WO2014157405A1 - 集電体、電極構造体、電池およびキャパシタ - Google Patents
集電体、電極構造体、電池およびキャパシタ Download PDFInfo
- Publication number
- WO2014157405A1 WO2014157405A1 PCT/JP2014/058669 JP2014058669W WO2014157405A1 WO 2014157405 A1 WO2014157405 A1 WO 2014157405A1 JP 2014058669 W JP2014058669 W JP 2014058669W WO 2014157405 A1 WO2014157405 A1 WO 2014157405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current collector
- conductive material
- aggregate
- conductive
- polyolefin
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims description 20
- 239000002245 particle Substances 0.000 claims abstract description 110
- 239000004020 conductor Substances 0.000 claims abstract description 78
- 239000000839 emulsion Substances 0.000 claims abstract description 73
- 229920005989 resin Polymers 0.000 claims abstract description 68
- 239000011347 resin Substances 0.000 claims abstract description 68
- 229920000098 polyolefin Polymers 0.000 claims abstract description 53
- 229920000642 polymer Polymers 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 239000011149 active material Substances 0.000 claims description 20
- -1 polypropylene Polymers 0.000 claims description 17
- 239000004743 Polypropylene Substances 0.000 claims description 12
- 229920001155 polypropylene Polymers 0.000 claims description 11
- 229920002125 Sokalan® Polymers 0.000 claims description 8
- 239000004584 polyacrylic acid Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229920013716 polyethylene resin Polymers 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims 1
- 239000010410 layer Substances 0.000 description 62
- 238000000576 coating method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000011164 primary particle Substances 0.000 description 9
- 230000004931 aggregating effect Effects 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000011255 nonaqueous electrolyte Substances 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 229920005672 polyolefin resin Polymers 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229920011250 Polypropylene Block Copolymer Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical class CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical class CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- SEACXNRNJAXIBM-UHFFFAOYSA-N triethyl(methyl)azanium Chemical class CC[N+](C)(CC)CC SEACXNRNJAXIBM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/42—Powders or particles, e.g. composition thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/68—Current collectors characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/666—Composites in the form of mixed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/668—Composites of electroconductive material and synthetic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/10—Temperature sensitive devices
- H01M2200/106—PTC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to a current collector, an electrode structure, a battery, and a capacitor.
- Lithium ion batteries used in vehicles have high-speed charge / discharge characteristics (high-rate characteristics) during normal use, and a so-called shutdown function (PTC) that stops charge / discharge spontaneously and safely in the event of an accident such as a failure. Function) is required.
- the former includes a technique for reducing the particle size of the active material and forming a conductive layer on the current collector, and the latter includes means for improving the safety of the battery by preventing the internal pressure from being increased by a safety valve and increasing the temperature.
- a PTC Physical Temperature Coefficient
- Patent Document 1 discloses a sheet-like conductive polymer (thickness) having a PTC characteristic of an electrical conductivity at room temperature of 5 S / cm and an electrical conductivity at an operating temperature of 120 ° C. of 5 ⁇ S / cm on an aluminum net having a thickness of 20 ⁇ m.
- a positive electrode current collector pasted with a thickness of 50 ⁇ m is described.
- the sheet-like conductive polymer used here is a mixture of 30 wt% polyethylene and 70 wt% carbon black (paragraph 0048 of Patent Document 1).
- Patent Document 2 discloses a current collector in which a conductive paste is uniformly applied to both sides of an aluminum and copper expanded metal with a die coater or a gravure coater and dried to form a conductive layer having a thickness of 0.5 ⁇ m. It is described that the body was made.
- the conductive paste used here is 270 g of an N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) (solid content 13%), 35 g of crystalline polyethylene resin having a melting point of 110 ° C. and acetylene black. It is described that 30 g of the carbon-based conductive agent was added, kneaded with a planetary mixer, and further 440 g of NMP was added and diluted to prepare a conductive paste (paragraph 0029 of Patent Document 2).
- NMP N-methyl-2-pyrrolidone
- PVDF polyvinylidene fluoride
- Patent Document 3 acetylene black, which is a conductive material, and polyethylene having a softening point of 120 ° C., which is a binder polymer, are mixed at a weight ratio of 10: 1, and an appropriate amount of carboxymethyl cellulose is added as a thickener. A paste-like mixture was obtained, and the mixture was applied to both sides of a 10 ⁇ m-thick aluminum foil as a positive electrode current collector to a thickness of 5 ⁇ m or less, dried, and provided with a resistance layer. (Patent Document 3, page 13, lines 1-6).
- Patent Document 4 forms a coating film in which fine particles produced by pulverizing an electronic conductive material containing a conductive filler and a resin and increasing its resistance with increasing temperature are dispersed in a binder resin. is doing. Further, in this document, the fine particles function to increase the resistance with increasing temperature.
- Patent Documents 1 to 3 since polyvinylidene fluoride and polyethylene are thermoplastic resins, when the temperature becomes 100 ° C. or higher at the time of active material coating or the like, when the thermoplastic resin melts, it differs from that before melting. It becomes a state. Therefore, when producing lithium ion secondary batteries, lithium ion capacitors, etc., the temperature cannot be raised to 100 ° C. or higher, and the productivity may be significantly reduced.
- Patent Document 3 when used in a lithium ion secondary battery, a lithium ion capacitor, or the like, the so-called high rate characteristic of high speed charge / discharge is not sufficient, and it is unsuitable for high speed charge / discharge in normal times.
- Patent Document 4 has a drawback that the resistance value does not increase sufficiently because the conductive filler (conductive material) is dispersed in the resin.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a highly safe current collector that can achieve both excellent conductivity at normal temperature and excellent shutdown function at high temperature. To do.
- a current collector comprising a conductive substrate and a resin layer provided on at least one surface of the conductive substrate.
- the resin layer is formed of a paste containing an aggregate of polyolefin-based emulsion particles and a conductive material. Further, the average particle size of the aggregate is 0.5 ⁇ m to 5 ⁇ m.
- an aggregate of polyolefin-based emulsion particles is used, and the average particle size of the aggregate is 0.5 ⁇ m to 5 ⁇ m. Therefore, excellent electrical conductivity at room temperature and excellent at high temperature Both shutdown functions can be achieved.
- an electrode structure using the current collector can be obtained.
- a battery or a capacitor using the above electrode structure can be obtained.
- FIG. 1 It is a schematic diagram which shows the mode of the inside of the resin layer at the time of normal temperature of the electrode structure of one Embodiment (when a conductive material is added after aggregating polyolefin-type emulsion particles using a polymer flocculant). .
