付着している。
図3は、本発明の一実施形態で用いるポリオレフィン系エマルション粒子の構造を示す模式図である。本実施形態で用いられるポリオレフィン系エマルション粒子125は、水系エマルション粒子であり、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂129を含有する。このポリオレフィン系樹脂129の疎水性部位は主にポリオレフィン系エマルション粒子125の中心部に分布している。一方、このポリオレフィン系樹脂129の両末端に位置している親水性の架橋基123は、主にポリオレフィン系エマルション粒子125の表面に露出している。これらの親水性の架橋基123は、カルボン酸または無水カルボン酸で修飾した際にポリオレフィン系樹脂129の両末端に導入されたものである。カルボン酸または無水カルボン酸に由来する架橋基123(例えばカルボキシル基など)は親水性が高いため、ポリオレフィン系エマルション粒子125の外側に架橋基123が出る配向が安定となる。そして、このポリオレフィン系エマルション粒子125の表面には、炭素粉末などの導電材121が付着している。
図4は、本発明の一実施形態の電極構造体の常温時における樹脂層の内部の様子を示す模式図である。本実施形態の集電体100の樹脂層105はポリオレフィン系エマルション粒子125と架橋剤131と導電材121を含む。この導電材121は、通常使用時にはポリオレフィン系エマルション粒子125の表面または隙間に分布して互いにつながり合って樹脂層105を貫通する導通路を形成して電流を導通させている。すなわち、図3のようなポリオレフィン系エマルション粒子125が互いに重なりあうように分布して、導電材121がネットワークを形成し、導電性が発現する。また、この架橋剤131は、ポリオレフィン系エマルション粒子125の表面に露出しているカルボン酸または無水カルボン酸由来の架橋基123と架橋している。なお、ポリオレフィン系エマルション粒子125の表面に出ているカルボキシル基などの架橋基123を架橋剤131によって架橋させるが、ポリオレフィン系エマルション粒子125の内部へ架橋剤131は入り込めないため、ポリオレフィン系樹脂129が硬化することはない。
図5は、本発明の一実施形態の電極構造体の高温時における樹脂層の内部の様子を示す模式図である。本実施形態では、ポリオレフィン系エマルション粒子125としてマレイン酸などのカルボン酸(または無水カルボン酸)によって変性されたポリオレフィン系樹脂129を用い、このポリオレフィン系エマルション粒子125を架橋剤131によって架橋することにより、PTC発現後のさらなる昇温時もポリオレフィン系エマルション粒子125がエマルションの状態を保ちPTC機能が保持されるようにした。つまり、本実施形態では、樹脂層105の高温時の弾性率を高め、かつ膨張による体積増加も可能にしている。
そのため、本実施形態の樹脂層105は、不慮の事故が起こった際にPTC機能を発現する。PTC機能は樹脂層105の体積がポリオレフィン系エマルション粒子125の膨張により増加し、樹脂層105中の導電材121の間隔を広げる(樹脂層105中における導電性微粒子の密度を減少させる)ことにより抵抗を上げることによって付与することができる。すなわち、熱膨張によってポリオレフィン系エマルション粒子125内のポリオレフィン系樹脂129部分が膨張を開始し、表面の導電材121のネットワークを絶つことによって抵抗を上げる。そして、熱暴走等により樹脂層105の温度が更に上がる場合でも、ポリオレフィン系エマルション粒子125と架橋剤131と導電材121との相乗効果で、抵抗が損なわれず、PTC機能が安定的に保持されるものである。すなわち、ポリオレフィン系エマルション粒子125の外側部分に露出した架橋基123を架橋させていることによって、高温時の弾性を高めているため、ポリオレフィン系エマルション粒子125同士の融解を防ぎ、抵抗低下を防ぐことができる。
これに対して、図6は、図5と異なってポリオレフィン系エマルション粒子が架橋していない場合の電極構造体の高温時における樹脂層の内部の様子を示す模式図である。PTC機能を有する樹脂層105として、熱膨張率の大きいポリエチレンやポリプロピレンなどのポリオレフィン系樹脂129を架橋せずに用いた場合について説明する。この樹脂層105では、PTC機能発現時に抵抗が上昇するが、さらに昇温すると逆に抵抗が低下する場合がある。その原因は、ポリオレフィン系樹脂129の融解によってPTC機能が発現するが、さらに融解が進むことによってポリオレフィン系樹脂129や導電材121が再凝集し、局所的に導電材121がネットワークを再形成することによって抵抗が低下するためである。すなわち、ポリオレフィン系エマルション粒子125同士が架橋していない場合、高温時にポリオレフィン系エマルション粒子125同士が融解し、ポリオレフィン系樹脂129や導電材121の凝集により再び抵抗が下がることや、わずかな圧縮によって樹脂層105が移動し、活物質層115が直接導電性基板103に接触することが起こる。このような問題は、特に樹脂層105が薄膜の場合に顕著である。
<各要素の説明>
(1.導電性基材)
本実施形態の集電体100は導電性基材103の少なくとも片面に集電体用組成物を塗布し、架橋して硬化させたものである。導電性基材103としては、通常、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の各種金属箔として知られる導電性基材103が使用可能である。具体的には、正極用、負極用の種々の金属箔を使用でき、例えば、アルミニウム、アルミニウム合金、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、アルミニウム合金、銅が好ましい。導電性基材103との厚さは特に制限されるものではないが、5μm以上、50μm以下であることが好ましい。厚さが5μmより薄いと箔の強度が不足して樹脂層の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層あるいは電極層を薄くせざるを得ず、特に非水電解質電池や、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電部品とした場合、活物質層の厚さを薄くせざるを得ず必要な容量が得られなくなる場合がある。なお、この導電性基材の厚さは、5、10、15、20、25、30、35、40、45、50μmのうち任意の2つの数値の範囲内であってもよい。
(1.導電性基材)
本実施形態の集電体100は導電性基材103の少なくとも片面に集電体用組成物を塗布し、架橋して硬化させたものである。導電性基材103としては、通常、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の各種金属箔として知られる導電性基材103が使用可能である。具体的には、正極用、負極用の種々の金属箔を使用でき、例えば、アルミニウム、アルミニウム合金、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、アルミニウム合金、銅が好ましい。導電性基材103との厚さは特に制限されるものではないが、5μm以上、50μm以下であることが好ましい。厚さが5μmより薄いと箔の強度が不足して樹脂層の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層あるいは電極層を薄くせざるを得ず、特に非水電解質電池や、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電部品とした場合、活物質層の厚さを薄くせざるを得ず必要な容量が得られなくなる場合がある。なお、この導電性基材の厚さは、5、10、15、20、25、30、35、40、45、50μmのうち任意の2つの数値の範囲内であってもよい。
(2.ポリオレフィン系エマルション粒子)
図3は、本実施形態で用いるポリオレフィン系エマルション粒子の構造を示す模式図である。本実施形態では、(分子鎖の)両末端を一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)で修飾されているポリオレフィン系樹脂129を主成分とするポリオレフィン系エマルション粒子125を用いる。すなわち、本実施形態発明の樹脂層105に用いる樹脂成分は、上記のポリオレフィン系エマルション粒子125を含み、ポリオレフィン系エマルション粒子125のみからなるものであってもよく、その他の樹脂成分を含有するものであっても良い。