- the inside of the resin layer at room temperature of the electrode structure of one embodiment of the present invention (when a conductive material is added after aggregating polyolefin emulsion particles using a polymer flocculant and a low molecular flocculant) It is a schematic diagram shown.
- FIG. 1 It is a schematic diagram which shows the mode of the inside of the resin layer at the time of normal temperature of the electrode structure of one Embodiment (when a polyolefin-type emulsion particle is aggregated using a polymer flocculent after adding a electrically conductive material). .
- the state of the inside of the resin layer at room temperature of the electrode structure of one embodiment of the present invention (when polyolefin emulsion particles are aggregated using a polymer flocculant and a low molecular flocculant after adding a conductive material) It is a schematic diagram shown.
- a to B means A or more and B or less.
- FIG. 1 is a cross-sectional view showing the structure of the current collector of this embodiment.
- the current collector 100 of the present embodiment is a current collector 100 having a conductive resin layer 105 on at least one surface of the conductive base material 103.
- FIG. 2 is a cross-sectional view showing the structure of the electrode structure formed using the current collector of the present embodiment.
- an electrode structure 117 suitable for a battery for a non-aqueous electrolyte such as a lithium ion secondary battery is formed. Can do.
- FIG. 3 is a schematic view showing a covering state of the surface of the polyolefin emulsion particles used in the present embodiment with a conductive material.
- the present inventor tried using polyolefin emulsion particles 125 excellent in dispersibility in an aqueous solution as a resin constituting a paste to be applied to the conductive substrate 103.
- the particle size of the polyolefin emulsion particles 125 is as small as 0.1 ⁇ m or more and less than 0.4 ⁇ m, the amount of deformation due to thermal expansion is small, and sufficient conductive path cutting by cutting the temperature (cutting the connection between the conductive materials 121) I could not.
- the present inventor tried to form a large cross-linked product by adding a cross-linking agent to this paste to cross-link the polyolefin emulsion particles 125, but the generation of gas and water by the cross-linking reaction increases the resistance at normal temperature. There was a case.
- the polyolefin-based emulsion particles 125 were aggregated to form a large aggregate, gas and water were not generated, and the resistance at room temperature could be kept low.
- FIG. 4 is a schematic diagram showing a mechanism that exerts a PTC function when an aggregate of polyolefin-based emulsion particles used in the present embodiment is used.
- the resin layer 105 of the current collector 100 of the present embodiment is formed of a paste that includes an aggregate 131 of polyolefin-based emulsion particles 125 and a conductive material 121.
- the weight per unit area when applying this paste to the conductive substrate 103 is preferably 0.5 g / m 2 to 20 g / m 2 .
- the average particle size of the aggregate is 0.5 ⁇ m to 5 ⁇ m.
- the conductive material 121 is distributed on the surface or gaps of the polyolefin emulsion particles 125 or the aggregates 131 of the polyolefin emulsion particles 125 and connected to each other during normal use. Note that the conductive material 121 does not enter the polyolefin emulsion particles 125.
- the resin layer 105 of the present embodiment exhibits a PTC function when an unexpected accident occurs.
- the particle size of the polyolefin emulsion particle 125 itself is as small as 0.1 ⁇ m or more and less than 0.4 ⁇ m.
- the particle size of the aggregate 131 of the polyolefin emulsion particle 125 is 0.5 ⁇ m to 5 ⁇ m due to an appropriate size due to thermal expansion.
- the amount of deformation is large, and sufficient conductive path cutting (cutting of the connection between the conductive materials 121) can be performed by raising the temperature. That is, the aggregate 131 of the polyolefin-based emulsion particles 125 starts to expand due to thermal expansion, and the resistance is increased by cutting off the network of the conductive material 121 attached to the aggregate 131.
- the conductive material 121 efficiently forms a conductive path (at a minimum amount) at room temperature, and thus exhibits excellent conductivity at room temperature.
- the conductive path is likely to be broken due to the expansion of the aggregate 131 of the polyolefin emulsion particles 125.
- the current collector 100 of this embodiment is obtained by applying a paste to at least one surface of the conductive substrate 103.
- the conductive base material 103 known as various metal foils for a nonaqueous electrolyte battery, an electric double layer capacitor, or a lithium ion capacitor can be used.
- various metal foils for positive electrode and negative electrode can be used, and for example, aluminum, aluminum alloy, copper, stainless steel, nickel and the like can be used.
- aluminum, an aluminum alloy, and copper are preferable from the balance between high conductivity and cost.
- the thickness of the conductive substrate 103 is not particularly limited, but is preferably 5 ⁇ m or more and 50 ⁇ m or less. If the thickness is less than 5 ⁇ m, the strength of the foil is insufficient and it may be difficult to form the resin layer. On the other hand, if the thickness exceeds 50 ⁇ m, other components, particularly the active material layer or the electrode layer, must be thinned when used for power storage components such as non-aqueous electrolyte batteries, electric double layer capacitors, or lithium ion capacitors. The required capacity may not be obtained. Note that the thickness of the conductive substrate 103 may be within a range of two arbitrary numerical values among 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 ⁇ m.
- FIG. 3 is a schematic view showing the structure of polyolefin emulsion particles used in the present embodiment.
- the polyolefin-based emulsion particles 125 used in the present embodiment are not particularly limited.
- a polypropylene resin a polyethylene resin, a polyethylene-polypropylene block copolymer resin, a polyethylene-polypropylene graft copolymer resin, or the like can be suitably used. These resins may be used alone or in combination of two or more.
- the polyolefin resin constituting the polyolefin emulsion particles 125 may be modified with carboxylic acid (or carboxylic anhydride) or may not be modified with carboxylic acid (or carboxylic anhydride).
- the resin component used for the resin layer 105 of this embodiment may be composed of only the above-described polyolefin-based emulsion particles 125, or may contain other resin components.
- a soluble polyolefin resin (in an organic solvent) that is not emulsion particles it is not preferable because resistance hardly increases when PTC is developed.
- the carboxylic acid (or carboxylic anhydride) for modifying the polyolefin resin is not particularly limited.
- maleic acid, acrylic acid, pyromellitic acid, citric acid, tartaric acid, oxalic acid, melittic acid It is preferable to use terephthalic acid, adipic acid, fumaric acid, itaconic acid, trimellitic acid, isophthalic acid and the like.
- any acid may be an acid anhydride.
- the average particle size of the polyolefin emulsion particles themselves (primary particles) used in the present embodiment is preferably 0.1 ⁇ m or more and less than 0.4 ⁇ m.
- the primary particles here are particles formed when a polyolefin resin is dispersed in water or the like. When this particle size is less than 0.1 ⁇ m, even when the polyolefin-based emulsion particles 125 are secondarily aggregated, only a particle size of less than 0.5 ⁇ m can be obtained. When this particle size is 0.4 ⁇ m or more, The particle size of the agglomerate becomes too large, resulting in an increase in resistance at room temperature, a failure to stably apply, and a failure to obtain a desired current collector.
- the aggregate 131 of the polyolefin-based emulsion particles 125 formed in the resin layer 105 of the present embodiment is one in which a plurality of polyolefin-based emulsion particles 125 themselves (primary particles) aggregate to form a larger structure (secondary The above particles).
- This aggregate can be easily formed by using a polymer flocculant and / or a low molecular flocculant described later, but the flocculant is not necessarily used.
- the average particle size of the aggregate 131 is 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 5 ⁇ m, and more preferably 2 ⁇ m to 5 ⁇ m.
- the average particle size of the aggregate 131 is less than 0.5 ⁇ m, a sufficient amount of deformation due to thermal expansion cannot be obtained at the time of temperature rise, and when the average particle size of the aggregate 131 exceeds 5 ⁇ m, the coating film becomes too thick and resistance at room temperature. Or the emulsion solution becomes unstable and the components are easily separated.
- the aggregate 131 since the aggregate 131 has aggregated primary particles, there are many fine irregularities compared to the primary particles (the contact portions between the primary particles are irregular), and the conductive material 121 tends to adhere.
- the agglomerate 131 has an advantage that the resistance in normal use can be lowered.
- the average particle size of the aggregate 131 can be calculated by measuring the particle size distribution in a paste prepared without adding the conductive material 121 with a particle size distribution meter.
- a particle size distribution meter a commercially available apparatus based on a dynamic light scattering method, a laser diffraction / scattering method, an image imaging method, or the like can be suitably used.
- the polyolefin emulsion particles 125 used in the resin layer 105 of the present embodiment must be blended with the conductive material 121 in order to impart electron conductivity.
- the conductive material 121 used in the present embodiment known carbon powder, metal powder, and the like can be used. Among them, carbon powder is preferable.
- the carbon powder acetylene black, ketjen black, furnace black, carbon nanotube, various graphite particles and the like can be used.
- the average particle size of the conductive material 121 is preferably 100 nm or less.
- the average particle diameter of the conductive material 121 is more preferably 60 nm or less.
- the conductive material 121 can be dispersed in the paste by using a planetary mixer, a ball mill, a homogenizer, or the like.
- the blending amount of the conductive material 121 of the present embodiment is not particularly limited. However, in order to exhibit a desired high safety PTC function, the PTC is used in a smaller amount than a normal carbon coat or a binder resin for an active material layer. It is preferable that the function can be exhibited and safety can be maintained. Specifically, the blending amount of the conductive material 121 is preferably 5 to 50 parts by mass, more preferably 6 to 45 parts by mass, and 8 to 40 parts by mass with respect to 100 parts by mass of the resin component of the polyolefin-based emulsion particles 125. Is more preferable.
- the blending amount of the conductive material 121 is less than 5 parts by mass, the volume specific resistance of the resin layer 105 increases, and the conductivity required for the current collector 100 may not be obtained. This is because if the blending amount of the conductive material 121 exceeds 50 parts by mass, the conductive material 121 is not disconnected even during volume expansion, and a sufficient resistance value may not be obtained.
- the compounding quantity of this electrically conductive material 121 is in the range of arbitrary two numerical values among 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, and 50 parts by mass. It may be.
- the coverage with the conductive material 121 on the surface of the aggregate 131 of the polyolefin emulsion particles 125 of the present embodiment is not particularly limited, but in order to achieve both excellent conductivity at normal temperature and excellent shutdown function at high temperature, It is preferably 5% to 90%, more preferably 10% to 80%, and further preferably 15% to 70%. If this coverage is less than 5%, the battery or capacitor characteristics such as conductivity when used at room temperature may be insufficient. If this coverage exceeds 90%, sufficient conductive path cutting may not be possible at the time of temperature rise. In addition, this coverage is arbitrary two numerical values among 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90% It may be within the range.
- the coverage can be measured by applying a paste to the conductive base material 103 and drying it, and then observing the cross section of the coating layer of the resin layer 105 formed of the paste.
- the ratio of the conductive material 121 covering the surface of the aggregate 131 of the emulsion particles 125 is the coverage with the conductive material 121.
- the coverage with the conductive material 121 can be measured from the ratio of the surface of the agglomerate 131 covered with the conductive material 121 by taking a cross section by ion milling.
- 10 locations 100 locations in total
- the average value of the coverage calculated from the observation results at those locations is calculated. can do.
- the paste used in the present embodiment may be prepared by any method.
- the paste can be prepared by the following method.
- FIG. 5 shows the present embodiment (using the polymer flocculant). It is a schematic diagram which shows the mode inside the resin layer at the time of normal temperature of the electrode structure of the case where a conductive material is added after aggregating polyolefin-type emulsion particles).
- the polymer flocculant 123 is added to the polyolefin emulsion particles 125 (for example, an aqueous emulsion such as polypropylene) and stirred to form an aggregate 131 having a size of 0.2 ⁇ m to 5 ⁇ m.
- the average particle diameter of the aggregate 131 tends to be small.
- the conductive material 123 is added and stirred, and the conductive material 123 is adhered to the surface of the aggregate 131 so that the coverage is 5% to 90%. This coverage can be adjusted as appropriate by adjusting the blending amount of the conductive material 123.
- the paste thus obtained is applied onto the conductive substrate 103 and dried to form the resin layer 105. Then, an active material layer 115 is formed on the resin layer 105 to produce an electrode structure 117. In this form of electrode structure 117, the conductive path between the conductive materials 121 due to the expansion of the aggregate 131 of the polyolefin emulsion particles 125 is often cut at a high temperature, and the shutdown effect is large.
- FIG. 6 shows an embodiment (adding a conductive material after aggregating polyolefin emulsion particles using a polymer flocculant and a low molecular flocculant. It is a schematic diagram which shows the mode of the inside of the resin layer at the time of normal temperature of the electrode structure of a case.
- a polymer flocculant 123 and a low molecular flocculant 127 are added to polyolefin emulsion particles 125 (for example, an aqueous emulsion such as polypropylene) and stirred to form an aggregate 131 having a size of 0.5 ⁇ m to 5 ⁇ m.
- polyolefin emulsion particles 125 for example, an aqueous emulsion such as polypropylene
- the conductive material 123 is added and stirred, and the conductive material 123 is adhered to the surface of the aggregate 131 so that the coverage is 5% to 90%. This coverage can be adjusted as appropriate by adjusting the blending amount of the conductive material 123.
- the paste thus obtained is applied onto the conductive substrate 103 and dried to form the resin layer 105. Then, an active material layer 115 is formed on the resin layer 105 to produce an electrode structure 117.