図3は、本実施形態で用いるポリオレフィン系エマルション粒子の構造を示す模式図である。本実施形態では、(分子鎖の)両末端を一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)で修飾されているポリオレフィン系樹脂129を主成分とするポリオレフィン系エマルション粒子125を用いる。すなわち、本実施形態発明の樹脂層105に用いる樹脂成分は、上記のポリオレフィン系エマルション粒子125を含み、ポリオレフィン系エマルション粒子125のみからなるものであってもよく、その他の樹脂成分を含有するものであっても良い。
本実施形態で用いるポリオレフィン系エマルション粒子125は、両末端を一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)で修飾されているポリプロピレン樹脂、ポリエチレン樹脂、ポリプロピレン−ポリエチレン共重合樹脂、またはこれらの混合樹脂を主成分とする。特に好ましいのは、マレイン酸変性ポリプロピレン樹脂、マレイン酸変性ポリエチレン樹脂、マレイン酸変性ポリエチレンーポリプロピレンブロック重合樹脂、マレイン酸変性ポリエチレンーポリプロピレングラフト重合樹脂、マレイン酸変性ポリプロピレン樹脂およびマレイン酸変性ポリエチレン樹脂の混合樹脂である。
両末端に一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)を修飾されない場合には架橋基123が形成されないため、架橋剤131によって架橋されず、PTC発現後にさらに昇温すると抵抗が低下して好ましくない場合がある。また、末端ではなく、分子鎖内に一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)が修飾されたポリオレフィン系樹脂129を用いた場合には、たとえ水系のエマルション粒子にしたとしても、ポリオレフィン系樹脂129自体が硬化してしまい、PTC機能が発現せず、好ましくない場合がある。また、ポリオレフィン系エマルション粒子125でない(有機溶剤への)溶解型のポリオレフィン系樹脂を用いる場合には、たとえ両末端を一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)で修飾されているポリオレフィン系樹脂を用いたとしても、PTC発現時に導電材121の繋がりが切れにくく、抵抗が増加しにくいため、好ましくない場合がある。
また、本実施形態で用いるポリオレフィン系エマルション粒子125は、コア粒子がポリオレフィン系樹脂129を主成分としており、シェル層が導電材121を含有しているコアシェル構造を有するので、導電材121のポリオレフィン系樹脂129に対する割合を従来よりかなり低くしても常温で十分な導電性を得ることが可能である。すなわち、このようなコアシェル構造を採用することにより導電材121に対して相対的にポリオレフィン系樹脂129の割合が高くなり、PTC機能発現時に高い絶縁性を発現することが可能である点で有効である。
本実施形態で用いるポリオレフィン系樹脂129を変性させるためのカルボン酸(または無水カルボン酸)としては、特に限定されないが、例えば、マレイン酸、ピロメリット酸、クエン酸、酒石酸、シュウ酸、メリト酸、テレフタル酸、アジピン酸、フマル酸、イタコン酸、トリメリット酸、イソフタル酸等を用いることが好ましい。特に、金属への付着性の面からはマレイン酸を用いて変性させることが好ましい。なお、これらの酸はいずれも酸無水物であってもよい。
(3.導電材)
本実施形態の樹脂層105に用いるポリオレフィン系エマルション粒子125のみでは絶縁性が高いので、電子伝導性を付与するために導電材121を配合しなければならない。本実施形態に用いる導電材121としては公知の炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ、カーボンファイバ、各黒鉛粒子などが使用可能であり、それらを混合して使用することも可能である。
本実施形態の樹脂層105に用いるポリオレフィン系エマルション粒子125のみでは絶縁性が高いので、電子伝導性を付与するために導電材121を配合しなければならない。本実施形態に用いる導電材121としては公知の炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ、カーボンファイバ、各黒鉛粒子などが使用可能であり、それらを混合して使用することも可能である。
本実施形態の導電材121の配合量は、特に限定されないが、所望の安全性の高いPTC機能を発揮させるために、通常のカーボンコートや活物質層用のバインダ樹脂に比べて少ない量でPTC機能が発揮でき安全性を維持できることが好ましい。具体的には、ポリオレフィン系エマルション粒子125の樹脂成分100質量部に対して、導電材121の配合量は5〜50質量部が好ましく、7〜45質量部がさらに好ましく、10〜40質量部がさらに好ましい。5質量部未満では樹脂層105の体積固有抵抗が高くなり、集電体100として必要な導電性が得られない場合がある。50質量部を超えると体積膨張時も導電材121の繋がりが切れず、十分な抵抗値が得られない場合があるためである。導電材121を樹脂液に分散するには、プラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。なお、この導電材121の配合量は、5、6、7、8,9,10、15、20、25、30、35、40、45、50質量部のうち任意の2つの数値の範囲内であってもよい。
(4.架橋剤)
本実施形態で用いる架橋剤131は、特に限定されないが、二個以上の架橋性官能基を有するエポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤、ポリオキシアルキレン系架橋剤、カルボジイミド系架橋剤からなる群から選ばれる1種以上の架橋剤であることが好ましい。
本実施形態で用いる架橋剤131は、特に限定されないが、二個以上の架橋性官能基を有するエポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤、ポリオキシアルキレン系架橋剤、カルボジイミド系架橋剤からなる群から選ばれる1種以上の架橋剤であることが好ましい。
(4−1.エポキシ系架橋剤)
本実施形態に使用されるエポキシ系架橋剤は、分子内に二個以上のエポキシ基を有する架橋剤であり、グリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が例示される。
本実施形態に使用されるエポキシ系架橋剤は、分子内に二個以上のエポキシ基を有する架橋剤であり、グリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が例示される。
(4−2.メラミン系架橋剤)
本実施形態に使用されるメラミン系架橋剤は、分子内に二個以上のメラミン基を有する架橋剤が使用可能である。メラミンとホルムアルデヒドを縮合反応させてメラミンをメチロール化したり(場合によりさらに付加反応により多核化したり)、必要により次いでメチロール基をアルコール(例えばメチルアルコールやブチルアルコール)でアルキル化したりすることにより得られ、完全にアルキル化させた完全アルキル型メラミンや、メチロール型、イミノ型のメラミン誘導体等が例示される。
本実施形態に使用されるメラミン系架橋剤は、分子内に二個以上のメラミン基を有する架橋剤が使用可能である。メラミンとホルムアルデヒドを縮合反応させてメラミンをメチロール化したり(場合によりさらに付加反応により多核化したり)、必要により次いでメチロール基をアルコール(例えばメチルアルコールやブチルアルコール)でアルキル化したりすることにより得られ、完全にアルキル化させた完全アルキル型メラミンや、メチロール型、イミノ型のメラミン誘導体等が例示される。
(4−3.イソシアネート系架橋剤)