- the electrode structure 117 of this form also has a large shutdown effect because the conductive path between the conductive materials 121 is frequently cut due to the expansion of the aggregate 131 of the polyolefin emulsion particles 125 at a high temperature.
- FIG. 7 shows this embodiment (polymer aggregation after addition of conductive material) It is a schematic diagram which shows the mode inside the resin layer at the time of normal temperature of the electrode structure of the case where the polyolefin-type emulsion particle is aggregated using an agent.
- the conductive material 121 is added to the polyolefin-based emulsion particles 125 (for example, an aqueous emulsion such as polypropylene) and stirred, and the conductive material 125 is coated on the surface of the polyolefin-based emulsion particles 125 so that the coverage is 5% to 90%. To attach. This coverage can be adjusted as appropriate by adjusting the blending amount of the conductive material 123.
- the polymer flocculant 123 is added and stirred to form an aggregate 131 having a size of 0.5 ⁇ m to 5 ⁇ m.
- the average particle diameter of the aggregate 131 tends to be small.
- the aggregate 131 is obtained by aggregating the polyolefin emulsion particles 125 having a coverage of 5% to 90% with the conductive material 121, the coverage with the conductive material 121 in the aggregate 131 is also 5% to 90%. 90%.
- the paste thus obtained is applied onto the conductive substrate 103 and dried to form the resin layer 105. Then, an active material layer 115 is formed on the resin layer 105 to produce an electrode structure 117.
- the conductive material 121 is also present inside the aggregate 131 (primary particle surface), the number of conductive paths between the conductive materials 121 is large, and resistance at normal temperature is suppressed to a low level. Can do.
- FIG. 8 shows the present embodiment (after adding the conductive material, the polyolefin-based emulsion particles are aggregated using the polymer flocculant and the low-molecular flocculant.
- It is a schematic diagram which shows the mode inside the resin layer at the time of normal temperature of the electrode structure of a case.
- the conductive material 121 is added to the polyolefin-based emulsion particles 125 (for example, an aqueous emulsion such as polypropylene) and stirred, and the conductive material 125 is coated on the surface of the polyolefin-based emulsion particles 125 so that the coverage is 5% to 90%. To attach. This coverage can be adjusted as appropriate by adjusting the blending amount of the conductive material 123.
- the polymer flocculant 123 is added and stirred to form an aggregate 131 having a thickness of 0.5 ⁇ m to 5 ⁇ m.
- the average particle size of the aggregate 131 tends to increase.
- the aggregate 131 is obtained by aggregating the polyolefin emulsion particles 125 having a coverage of 5% to 90% with the conductive material 125, the coverage with the conductive material 125 in the aggregate 131 is also 5% to 90%. 90%.
- the paste thus obtained can be applied to the conductive substrate 103 and dried to form the resin layer 105.
- An electrode structure 117 can be manufactured by forming the active material layer 115 on the resin layer 105. Since the conductive material 121 is also present inside the aggregate 131 (primary particle surface) in this form of the electrode structure 117, the number of conductive paths between the conductive materials 121 is large, and resistance at room temperature is suppressed to a low level. Can do.
- the flocculant added to the paste to form the agglomerate 131 is arbitrary as long as it can agglomerate a plurality of polyolefin emulsion particles 125 to form a larger structure. May be used.
- the polymer flocculant 123 although not particularly limited, for example, polyacrylic acid Na, urethane-modified polyether, polyacrylic acid sulfonic acid, which has been confirmed to have excellent aggregating effects in the examples described later. It is preferable to contain one or more polymers selected from the group consisting of Na.
- the polymer flocculant 123 has the aspect that the polymer flocculant 123 is entangled with the emulsion particles 125 and is meshed with the aggregate of the emulsion particles 125 to form an aggregate 131 having an average particle size of 0.5 ⁇ m to 5 ⁇ m.
- the number average molecular weight is preferably 100,000 or more, more preferably 150,000 or more, and particularly preferably 200,000 or more.
- the polymer flocculant 123 preferably has a number average molecular weight of 1,000,000 or less, more preferably 800,000 or less, and particularly preferably 500,000 or less.
- the average particle diameter of the aggregate 131 tends to be less than 0.5 ⁇ m.
- the number average molecular weight of the polymer flocculant 123 exceeds 1,000,000, it is difficult to dissolve in an aqueous solution and difficult to disperse. As a result, aggregated particles cannot be formed or aggregates exceeding 5 ⁇ m are easily formed. is there.
- this number average molecular weight is 100,000, 150,000, 200,000, 250,000, 300,000, 350,000, 400,000, 450,000, 500,000, 550,000, 600,000, 650,000, 700,000, 750,000, It may be within a range of two arbitrary values among 800,000, 850,000, 900,000, 950,000, and 1 million.
- the low-molecular flocculant 127 when used, it is not particularly limited.
- the low molecular flocculant 127 preferably has a number average molecular weight of 10,000 or less, and is 8000 or less, from the viewpoint of joining the individual emulsion particles 125 and further bringing the joined emulsion particles 125 into close contact with each other. If it is more preferable, it is especially preferable if it is 7000 or less.
- the number average molecular weight of the low molecular flocculant 127 is a halfway size larger than 10,000 and smaller than 100,000, it will be sandwiched between the emulsion particles 125 as a foreign substance, and the distance between the emulsion particles 125 will be increased. This causes problems such as increased resistance. Only one kind of the polymer flocculant 123 and the low molecular flocculant 127 may be used, or both may be mixed and used.
- the blending amount of the polymer flocculant 123 and / or the low molecular flocculant 127 is not particularly limited, but the polymer flocculant 123 and / or the low molecular flocculant 127 is based on 100 parts by mass of the resin component of the polyolefin-based emulsion particles 125. Are preferably 0.0001 parts by mass to 0.1 parts by mass, and particularly preferably 0.001 parts by mass to 0.01 parts by mass. If the amount is less than 0.0001 parts by mass, the agglomeration does not occur sufficiently, and a sufficient amount of deformation due to thermal expansion may not be obtained when the temperature is raised.
- the polymer flocculant 123 and / or the low molecular flocculant 127 exceeds 0.01 part by mass with respect to 100 parts by mass of the resin component of the polyolefin-based emulsion particles 125, the aggregation proceeds excessively and the expansion in the film thickness direction is performed. In some cases, the conductive path cannot be sufficiently cut when the temperature is increased.
- FIG. 1 is a cross-sectional view showing the structure of the current collector of this embodiment.
- the current collector 100 of this embodiment includes a resin layer 105 using the paste.