本実施形態に使用されるイソシアネート系架橋剤は、分子内に二個以上のイソシアネート基を有する架橋剤が使用可能である。芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環族ポリイソシアネートやこれらの混合物を使用することができ、具体的には、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、2,4−と2,6−トリレンジイソシアネートの混合物、粗トリレンジイソシアネート、粗メチレンジフェニルジイソシアネート、4,4',4"−トリフェニルメチレントリイソシアネート、キシレンジイソシアネート、m−フェニレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、4,4'−ビフェニレンジイソシアネート、4,4'−ジフェニルメタンジイソシアネート、3,3'−ジメトキシ−ビフェニルジイソシアネート、3,3'−ジメチルジフェニルメタン−4,4'−ジイソシアネート、テトラメチルキシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4'−ジシクロヘキシルメタンジイソシアネート等或いはこれらの混合物が例示される。また、これらを原料として製造されるカルボジイミド架橋剤も使用可能である。
本実施形態に使用されるイソシアネート系架橋剤は、分子内に二個以上のイソシアネート基を有する架橋剤が使用可能である。芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環族ポリイソシアネートやこれらの混合物を使用することができ、具体的には、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、2,4−と2,6−トリレンジイソシアネートの混合物、粗トリレンジイソシアネート、粗メチレンジフェニルジイソシアネート、4,4',4"−トリフェニルメチレントリイソシアネート、キシレンジイソシアネート、m−フェニレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、4,4'−ビフェニレンジイソシアネート、4,4'−ジフェニルメタンジイソシアネート、3,3'−ジメトキシ−ビフェニルジイソシアネート、3,3'−ジメチルジフェニルメタン−4,4'−ジイソシアネート、テトラメチルキシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4'−ジシクロヘキシルメタンジイソシアネート等或いはこれらの混合物が例示される。また、これらを原料として製造されるカルボジイミド架橋剤も使用可能である。
(4−4.ポリオキシアルキレン系架橋剤)
本実施形態に使用されるポリオキシアルキレン系架橋剤は、分子内に二個以上のヒドロキシル基を有するポリオキシアルキレン系樹脂が使用可能である。ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリエチレンオキサイド、ポリエチレングリコールグリセリルエーテル、ポリプロピレングリセリルエーテル、ポリプロピレンジグリセリルエーテル、ポリプロピレンソルビトールエーテル、ポリエチレングリコール−ポリプロピレングリコールブロックエーテル、ポリオキシテトラメチレン−ポリオキシエチレングリコールランダム共重合体、ポリテトラメチレングリコール、ポリオキシテトラメチレン−ポリオキシプロピレングリコールランダム共重合体等が例示される。また、これらのソルビタン酸やオレイン酸、ラウリル酸、パルミチン酸、ステアリン酸等のカルボキシル基変性やアルキルエーテル変性、脂肪酸エステル、グリセリンエステル型による変性体や共重合体などが例示される。
本実施形態に使用されるポリオキシアルキレン系架橋剤は、分子内に二個以上のヒドロキシル基を有するポリオキシアルキレン系樹脂が使用可能である。ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリエチレンオキサイド、ポリエチレングリコールグリセリルエーテル、ポリプロピレングリセリルエーテル、ポリプロピレンジグリセリルエーテル、ポリプロピレンソルビトールエーテル、ポリエチレングリコール−ポリプロピレングリコールブロックエーテル、ポリオキシテトラメチレン−ポリオキシエチレングリコールランダム共重合体、ポリテトラメチレングリコール、ポリオキシテトラメチレン−ポリオキシプロピレングリコールランダム共重合体等が例示される。また、これらのソルビタン酸やオレイン酸、ラウリル酸、パルミチン酸、ステアリン酸等のカルボキシル基変性やアルキルエーテル変性、脂肪酸エステル、グリセリンエステル型による変性体や共重合体などが例示される。
(4−5.カルボジイミド系架橋剤)
本実施形態に使用されるカルボジイミド系架橋剤は、−N=C=N−で表される官能基を有する物質であり、カルボキシル基と反応して、樹脂を架橋することができる。具体的には1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、ジイソプロピルカルボジイミドなどが例示される。
本実施形態に使用されるカルボジイミド系架橋剤は、−N=C=N−で表される官能基を有する物質であり、カルボキシル基と反応して、樹脂を架橋することができる。具体的には1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、ジイソプロピルカルボジイミドなどが例示される。
(4−6.配合量)
配合量は特に限定されないが、ポリオレフィン系エマルション粒子125の樹脂成分100質量部に対して、架橋剤131が0.1質量部〜50質量部であることが好ましい。0.1質量部以下では十分に架橋せず、PTC発現後に抵抗低下が起き、好ましくない。また、50質量部超ではエマルション型オレフィン樹脂の比率が下がることにより、昇温時に抵抗が増加しにくくなり、好ましくない。なお、この架橋剤131の配合量は、0.1、0.2、0.3、0.4、0.5、1、5、10、15、20、25、30、35、40、45、50質量部のうち任意の2つの数値の範囲内であってもよい。
配合量は特に限定されないが、ポリオレフィン系エマルション粒子125の樹脂成分100質量部に対して、架橋剤131が0.1質量部〜50質量部であることが好ましい。0.1質量部以下では十分に架橋せず、PTC発現後に抵抗低下が起き、好ましくない。また、50質量部超ではエマルション型オレフィン樹脂の比率が下がることにより、昇温時に抵抗が増加しにくくなり、好ましくない。なお、この架橋剤131の配合量は、0.1、0.2、0.3、0.4、0.5、1、5、10、15、20、25、30、35、40、45、50質量部のうち任意の2つの数値の範囲内であってもよい。
(5.樹脂層)
図1は、本実施形態の集電体の構造を示す断面図である。本実施形態の集電体100は、上記集電体用組成物を使用した樹脂層105を有する。この樹脂層105は正極用として使用する場合、導電性基材103上に設けられたPTC機能を有する樹脂層105とすることが好ましい。この際、この樹脂層105は特に活物質層115とは別に構成して、PTC(シャットダウン機能)と電池のハイレート特性を高く保持しつつPTC機能を効率よく発揮することができるようにすることが好ましい。即ち、導電性基材103と活物質層115との密着性を向上させることができ、シャットダウン機能と優れた高速充放電特性を兼ね備え、安全性に優れた非水電解質電池、蓄電部品として好適に使用することができる。
図1は、本実施形態の集電体の構造を示す断面図である。本実施形態の集電体100は、上記集電体用組成物を使用した樹脂層105を有する。この樹脂層105は正極用として使用する場合、導電性基材103上に設けられたPTC機能を有する樹脂層105とすることが好ましい。この際、この樹脂層105は特に活物質層115とは別に構成して、PTC(シャットダウン機能)と電池のハイレート特性を高く保持しつつPTC機能を効率よく発揮することができるようにすることが好ましい。即ち、導電性基材103と活物質層115との密着性を向上させることができ、シャットダウン機能と優れた高速充放電特性を兼ね備え、安全性に優れた非水電解質電池、蓄電部品として好適に使用することができる。
本実施形態で用いる導電性を有する樹脂層105の形成方法は特に限定されないが、ポリオレフィン系エマルション粒子125と導電材121と架橋材131とを水または水溶液中に混合させて集電体用組成物(ペースト)を作製した上で、この集電体用組成物(ペースト)を導電性基材103上に塗工することが好ましい。塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能である。