- the resin layer 105 is used for a positive electrode, it is preferable to use the resin layer 105 having a PTC function provided on the conductive base material 103. At this time, the resin layer 105 is formed separately from the active material layer 115.
- the method for forming the conductive resin layer 105 used in the present embodiment is not particularly limited, but the polyolefin emulsion particles 125, the conductive material 121, the polymer flocculant 123 and / or the low molecular flocculant 127 are in water or an aqueous solution. It is preferable that the current collector composition (paste) is coated on the conductive substrate 103 after preparing the current collector composition (paste).
- a coating method a roll coater, a gravure coater, a slit die coater or the like can be used.
- the coating amount (weight per unit area) of the current collector composition (paste) for forming the resin layer 105 is 0.5 g / m 2 to 20 g / m 2. are preferred, more preferably from 1g / m 2 ⁇ 10g / m 2, and particularly preferably 2g / m 2 ⁇ 5g / m 2. If the coating amount is less than 0.5 g / m 2 , the resistance may not be sufficiently increased at the time of temperature rise. On the other hand, if the coating amount exceeds 20 g / m 2 , the resistance at room temperature (30 ° C.) may be too high.
- this application amount is within the range of two arbitrary numerical values among 0.5 g / m 2 , 1 g / m 2 , 2.5 g / m 2 , 5 g / m 2 , 10 g / m 2 , and 20 g / m 2 . It may be.
- baking is performed to cure the current collector composition (paste) to form the resin layer 105.
- the baking temperature is not particularly limited, but is preferably 80 to 240 ° C., for example. When this baking temperature is less than 80 ° C., there is a problem that the curing is insufficient and the adhesion to the conductive substrate is insufficient. On the other hand, if this baking temperature exceeds 240 ° C., the resin may be melted depending on the polyolefin resin used. In addition, this baking temperature is in the range of two arbitrary numerical values among 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, and 240 ° C. Also good.
- the baking time is not particularly limited, but is preferably 5 to 200 seconds, for example. If this baking time is less than 5 seconds, there is a problem that the curing is insufficient and the adhesion to the conductive substrate is insufficient. On the other hand, when the baking time exceeds 200 seconds, productivity is reduced and performance is not improved, which is useless.
- this baking time is within the range of arbitrary two numerical values among 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, and 200 seconds. There may be.
- FIG. 2 is a cross-sectional view showing the structure of an electrode structure formed using the current collector of the present embodiment.
- the electrode structure 117 can be obtained by forming the active material layer 115 on the resin layer 105 of the current collector 100 of the present embodiment. If this electrode structure 117 is used as a positive electrode and a separator impregnated with an electrolyte is sandwiched between the electrode structure 117 and a separately prepared negative electrode structure, a non-aqueous electrolyte battery such as a lithium ion secondary battery is used. Can be produced.
- the active material layer 115 provided in the electrode structure 117 in the present embodiment a material used for a nonaqueous electrolyte battery can be suitably used.
- a current collector 100 using an aluminum alloy foil as the conductive base material 103 and LiCoO 2 , LiMnO 4 , LiNiO 2 or the like as the active material are used.
- the active material layer 115 can be formed by applying and drying a paste in which carbon black such as acetylene black is dispersed in PVDF or water-dispersed PTFE as a binder.
- the current collector 100 used as the copper foil conductive base material 103 is made of, for example, graphite, graphite, mesocarbon microbeads or the like as an active material, and these are used as a thickener.
- the active material layer 115 can be formed by applying and drying a paste mixed with SBR (styrene butadiene rubber) as a binder after being dispersed in a certain CMC (carboxymethyl cellulose).
- Electrode structure for capacitor An electrode structure 117 can be obtained by forming the electrode material layer 115 on the resin layer 105 of the current collector 100 of the present embodiment. If this electrode structure 117 is used as a positive electrode and a separator impregnated with an electrolyte is sandwiched between the electrode structure 117 and the negative electrode using this electrode structure 117, the electric double layer capacitor, the lithium ion capacitor, etc. This capacitor can be manufactured.
- the electrode material 115 those conventionally used as electrode materials for electric double layer capacitors and lithium ion capacitors can be used.
- carbon powder or carbon fiber such as activated carbon or graphite can be used.
- the binder for example, PVDF (polyvinylidene fluoride), SBR, water-dispersed PTFE or the like can be used.
- the AC impedance Zre at 1 Hz measured in the state where the electrode structure 117 is used as the positive electrode and the separator impregnated with the electrolytic solution is sandwiched between the electrode structure 117 and the negative electrode using the electrode structure 117 is similarly obtained. It is preferably 200 ⁇ cm 2 or less at 30 ° C. and a maximum resistance of 400 ⁇ cm 2 or more at 80 ° C. or more and 165 ° C. or less. If this AC impedance Zre is greater than 200 ⁇ cm 2 at 30 ° C., the so-called high rate characteristics of high-speed charge / discharge are not sufficient, and it is not suitable for high-speed charge / discharge during normal times.
- the AC impedance Zre exhibits a maximum resistance of less than 400 ⁇ cm 2 at 80 ° C. or more and 165 ° C. or less, the shutdown function at high temperature is insufficient and thermal runaway may not be prevented.
- the separator for example, a polyolefin microporous film or nonwoven fabric can be used.
- the non-aqueous electrolyte is not particularly limited as long as it does not show side reactions such as decomposition in a voltage range used as a non-aqueous electrolyte battery, an electric double layer capacitor or a lithium ion capacitor.
- quaternary ammonium salts such as tetraethylammonium salt, triethylmethylammonium salt and tetrabutylammonium salt are used as cations, and hexafluorophosphate, tetrafluoroborate, perchlorate, etc. are used as anions. Can do.
- aprotic solvents such as carbonates, esters, ethers, nitriles, sulfonic acids, and lactones
- the aggregate particle size was calculated by measuring the particle size distribution of a paint (paste) prepared without adding a conductive agent with a particle size distribution meter. As the particle size distribution meter, the volume average particle size was calculated using a laser diffraction / scattering particle size distribution measuring apparatus LA-950V2 manufactured by Horiba.
- Coverage ratio with conductive material is obtained by applying a paint (paste) and then taking out a cross-section by ion milling and observing the cross-section of the coating film using a Hitachi field emission scanning microscope. It was measured. The ratio of the conductive material covering the surface of the aggregate was defined as the conductive material coverage.
- 10 locations 100 locations in total are arbitrarily selected from the cross sections of the coating film cut at 10 locations, and the average value of the coverage calculated from the observation results at those locations is calculated. did.
- active material paste active material LMO, binder PVDF, conductive assistant acetylene black
- current collector dried and pressed, and punched out to 1615.95 mm ⁇ to obtain an electrode.