本実施形態の集電体100において、樹脂層105を形成するための集電体用組成物(ペースト)の塗布量は、0.05〜5g/m2であることが好ましい。この塗布量が0.05g/m2以下では塗膜ムラが生じ、PTC機能が発現されない場合がある。また、この塗布量が5g/m2以上では電池の活物質の容量が減るため、電池特性が悪化する場合がある。なお、この塗布量は、0.05、0.1、0.25、0.5、1、2.5、5g/m2のうち任意の2つの数値の範囲内であってもよい。
集電体用組成物(ペースト)を導電性基材103上に塗工した後は、焼付けを行って集電体用組成物(ペースト)を架橋(硬化)させて樹脂層105を形成する。焼付温度としては、特に限定するわけではないが、例えば、80〜200℃であることが好ましい。この焼付温度が80℃未満だと硬化が不十分で導電性基材との密着性が不足するという問題がある。一方、この焼付温度が200℃を超えると使用するポリオレフィン系樹脂によっては樹脂が溶融し、エマルション粒子が形成されないという問題がある。なお、この焼付温度は、80、90、100、110、120、130、140、150、160、170、180、190、200℃のうち任意の2つの数値の範囲内であってもよい。
また、焼付時間としては、特に限定するわけではないが、例えば、10〜200秒であることが好ましい。この焼付時間が10秒未満だと硬化が不十分で導電性基材との密着性が不足するという問題がある。一方、この焼付時間が200秒を超えると使用するポリオレフィン系樹脂によっては樹脂が溶融し、エマルション粒子が形成されないという問題がある。なお、この焼付時間秒は、10、20、30、40、50、60、70、80、90、100、120、140、160、180、200秒のうち任意の2つの数値の範囲内であってもよい。
また、この樹脂層105の架橋度を調節するためには、集電体用組成物(ペースト)に配合する架橋剤の量を変更するか、架橋剤の種類を変更することが好ましい。これらの架橋剤の量または種類を変更し、ゲル分率を測定して、ゲル分率(架橋している値)が50〜95%になるようにすることが好ましい。ゲル分率が50%未満の場合には、架橋度が少ないためにPTC発現温度以上において樹脂が融解し、融解による再凝集によって導電材が凝集し、再び抵抗が下がる(導電性が出る)場合がある。一方、ゲル分率が95%超の場合には、架橋度が高すぎるために膨張しにくくなり、PTC機能が発現しない場合がある。そのために、樹脂層105の架橋度を適切に調節することが重要である。なお、このゲル分率は、50、55、60、65、70、75、80、85、90、95%のうち任意の2つの数値の範囲内であってもよい。
(6.電極構造体)
図2は、本実施形態の集電体を用いて形成された電極構造体の構造を示す断面図である。本実施形態の集電体100の樹脂層105上に活物質層115又は電極材層115を形成することによって、本実施形態の電極構造体117を得ることができる。電極材層115を形成した蓄電部品用の電極構造体117の場合、この電極構造117とセパレータ、非水電解質溶液を用いて非水電解質電池用、例えばリチウムイオン二次電池用の電極構造体117(電池用部品を含む)を製造することができる。本実施形態の非水電解質電池用電極構造体117及び非水電解質電池において集電体100以外の部材は、公知の非水電池用部材を用いることが可能である。
図2は、本実施形態の集電体を用いて形成された電極構造体の構造を示す断面図である。本実施形態の集電体100の樹脂層105上に活物質層115又は電極材層115を形成することによって、本実施形態の電極構造体117を得ることができる。電極材層115を形成した蓄電部品用の電極構造体117の場合、この電極構造117とセパレータ、非水電解質溶液を用いて非水電解質電池用、例えばリチウムイオン二次電池用の電極構造体117(電池用部品を含む)を製造することができる。本実施形態の非水電解質電池用電極構造体117及び非水電解質電池において集電体100以外の部材は、公知の非水電池用部材を用いることが可能である。
ここで、本実施形態において電極構造体117として形成される活物質層115は、非水電解質電池用として提案されるものでよい。例えば、正極としてはアルミニウムを用いた本実施形態の集電体100に、活物質としてLiCoO2、LiMnO4、LiNiO2等を用い、導電材としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFや水分散型PTFEに分散したペーストを塗工、乾燥させることにより、本実施形態の正極構造体を得ることができる。
負極の電極構造体117とする場合に、基材103として銅を用いた本実施形態の集電体100に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMC(カルボキシメチルセルロース)に分散後、バインダであるSBR(スチレンブタジエンゴム)と混合したペーストを活物質形成用材料として塗工、乾燥させることにより、本実施形態の負極集電体を得ることができる。
(7.蓄電部品)
蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)
一般に電気二重層キャパシタ等は二次電池に比較すると安全であるが、ハイレート特性向上の目的から、本実施形態の集電体100を適用することが可能である。本実施形態の電気二重層キャパシタ、リチウムイオンキャパシタ等は、本実施形態の集電体100を大電流密度での高速の充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本実施形態の蓄電部品用の電極構造体117は本実施形態の集電体100に電極材層115を形成することによって得られ、この電極構造体117とセパレータ、電解液等によって、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電部品を製造することができる。本実施形態の電極構造体117および蓄電部品において集電体100以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)
一般に電気二重層キャパシタ等は二次電池に比較すると安全であるが、ハイレート特性向上の目的から、本実施形態の集電体100を適用することが可能である。本実施形態の電気二重層キャパシタ、リチウムイオンキャパシタ等は、本実施形態の集電体100を大電流密度での高速の充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本実施形態の蓄電部品用の電極構造体117は本実施形態の集電体100に電極材層115を形成することによって得られ、この電極構造体117とセパレータ、電解液等によって、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電部品を製造することができる。本実施形態の電極構造体117および蓄電部品において集電体100以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
電極材層115は正極、負極、電極材、導電材、バインダよりなるものとすることができる。本実施形態においては、本実施形態の集電体100の樹脂層105上に上記の電極材層115を形成することによって電極構造体117とした後、蓄電部品を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。バインダとしては例えばPVDF(ポリフッ化ビニリデン)、SBR、水分散型PTFE等を用いることができる。また、本実施形態の蓄電部品は、本実施形態の電極構造体7にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。
上記非水電解質としては、電気二重層キャパシタやリチウムイオンキャパシタとして使用される電圧範囲で分解などの副反応を示さないものであれば特に限定しない。例えば陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩、テトラブチルアンモニウム塩等の4級アンモニウム塩、陰イオンとしては六フッ化リン酸塩、四フッ化ほう酸塩、過塩素酸塩等を用いることができる。
上記非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン酸類、ラクトン類等の非プロトン性溶媒を用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン等の非水溶媒から選択される一種または二種以上を用いることができる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
<実施例1>
表1に示すように、エマルション系ポリオレフィン樹脂(ポリオレフィン系エマルション粒子)として、水系エマルション型マレイン酸変性ポリプロピレン樹脂を100質量部、架橋剤としてグリセロールポリグリシジルエーテルを0.1質量部を混合した樹脂液に樹脂成分(樹脂の固形分、以下に同じ)に対して25質量部のアセチレンブラックを配合し、ボールミルにて8時間分散し、塗料とした。この塗料を厚さ15μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μm(塗膜重量としては2g/m2)となるように塗布し、基材到達温度(PMT)が110℃となるように24秒焼付を行い、集電体電極を作製した。以下基材、塗工、乾燥条件は同様のため省略する。
表1に示すように、エマルション系ポリオレフィン樹脂(ポリオレフィン系エマルション粒子)として、水系エマルション型マレイン酸変性ポリプロピレン樹脂を100質量部、架橋剤としてグリセロールポリグリシジルエーテルを0.1質量部を混合した樹脂液に樹脂成分(樹脂の固形分、以下に同じ)に対して25質量部のアセチレンブラックを配合し、ボールミルにて8時間分散し、塗料とした。この塗料を厚さ15μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μm(塗膜重量としては2g/m2)となるように塗布し、基材到達温度(PMT)が110℃となるように24秒焼付を行い、集電体電極を作製した。以下基材、塗工、乾燥条件は同様のため省略する。
<実施例2〜16>
表1に示すエマルション系ポリオレフィン樹脂(ポリオレフィン系エマルション粒子)として、(マレイン酸変性された)ポリプロピレン(PP)樹脂、(マレイン酸変性された)ポリエチレン(PE)樹脂、(マレイン酸変性された)ポリエチレン−ポリプロピレン(PE−PP)ブロック重合樹脂、(マレイン酸変性された)ポリエチレン−ポリプロピレン(PE−PP)グラフト重合樹脂、(マレイン酸変性された)ポリプロピレン(PP)樹脂および(マレイン酸変性された)ポリエチレン(PE)樹脂の混合樹脂を表1の質量部にて配合し、実施例1と同様の手順にて集電体電極を作製した。
表1に示すエマルション系ポリオレフィン樹脂(ポリオレフィン系エマルション粒子)として、(マレイン酸変性された)ポリプロピレン(PP)樹脂、(マレイン酸変性された)ポリエチレン(PE)樹脂、(マレイン酸変性された)ポリエチレン−ポリプロピレン(PE−PP)ブロック重合樹脂、(マレイン酸変性された)ポリエチレン−ポリプロピレン(PE−PP)グラフト重合樹脂、(マレイン酸変性された)ポリプロピレン(PP)樹脂および(マレイン酸変性された)ポリエチレン(PE)樹脂の混合樹脂を表1の質量部にて配合し、実施例1と同様の手順にて集電体電極を作製した。
(比較例1〜5)
表1に示す樹脂成分として(マレイン酸変性された)ポリプロピレン(PP)樹脂、PVDF(ポリフッ化ビニリデン)、(マレイン酸変性されていない)ポリプロピレン(PP)樹脂、(マレイン酸変性された)ポリエチレン(PE)樹脂を、エポキシ系架橋剤としてグリセロールポリグリシジルエーテル、メラミン系架橋剤としてヘキサメトキシメチロールメラミン、イソシアネート系架橋剤としてトリレンジイソシアネート、ポリオキシアルキレン系架橋剤としてポリエチレングリコール、カルボジイミド系架橋剤として1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、導電材としてアセチレンブラックを表1および表2の種類および質量部にて配合し、実施例1と同様の手順にて集電体電極を作製した。
表1に示す樹脂成分として(マレイン酸変性された)ポリプロピレン(PP)樹脂、PVDF(ポリフッ化ビニリデン)、(マレイン酸変性されていない)ポリプロピレン(PP)樹脂、(マレイン酸変性された)ポリエチレン(PE)樹脂を、エポキシ系架橋剤としてグリセロールポリグリシジルエーテル、メラミン系架橋剤としてヘキサメトキシメチロールメラミン、イソシアネート系架橋剤としてトリレンジイソシアネート、ポリオキシアルキレン系架橋剤としてポリエチレングリコール、カルボジイミド系架橋剤として1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、導電材としてアセチレンブラックを表1および表2の種類および質量部にて配合し、実施例1と同様の手順にて集電体電極を作製した。
なお、いずれの実施例および比較例においても、使用した非水電解液については次のPTC機能測定方法に記載するので参照されたい。
<PTC機能測定方法>
上記により得られた集電体を、4cm×5cmの長方形部分と、その一方の長辺の一端から幅5mmの帯状に引き出された部分(端子部分)とを有する形状に切り出した。上記端子部分から樹脂層を除去して集電体表面を露出させたものを試験片とした。各正極サンプルから上記試験片2枚を切り出し、それらを上記測定対象領域が重なり(重なり面積20cm2)かつ端子部分が該測定対象領域の長辺の一端側および他端側に配置されるように対向接触させた。これを非水電解液とともに、2枚のラミネートフィルムを挟んで密封した。このとき、上記端子部分はラミネートフィルムから外部に引き出されるようにした。非水電解液としてECとDECとを1:1の体積比で含む混合溶媒中に1.0Mの濃度でLiPF6を含む組成のものを使用した。上記端子部分を交流電流に接続し、上記密封耐の測定対象領域を2枚の板状治具で軽く(約25N/cm2の圧力)挟んで恒温槽に入れ、1kHzの交流電流を流しつつ5℃/分の昇温速度で加熱して抵抗値の変化を観測した。表2の◎は最大抵抗値が室温での抵抗値の20倍以上、○は最大抵抗値が室温での抵抗値の5倍以上、×は5倍以下を示す。5倍以上であれば好適にシャットダウンすることが可能となる。
上記により得られた集電体を、4cm×5cmの長方形部分と、その一方の長辺の一端から幅5mmの帯状に引き出された部分(端子部分)とを有する形状に切り出した。上記端子部分から樹脂層を除去して集電体表面を露出させたものを試験片とした。各正極サンプルから上記試験片2枚を切り出し、それらを上記測定対象領域が重なり(重なり面積20cm2)かつ端子部分が該測定対象領域の長辺の一端側および他端側に配置されるように対向接触させた。これを非水電解液とともに、2枚のラミネートフィルムを挟んで密封した。このとき、上記端子部分はラミネートフィルムから外部に引き出されるようにした。非水電解液としてECとDECとを1:1の体積比で含む混合溶媒中に1.0Mの濃度でLiPF6を含む組成のものを使用した。上記端子部分を交流電流に接続し、上記密封耐の測定対象領域を2枚の板状治具で軽く(約25N/cm2の圧力)挟んで恒温槽に入れ、1kHzの交流電流を流しつつ5℃/分の昇温速度で加熱して抵抗値の変化を観測した。表2の◎は最大抵抗値が室温での抵抗値の20倍以上、○は最大抵抗値が室温での抵抗値の5倍以上、×は5倍以下を示す。5倍以上であれば好適にシャットダウンすることが可能となる。
(1)ゲル分率測定方法
架橋状態を評価するためゲル分率測定を実施した。ゲル分率測定として、樹脂の内、架橋されていて、キシレン浸漬しても溶解しない樹脂の割合を測定する。具体的には浸漬前後のDSC測定における特徴的なピーク(例えば、PPであれば降温側の結晶化ピーク)の発熱量あるいは吸熱量で樹脂量を定量することによりゲル分率を求める。
測定装置:島津製作所製 DSC−60A
測定条件:昇温10℃/分、降温10℃/分 測定範囲40℃〜200℃
サンプル量:約5mg
キシレン浸漬:80℃×1時間
浸漬後乾燥:80℃真空乾燥15時間
PPを例とすれば、以下のように求める。
ゲル分率(%)=(浸漬後の樹脂量)/(浸漬前の樹脂量)×100
=(浸漬後の降温側の結晶化ピークの発熱量)/(浸漬前の降温側の結晶化ピークの発熱量)×100