- separator material: cellulosic
- electrolyte composition: 1 mol / L LiBF4 in EC: EMC (1: 3 V / V%)
- a lower resistance at 30 ° C. is excellent in charge / discharge rate characteristics and can be applied to a high-power battery.
- As a guideline if it is 200 ⁇ cm 2 or less, it can be used for a general battery.
- the higher the maximum resistance at 80 ° C. to 165 ° C. the higher the shutdown effect.
- As a guideline when the resistance is 400 ⁇ cm 2 or more, the effect is exhibited at the time of overcharging in a general battery.
- the resistance at 30 ° C. becomes too high.
- the average particle size of the aggregates of emulsion particles is less than 0.5 ⁇ m, sufficient deformation due to thermal expansion cannot be obtained when the temperature is raised, and if it exceeds 5 ⁇ m, the coating becomes too thick and the resistance at room temperature increases. , The emulsion solution becomes unstable and the components are easily separated.
- the maximum resistance increases at the time of temperature rise, but the battery characteristics in normal use are inferior, and if it exceeds 90%, the maximum resistance decreases at the time of temperature rise. It can be seen that the effect of cutting the conductive path is low. It can also be seen that when a coagulant and a crosslinking agent are used in combination, the resistance value at 30 ° C. becomes too high. It can also be seen that when a base resin other than polyolefin is used, the maximum resistance at 80 ° C. to 165 ° C. is low and the shutdown function is insufficient.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
図1は、本実施形態の集電体の構造を示す断面図である。本実施形態の集電体100は、導電性基材103の少なくとも片面に導電性を有する樹脂層105を有する集電体100である。
図3は、本実施形態で用いるポリオレフィン系エマルション粒子の表面の導電材による被覆状況を示す模式図である。本発明者は、上記課題を解決するために、導電性基材103に塗布するためのペーストを構成する樹脂として、水溶液中での分散性に優れるポリオレフィン系エマルション粒子125を用いてみた。しかし、そのポリオレフィン系エマルション粒子125の粒径は、0.1μm以上0.4μm未満と小さいため熱膨張による変形量が小さく、昇温による十分な導電パス切断(導電材121同士のつながりの切断)ができなかった。
図4は、本実施形態で用いるポリオレフィン系エマルション粒子の凝集物を用いた場合のPTC機能を発揮するメカニズムを示す模式図である。本実施形態の集電体100の樹脂層105は、ポリオレフィン系エマルション粒子125の凝集物131と、導電材121と、を含むペーストで形成されている。なお、このペーストを導電性基材103に塗布する際の目付け量は、0.5g/m2~20g/m2であることが好ましい。また、この凝集物の平均粒径は0.5μm~5μmである。
この導電材121は、通常使用時にはポリオレフィン系エマルション粒子125またはポリオレフィン系エマルション粒子125の凝集物131の表面または隙間に分布して互いにつながり合っている。なお、ポリオレフィン系エマルション粒子125内には導電材121が入らない。
(1.導電性基材)
本実施形態の集電体100は導電性基材103の少なくとも片面にペーストを塗布したものである。導電性基材103としては、通常、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の各種金属箔として知られる導電性基材103が使用可能である。具体的には、正極用、負極用の種々の金属箔を使用でき、例えば、アルミニウム、アルミニウム合金、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、アルミニウム合金、銅が好ましい。
図3は、本実施形態で用いるポリオレフィン系エマルション粒子の構造を示す模式図である。本実施形態で用いるポリオレフィン系エマルション粒子125は、特に限定するわけではないが、例えば、線膨張率が大きく、導電性基材との密着性に優れるポリプロピレン樹脂、ポリエチレン樹脂、共重合ポリプロピレン樹脂、共重合ポリエチレン樹脂からなる群から選ばれる1種以上の樹脂を含有することが好ましい。特に好ましくは、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエチレンーポリプロピレンブロック共重合樹脂、ポリエチレンーポリプロピレングラフト共重合樹脂などを好適に用いることができる。また、これらの樹脂は一種類で用いても良いが、2種類以上を混合して用いてもよい。
本実施形態の樹脂層105中で形成されるポリオレフィン系エマルション粒子125の凝集物131は、複数のポリオレフィン系エマルション粒子125自体(1次粒子)が凝集してより大きな構造を形成したもの(2次以上の粒子)である。なお、この凝集物は、後述する高分子凝集剤および/または低分子凝集剤を用いることによって容易に形成することができるが、必ずしも凝集剤を用いなければならないわけではない。
本実施形態の樹脂層105に用いるポリオレフィン系エマルション粒子125は電子伝導性を付与するために導電材121を配合しなければならない。本実施形態に用いる導電材121としては公知の炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ、各種黒鉛粒子などが使用可能である。また、導電材121の平均粒径は100nm以下が好ましい。粒径が大きすぎると塗料保管中に分離しやすく、塗装しても塗膜が不均一になり、結果的に昇温時に導電パスが切れにくくなるからである。導電材121の平均粒径は、より好ましくは60nm以下である。導電材121をペーストに分散するには、プラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。