架橋状態を評価するためゲル分率測定を実施した。ゲル分率測定として、樹脂の内、架橋されていて、キシレン浸漬しても溶解しない樹脂の割合を測定する。具体的には浸漬前後のDSC測定における特徴的なピーク(例えば、PPであれば降温側の結晶化ピーク)の発熱量あるいは吸熱量で樹脂量を定量することによりゲル分率を求める。
測定装置:島津製作所製 DSC−60A
測定条件:昇温10℃/分、降温10℃/分 測定範囲40℃〜200℃
サンプル量:約5mg
キシレン浸漬:80℃×1時間
浸漬後乾燥:80℃真空乾燥15時間
PPを例とすれば、以下のように求める。
ゲル分率(%)=(浸漬後の樹脂量)/(浸漬前の樹脂量)×100
=(浸漬後の降温側の結晶化ピークの発熱量)/(浸漬前の降温側の結晶化ピークの発熱量)×100
(2)電池の作製
(正極)前記方法にて作製した樹脂層を有する集電体に活物質ペースト(LiMn2O4/AB/PVDF=89.5/5/5.5、溶媒NMP(N−メチル−2−ピロリドン))を塗布し、乾燥した。さらにプレスをかけて、厚さ60μmの活物質層を形成した。
(負極)厚さ10μmの銅箔に活物質ペースト(MCMB(メソカーボンマイクロビーズ)/AB/PVDF=93/2/5、溶剤NMP)を塗布し、乾燥した。さらにプレスをかけて、厚さ40μmの活物質層を形成した。
(正極)前記方法にて作製した樹脂層を有する集電体に活物質ペースト(LiMn2O4/AB/PVDF=89.5/5/5.5、溶媒NMP(N−メチル−2−ピロリドン))を塗布し、乾燥した。さらにプレスをかけて、厚さ60μmの活物質層を形成した。
(負極)厚さ10μmの銅箔に活物質ペースト(MCMB(メソカーボンマイクロビーズ)/AB/PVDF=93/2/5、溶剤NMP)を塗布し、乾燥した。さらにプレスをかけて、厚さ40μmの活物質層を形成した。
(3)円筒型リチウムイオン電池(φ18mm×軸方向長さ65mm)の作製
これらの正極、負極、電解液(1M LiPF6、EC(エチレンカーボネート)/MEC(メチルエチルカーボネート)=3/7)、セパレータ(厚さ25μm、微孔ポリエチレンフィルム)を捲回して、各極にリードを溶接して各極端子に接続し、ケースに挿入した。
これらの正極、負極、電解液(1M LiPF6、EC(エチレンカーボネート)/MEC(メチルエチルカーボネート)=3/7)、セパレータ(厚さ25μm、微孔ポリエチレンフィルム)を捲回して、各極にリードを溶接して各極端子に接続し、ケースに挿入した。
(4)過充電試験
上記の電池を用い、4.2Vまで充電電圧1.5mA/cm2で定電流定電圧充電後、満充電状態の電池にさらに250%充電になるまで5Aで充電し、発煙などがないかどうか電池の挙動を調査した。表2の○は変化なし、×は発煙、発火ありを示す。
上記の電池を用い、4.2Vまで充電電圧1.5mA/cm2で定電流定電圧充電後、満充電状態の電池にさらに250%充電になるまで5Aで充電し、発煙などがないかどうか電池の挙動を調査した。表2の○は変化なし、×は発煙、発火ありを示す。
<結果の考察>
表1および表2に示すように以下の結果を得た。
実施例1〜16:PTC発現し、ゲル分率が好ましい範囲に入り、抵抗減少を改善できたため、過充電試験でも変化なし
比較例1:架橋剤がないため、PTC発現後、抵抗値低下により発煙
比較例2:PVDFを用いたため、PTC発現せず、発煙
比較例3:末端基のないオレフィンを用いたため、架橋剤を好ましい量配合しても、架橋せず、PTC機能発現後に抵抗低下し、発煙
比較例4、5:溶剤系オレフィンを用いたため、PTC機能が満足に発現せず、発煙
表1および表2に示すように以下の結果を得た。
実施例1〜16:PTC発現し、ゲル分率が好ましい範囲に入り、抵抗減少を改善できたため、過充電試験でも変化なし
比較例1:架橋剤がないため、PTC発現後、抵抗値低下により発煙
比較例2:PVDFを用いたため、PTC発現せず、発煙
比較例3:末端基のないオレフィンを用いたため、架橋剤を好ましい量配合しても、架橋せず、PTC機能発現後に抵抗低下し、発煙
比較例4、5:溶剤系オレフィンを用いたため、PTC機能が満足に発現せず、発煙
以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
例えば、上記の塗料(ペースト)には界面活性剤を配合してもよい。界面活性剤を配合することによって、エマルション系ポリオレフィン樹脂(ポリオレフィン系エマルション粒子)を安定的に塗料(ペースト)中で分散させることが可能になる。
100:集電体
103:導電性基材
105:樹脂層(集電体用樹脂層)
115:活物質層又は電極材層
117:電極構造体
121:導電材
123:架橋基
125:ポリオレフィン系エマルション粒子
129:ポリオレフィン系樹脂
131:架橋剤
103:導電性基材
105:樹脂層(集電体用樹脂層)
115:活物質層又は電極材層
117:電極構造体
121:導電材
123:架橋基
125:ポリオレフィン系エマルション粒子
129:ポリオレフィン系樹脂
131:架橋剤
Claims (12)
- 導電性基材と、
前記導電性基材の少なくとも片面に設けられている樹脂層と、
を備える集電体であって、
前記樹脂層が、
ポリオレフィン系エマルション粒子と、
導電材と、
架橋剤と、
を含むペーストで形成されたものであり、
前記ポリオレフィン系エマルション粒子は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂を含有する、
集電体。 - 前記ポリオレフィン系エマルション粒子が、両末端をカルボン酸または無水カルボン酸で修飾されているポリプロピレン樹脂、ポリエチレン樹脂、ポリプロピレン−ポリエチレン共重合樹脂からなる群から選ばれる1種以上の樹脂を含有する、
請求項1に記載の集電体。 - 前記架橋剤が、エポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤、ポリオキシアルキレン系架橋剤、カルボジイミド系架橋剤からなる群から選ばれる1種以上の架橋剤を含む、
請求項1又は2に記載の集電体。 - 前記導電材が、炭素粉末または金属粉末を含む、
請求項1〜3のいずれかに記載の集電体。 - 前記導電性基材が、アルミニウム、アルミニウム合金、又は銅である、
請求項1〜4のいずれかに記載の集電体。 - 前記ペーストが、樹脂成分100質量部に対して5〜50質量部の導電材を含有する、
請求項1〜5のいずれかに記載の集電体。 - 前記樹脂層のゲル分率が、50〜95%である、
請求項1〜6のいずれかに記載の集電体。 - 前記ペーストの塗布量が、0.05〜5g/m2である、
請求項1〜7のいずれかに記載の集電体。 - 請求項1〜8のいずれかに記載の集電体と、
前記集電体の樹脂層上に形成されている活物質層または電極材層と、
を備える、
電極構造体。 - 請求項9記載の電極構造体を用いた、蓄電部品。
- 前記蓄電部品が、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタからなる群から選択される1種以上の蓄電部品である、
請求項10に記載の蓄電部品。 - 導電性基材に塗布した後に架橋して集電体を得るための集電体用組成物であって、
ポリオレフィン系エマルション粒子と、
導電材と、
架橋剤と、
を含み、
前記ポリオレフィン系エマルション粒子は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂を含有する、
集電体用組成物。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012253755 | 2012-11-19 | ||
JP2012253755 | 2012-11-19 | ||
PCT/JP2013/080931 WO2014077366A1 (ja) | 2012-11-19 | 2013-11-15 | 集電体、電極構造体、蓄電部品および集電体用組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2014077366A1 true JPWO2014077366A1 (ja) | 2017-01-05 |
Family
ID=50731275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014547053A Pending JPWO2014077366A1 (ja) | 2012-11-19 | 2013-11-15 | 集電体、電極構造体、蓄電部品および集電体用組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160322641A1 (ja) |
EP (1) | EP2922124B1 (ja) |
JP (1) | JPWO2014077366A1 (ja) |
KR (1) | KR20150087372A (ja) |
CN (1) | CN104823313B (ja) |
TW (1) | TW201444169A (ja) |
WO (1) | WO2014077366A1 (ja) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9627722B1 (en) | 2013-09-16 | 2017-04-18 | American Lithium Energy Corporation | Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same |
CN104409681A (zh) * | 2014-11-19 | 2015-03-11 | 上海航天电源技术有限责任公司 | 一种含ptc涂层的锂离子电池极片的制备方法 |
HUE068398T2 (hu) | 2014-11-25 | 2024-12-28 | American Lithium Energy Corp | Újratölthetõ akkumulátor belsõ áramkorlátozóval és megszakítóval |
US10396341B2 (en) | 2014-11-25 | 2019-08-27 | American Lithium Energy Corporation | Rechargeable battery with internal current limiter and interrupter |
US10020545B2 (en) * | 2014-11-25 | 2018-07-10 | American Lithium Energy Corporation | Rechargeable battery with resistive layer for enhanced safety |
JP5939346B1 (ja) * | 2015-03-30 | 2016-06-22 | 東洋インキScホールディングス株式会社 | 導電性組成物、非水電解質二次電池用下地付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池 |
KR102049438B1 (ko) * | 2015-05-12 | 2019-11-28 | 주식회사 엘지화학 | 이중층 구조의 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 |
KR20180016969A (ko) * | 2015-06-04 | 2018-02-20 | 닛산 가가쿠 고교 가부시키 가이샤 | 에너지 저장 디바이스 전극용 언더코트박 |
WO2017145874A1 (ja) * | 2016-02-24 | 2017-08-31 | 日産自動車株式会社 | リチウムイオン二次電池用電極及びその製造方法 |
JP7055589B2 (ja) * | 2016-06-13 | 2022-04-18 | 東洋インキScホールディングス株式会社 | 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池 |
JP7009048B2 (ja) * | 2016-06-15 | 2022-01-25 | 東洋インキScホールディングス株式会社 | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
JP2017224469A (ja) * | 2016-06-15 | 2017-12-21 | 東洋インキScホールディングス株式会社 | 非水電解質二次電池用電極の下地層形成用導電性組成物、及びその用途 |
JP6880576B2 (ja) * | 2016-06-17 | 2021-06-02 | 東洋インキScホールディングス株式会社 | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
JP6683028B2 (ja) * | 2016-06-20 | 2020-04-15 | 東洋インキScホールディングス株式会社 | 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
CN117638425A (zh) * | 2016-09-22 | 2024-03-01 | 苹果公司 | 用于叠堆电池设计的集电器 |
KR102207426B1 (ko) * | 2016-12-07 | 2021-01-26 | 주식회사 엘지화학 | 고분자가 가교된 ptc층을 포함하는 이차전지용 전극 및 이의 제조방법 |
CN106784603A (zh) * | 2016-12-28 | 2017-05-31 | 珠海银隆新能源有限公司 | 一种集流体涂层的制备方法 |
JP7074284B2 (ja) * | 2017-02-10 | 2022-05-24 | 三井化学株式会社 | 正極及び非水電解質二次電池 |
JP7089374B2 (ja) * | 2017-02-22 | 2022-06-22 | 三洋化成工業株式会社 | 樹脂集電体、及び、リチウムイオン電池 |
JP2018148707A (ja) * | 2017-03-06 | 2018-09-20 | 株式会社明電舎 | 計測配線の支持構造 |
KR102303725B1 (ko) * | 2017-03-28 | 2021-09-17 | 아라까와 가가꾸 고교 가부시끼가이샤 | 열가교형 리튬이온 전지용 슬러리 및 그 제조방법, 리튬이온 전지용 전극, 리튬이온 전지용 세퍼레이터, 리튬이온 전지용 세퍼레이터/전극적층체, 및 리튬이온 전지 |
JP6669122B2 (ja) * | 2017-04-07 | 2020-03-18 | トヨタ自動車株式会社 | 積層電池 |
CN117254070A (zh) | 2017-05-01 | 2023-12-19 | 美国锂能源公司 | 电池 |
WO2019003721A1 (ja) * | 2017-06-30 | 2019-01-03 | 株式会社村田製作所 | リチウムイオン二次電池 |
WO2019023683A1 (en) | 2017-07-28 | 2019-01-31 | American Lithium Energy Corporation | ANTI-CORROSION COATING FOR BATTERY CURRENT COLLECTOR |
EP3671906B1 (en) * | 2017-09-29 | 2024-12-25 | GS Yuasa International Ltd. | Electrode and energy storage device |
CN109755466B (zh) | 2017-11-08 | 2020-11-17 | 宁德时代新能源科技股份有限公司 | 一种正极极片、电化学装置及安全涂层 |
CN109755463B (zh) | 2017-11-08 | 2020-12-29 | 宁德时代新能源科技股份有限公司 | 一种电极极片、电化学装置及安全涂层 |
CN109755462B (zh) | 2017-11-08 | 2021-01-12 | 宁德时代新能源科技股份有限公司 | 一种正极极片、电化学装置及安全涂层 |
CN109755468B (zh) | 2017-11-08 | 2021-01-12 | 宁德时代新能源科技股份有限公司 | 一种电极极片、电化学装置及安全涂层 |
JP7004969B2 (ja) * | 2017-11-10 | 2022-01-21 | 国立研究開発法人産業技術総合研究所 | リチウムイオン二次電池用電極 |
US12230844B2 (en) | 2018-06-25 | 2025-02-18 | American Lithium Energy Corporation | Safety layer for battery cells |