具体的には、ポリオレフィン系エマルション粒子125の樹脂成分100質量部に対して、導電材121の配合量は、5~50質量部が好ましく、6~45質量部がさらに好ましく、8~40質量部がさらに好ましい。導電材121の配合量が、5質量部未満では樹脂層105の体積固有抵抗が高くなり、集電体100として必要な導電性が得られない場合がある。導電材121の配合量が、50質量部を超えると体積膨張時も導電材121の繋がりが切れず、十分な抵抗値が得られない場合があるためである。なお、この導電材121の配合量は、5、6、7、8,9,10、15、20、25、30、35、40、45、50質量部のうち任意の2つの数値の範囲内であってもよい。
また、この被覆率は、導電性基材103にペーストを塗装して乾燥した後、ペーストで形成された樹脂層105の塗膜断面観察を実施して測定することができる。エマルション粒子125の凝集物131の表面において導電材121が覆っている割合が、導電材121による被覆率である。
本実施形態においては、導電材121による被覆率はイオンミリングにて断面を出し、凝集物131の表面において導電材121が覆っている割合から測定することができる。なお、観察箇所としては、10箇所で切断した塗膜の断面の中からそれぞれ任意に10箇所ずつ(合計100箇所)を選び出し、それらの箇所での観察結果から算出した被覆率の平均値を算出することができる。
本実施形態で用いるペーストは、どのような方法で調合されてもよいが、例えば、以下のような方法で調合することができる。
(1-1)高分子凝集剤のみを使用する
図5は、本実施形態(高分子凝集剤を用いてポリオレフィン系エマルション粒子を凝集させた後に導電材を添加した場合)の電極構造体の常温時における樹脂層の内部の様子を示す模式図である。まず、ポリオレフィン系エマルション粒子125(例えば、ポリプロピレンなどの水系エマルション)に高分子凝集剤123を添加して撹拌して、0.2μm~5μmの凝集物131を形成する。このとき、高分子凝集剤123のみを用いているため凝集物131の平均粒径が小さくなる傾向がある。
図6は、本実施形態(高分子凝集剤および低分子凝集剤を用いてポリオレフィン系エマルション粒子を凝集させた後に導電材を添加した場合)の電極構造体の常温時における樹脂層の内部の様子を示す模式図である。まず、ポリオレフィン系エマルション粒子125(例えば、ポリプロピレンなどの水系エマルション)に高分子凝集剤123および低分子凝集剤127を添加して撹拌して、0.5μm~5μmの凝集物131を形成する。このとき、高分子凝集剤123および低分子凝集剤127を併用しているため凝集物131の平均粒径が大きくなる傾向がある。
(2-1)高分子凝集剤のみを使用する
図7は、本実施形態(導電材を添加した後に高分子凝集剤を用いてポリオレフィン系エマルション粒子を凝集させた場合)の電極構造体の常温時における樹脂層の内部の様子を示す模式図である。まず、ポリオレフィン系エマルション粒子125(例えば、ポリプロピレンなどの水系エマルション)に導電材121を添加して撹拌し、ポリオレフィン系エマルション粒子125の表面に被覆率が5%~90%になるように導電材125を付着させる。この被覆率は導電材123の配合量を調整することによって適宜調節できる。
図8は、本実施形態(導電材を添加した後に高分子凝集剤および低分子凝集剤を用いてポリオレフィン系エマルション粒子を凝集させた場合)の電極構造体の常温時における樹脂層の内部の様子を示す模式図である。まず、ポリオレフィン系エマルション粒子125(例えば、ポリプロピレンなどの水系エマルション)に導電材121を添加して撹拌し、ポリオレフィン系エマルション粒子125の表面に被覆率が5%~90%になるように導電材125を付着させる。この被覆率は導電材123の配合量を調整することによって適宜調節できる。
本実施形態では、凝集物131を形成するためにペースト中に添加する凝集剤としては、複数のポリオレフィン系エマルション粒子125を凝集させてより大きな構造を形成させることができるものであれば任意のものを用いてよい。高分子凝集剤123を用いる場合には、特に限定するものではないが、例えば、後述する実施例で優れた凝集効果が確認されているポリアクリル酸Na、ウレタン変性ポリエーテル、ポリアクリル酸スルホン酸Naからなる群から選ばれる1種以上の高分子を含有していることが好ましい。
また、高分子凝集剤123は、高分子凝集剤123がエマルション粒子125に絡み、エマルション粒子125の集合に網掛けして、平均粒径0.5μm~5μmの凝集物131を形成するという面からは、数平均分子量が10万以上であることが好ましく、15万以上であればさらに好ましく、20万以上であれば特に好ましい。
また、高分子凝集剤123は、同様の理由から、数平均分子量が100万以下であることが好ましく、80万以下であればさらに好ましく、50万以下であれば特に好ましい。高分子凝集剤123の数平均分子量が10万未満であると、凝集物131の平均粒径が0.5μm未満となりやすい。
一方、高分子凝集剤123の数平均分子量が100万を超えると水溶液に溶け難く、また、分散し難い結果、凝集粒子を形成できなかったり、5μmを超える凝集物を形成しやすいため不適当である。なお、この数平均分子量は、10万、15万、20万、25万、30万、35万、40万、45万、50万、55万、60万、65万、70万、75万、80万、85万、90万、95万、100万のうち任意の2つの数値の範囲内であってもよい。
また、低分子凝集剤127は、個々のエマルション粒子125を繋ぎ、さらに、繋ぎ合わせたエマルション粒子125同士を密着させるという面からは、数平均分子量が1万以下であることが好ましく、8000以下であればさらに好ましく、7000以下であれば特に好ましい。低分子凝集剤127の数平均分子量が1万よりも大きく10万よりも小さい中途半端なサイズだとエマルション粒子125同士の間に異物として挟まることになりエマルション粒子125同士の距離が離れ、室温での抵抗が増加する等の不具合を生じる。高分子凝集剤123および低分子凝集剤127は、いずれか一種類のみを用いてもよいが、両方を混合して用いてもよい。
図1は、本実施形態の集電体の構造を示す断面図である。本実施形態の集電体100は、上記ペーストを使用した樹脂層105を有する。この樹脂層105は正極用として使用する場合、導電性基材103上に設けられたPTC機能を有する樹脂層105とすることが好ましい。この際、この樹脂層105は活物質層115とは別に構成する。
図2は、本実施形態の集電体を用いて形成された電極構造体の構造を示す断面図である。本実施形態の集電体100の樹脂層105上に活物質層115を形成して電極構造体117を得ることができる。そして、この電極構造体117を正極として用いて、電解液を含浸させたセパレータを挟んで、別途用意した負極側の電極構造体と対向させれば、リチウムイオン二次電池などの非水電解質電池を作製することができる。
本実施形態の集電体100の樹脂層105上に電極材層115を形成して電極構造体117を得ることができる。そして、この電極構造体117を正極として用いて、電解液を含浸させたセパレータを挟んで、同様にこの電極構造体117を用いた負極と対向させれば、電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタを作製することができる。
このように、電極構造体117を正極として用いて、電解液を含浸させたセパレータを挟んで、同様にこの電極構造体117を用いた負極と対向させた状態で測定した1Hzにおける交流インピーダンスZreは、30℃において200Ωcm2以下であり、80℃以上165℃以下において400Ωcm2以上の最大抵抗を示すことが好ましい。この交流インピーダンスZreが30℃において200Ωcm2超であると、高速充放電の所謂ハイレート特性が十分ではなく、通常時での高速充放電に不向きである。一方、この交流インピーダンスZreが80℃以上165℃以下において400Ωcm2未満の最大抵抗を示す場合には、高温時のシャットダウン機能が不十分であり、熱暴走を阻止できないことがある。