JP7017127B2 (ja) * | 2018-07-27 | 2022-02-08 | トヨタ自動車株式会社 | 固体電池用電極の製造方法 |
CN111200160B (zh) | 2018-11-16 | 2021-04-27 | 宁德时代新能源科技股份有限公司 | 一种电池 |
CN111200107A (zh) | 2018-11-16 | 2020-05-26 | 宁德时代新能源科技股份有限公司 | 一种正极极片及电化学装置 |
CN111200110A (zh) | 2018-11-16 | 2020-05-26 | 宁德时代新能源科技股份有限公司 | 一种正极极片及电化学装置 |
CN111200114B (zh) | 2018-11-16 | 2021-06-08 | 宁德时代新能源科技股份有限公司 | 一种正极极片及电化学装置 |
CN110137426B (zh) * | 2019-05-25 | 2022-02-15 | 珠海冠宇电池股份有限公司 | 一种含有ptc涂层极片的制备方法及锂离子电池 |
KR20210033721A (ko) | 2019-09-19 | 2021-03-29 | 주식회사 엘지화학 | 2개 이상의 금속 호일 사이에 저항층을 포함하는 전극 집전체, 이를 포함하는 전극 및 리튬 이차전지 |
CN115000344B (zh) * | 2022-06-23 | 2023-06-13 | 惠州锂威新能源科技有限公司 | 一种锂离子电池极片及其制备方法 |
CN115939319A (zh) * | 2022-10-18 | 2023-04-07 | 惠州锂威新能源科技有限公司 | 一种负极极片及其制备方法、二次电池 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5478676A (en) * | 1994-08-02 | 1995-12-26 | Rexam Graphics | Current collector having a conductive primer layer |
JP2001035640A (ja) * | 1999-07-16 | 2001-02-09 | Tokin Corp | Ptc素子及びその製造方法 |
JP2001319689A (ja) * | 2000-05-08 | 2001-11-16 | Matsushita Electric Ind Co Ltd | リチウムポリマー二次電池 |
JP2001357854A (ja) | 2000-06-13 | 2001-12-26 | Matsushita Electric Ind Co Ltd | 非水系二次電池 |
JP2002064004A (ja) * | 2000-07-14 | 2002-02-28 | Tokin Corp | Ptc素子及びその製造方法 |
JP2002343606A (ja) * | 2001-05-15 | 2002-11-29 | Nec Tokin Corp | 高分子ptc組成物及び高分子ptc素子 |
JP2009176599A (ja) * | 2008-01-25 | 2009-08-06 | Panasonic Corp | 非水電解質二次電池 |
JP2010244788A (ja) * | 2009-04-03 | 2010-10-28 | Sharp Corp | 非水系二次電池 |
JP5553165B2 (ja) | 2010-11-11 | 2014-07-16 | トヨタ自動車株式会社 | 非水二次電池とその製造方法 |
US20150311001A1 (en) * | 2012-11-19 | 2015-10-29 | Uacj Corporation | Current collector, electrode structure, and electrical storage device |
WO2014157405A1 (ja) * | 2013-03-29 | 2014-10-02 | 株式会社Uacj | 集電体、電極構造体、電池およびキャパシタ |
-
2013
- 2013-11-15 WO PCT/JP2013/080931 patent/WO2014077366A1/ja active Application Filing
- 2013-11-15 JP JP2014547053A patent/JPWO2014077366A1/ja active Pending
- 2013-11-15 KR KR1020157016350A patent/KR20150087372A/ko not_active Withdrawn
- 2013-11-15 CN CN201380060453.7A patent/CN104823313B/zh not_active Expired - Fee Related
- 2013-11-15 EP EP13855595.8A patent/EP2922124B1/en not_active Not-in-force
- 2013-11-15 US US14/443,623 patent/US20160322641A1/en not_active Abandoned
- 2013-11-19 TW TW102141998A patent/TW201444169A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN104823313B (zh) | 2018-02-09 |
KR20150087372A (ko) | 2015-07-29 |
US20160322641A1 (en) | 2016-11-03 |
EP2922124A1 (en) | 2015-09-23 |
CN104823313A (zh) | 2015-08-05 |
EP2922124B1 (en) | 2017-06-21 |
WO2014077366A1 (ja) | 2014-05-22 |
EP2922124A4 (en) | 2016-07-06 |
TW201444169A (zh) | 2014-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014077366A1 (ja) | 集電体、電極構造体、蓄電部品および集電体用組成物 | |
WO2014077367A1 (ja) | 集電体、電極構造体および蓄電部品 | |
US20230155165A1 (en) | Lithium ion secondary battery | |
CN105706287B (zh) | 非水二次电池的制造方法 | |
CN105706288B (zh) | 制造非水二次电池的方法 | |
US10199623B2 (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
US9508994B2 (en) | Current collector, electrode structure, nonaqueous electrolyte battery and electrical storage device, and method for producing current collector | |
WO2014046112A1 (ja) | 集電体、電極構造体及び蓄電部品 | |
WO2014157405A1 (ja) | 集電体、電極構造体、電池およびキャパシタ | |
KR20150036659A (ko) | 집전체, 전극, 이차전지 및 커패시터 | |
JP2016081758A (ja) | 非水電解液二次電池とその製造方法 | |
US20160276673A1 (en) | Current collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component | |
JP2015204221A (ja) | 集電体、電極構造体及び蓄電部品 | |
JP2005259639A (ja) | リチウム二次電池およびその製造方法 | |
WO2013172257A1 (ja) | 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法 | |
JP2015015084A (ja) | 二次電池の製造方法 | |
JP2017054682A (ja) | 集電体、電極構造体および蓄電部品 |