表1に示すように撹拌工程1、撹拌工程2の2段階の撹拌を実施して塗料(ペースト)を調合した。それぞれの撹拌はディスパを用いて回転数1000rpm,攪拌時間60分で行った。(なお、表1および表2において、PP:ポリプロピレン、PE:ポリエチレンを意味する。また、導電材および凝集剤の添加量は、ベース樹脂100質量部に対する添加量を意味する。)また、その塗料(ペースト)を膜厚15μmのアルミニウム箔(JIS A1085)の片面にバーコーターにて表3の塗膜付着量(目付け量)にて片面に塗布し、基材到達温度(PMT)が100℃となるように24秒焼付を行い、集電体を作製した。
(1)塗膜付着量(目付け量)
塗工箔を100mm角に切断し、質量を測定した。塗膜を除去後、再度質量を測定し、その差から付着量(目付け量)を算出した。測定結果を表2に示す。
凝集物の粒径は、導電剤を添加せずに調合した塗料(ペースト)の粒径分布を粒度分布計にて測定して凝集物の平均粒径を算出した。なお、粒度分布計としては、堀場製作所製のレーザ回折/散乱式粒子径分布測定装置LA-950V2を用いて、体積平均粒径を算出した。
導電材による被覆率は塗料(ペースト)の塗装後、イオンミリングにて断面を出し、日立製の電界放射型走査顕微鏡を用いて塗膜の断面観察を実施して測定した。凝集物の表面において導電材が覆っている割合を導電材被覆率とした。なお、観察箇所としては、10箇所で切断した塗膜の断面の中からそれぞれ任意に10箇所ずつ(合計100箇所)を選び出し、それらの箇所での観察結果から算出した被覆率の平均値を算出した。
上記により作製した集電体に活物質ペースト(活物質LMO、バインダPVDF、導電助剤アセチレンブラック)を塗布、乾燥、プレスして、1615.95mmφに打ち抜いて電極とした。この電極2枚を間に電解液(組成:1mol/L LiBF4 in EC:EMC(1:3V/V%))を含浸させたセパレータ(材料:セルロース系)を挟んで塗膜面を対向させてセルを作製した。このセルをオーブンにて常温(30℃以下)より、5℃/分の速度で昇温しながら165℃まで、Princeton Applied Research社製のVersaSTAT4を用いて振幅30mV、周波数1Hzにおけるインピーダンス交流インピーダンスを測定した。このときの1HzのZreを抵抗とした。ここでの交流インピーダンスZreはインピーダンスの抵抗成分を示す。
上記の実験結果から、ポリオレフィン系エマルション粒子をベース樹脂として用いて、塗膜目付け量、凝集物平均粒径、導電材による凝集物の被覆率が好ましい範囲に入る場合には、初期抵抗およびPTC倍率を改善できたことがわかる。
また、エマルション粒子の凝集物の平均粒径が0.5μm未満では昇温時十分な熱膨張による変形量が得られず、5μmを超えると塗膜が厚くなりすぎ室温での抵抗が増加したり、エマルション溶液が不安定になり成分が分離しやすい等の不具合を生じる。
また、導電材による凝集物の被覆率が5%未満であると昇温時に最大抵抗が高くなるが、通常の使用における電池特性が劣り、90%を超えると昇温時に最大抵抗が低くなるため導電パス切断の効果が低いことがわかる。
また、凝集剤と架橋剤を併用すると,30℃での抵抗値が高くなりすぎることがわかる。
また、ポリオレフィン系以外のベース樹脂を用いた場合には、80℃~165℃における最大抵抗が低くシャットダウン機能が不十分であることがわかる。
103 導電性基材
105 樹脂層
115 活物質層
117 電極構造体
121 導電材
123 高分子凝集剤
125 ポリオレフィン系エマルション粒子
127 低分子凝集剤
131 凝集物
Claims (10)
- 導電性基材と、
前記導電性基材の少なくとも片面に設けられている樹脂層と、
を備える集電体であって、
前記樹脂層が、
ポリオレフィン系エマルション粒子の凝集物と、
導電材と、
を含むペーストで形成されたものであり、
前記凝集物の平均粒径が0.5μm~5μmである、
集電体。 - 前記凝集物の表面の5%~90%が前記導電材で覆われている、
請求項1に記載の集電体。 - 前記ポリオレフィン系エマルション粒子は、
ポリプロピレン樹脂、ポリエチレン樹脂、共重合ポリプロピレン樹脂、共重合ポリエチレン樹脂からなる群から選ばれる1種以上の樹脂を含有する、
請求項1または2に記載の集電体。 - 高分子凝集剤および/または低分子凝集剤をさらに含む、
請求項1~3のいずれかに記載の集電体。 - 前記高分子凝集剤は、ポリアクリル酸Na、ウレタン変性ポリエーテル、ポリアクリル酸スルホン酸Naからなる群から選ばれる1種以上の数平均分子量10万以上の高分子を含有し、
前記低分子凝集剤は、ポリアクリル酸Na、ウレタン変性ポリエーテル、ポリアクリル酸スルホン酸Naからなる群から選ばれる1種以上の数平均分子量1万以下の低分子を含有する、
請求項4に記載の集電体。 - 前記導電材が、炭素粉末または金属粉末を含む、
請求項1~5のいずれかに記載の集電体。 - 前記導電性基材が、アルミニウム、アルミニウム合金、又は銅である、
請求項1~6のいずれかに記載の集電体。 - 前記樹脂層上に活物質層を形成し、電解液を含浸させたセパレータを挟んで対向させた状態で測定した1Hzにおける交流インピーダンスZreが、
30℃において200Ωcm2以下であり、
80℃以上165℃以下において400Ωcm2以上の最大抵抗を示す、
請求項1~7のいずれかに記載の集電体。 - 請求項1~請求項8のいずれかに記載の集電体を用いた電極構造体。
- 請求項9に記載の電極構造体を用いた電池またはキャパシタ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14774946.9A EP2980898A1 (en) | 2013-03-29 | 2014-03-26 | Collector, electrode structure, battery and capacitor |
CN201480019139.9A CN105122522A (zh) | 2013-03-29 | 2014-03-26 | 集电体、电极结构体、电池以及电容 |
KR1020157030468A KR20150139875A (ko) | 2013-03-29 | 2014-03-26 | 집전체, 전극 구조체, 전지 및 커패시터 |
JP2015508624A JPWO2014157405A1 (ja) | 2013-03-29 | 2014-03-26 | 集電体、電極構造体、電池およびキャパシタ |
US14/779,554 US20160042878A1 (en) | 2013-03-29 | 2014-03-26 | Current collector, electrode structure, battery and capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-074635 | 2013-03-29 | ||
JP2013074635 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157405A1 true WO2014157405A1 (ja) | 2014-10-02 |
Family
ID=51624368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058669 WO2014157405A1 (ja) | 2013-03-29 | 2014-03-26 | 集電体、電極構造体、電池およびキャパシタ |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160042878A1 (ja) |
EP (1) | EP2980898A1 (ja) |
JP (1) | JPWO2014157405A1 (ja) |
KR (1) | KR20150139875A (ja) |
CN (1) | CN105122522A (ja) |
TW (1) | TW201503477A (ja) |
WO (1) | WO2014157405A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017224407A (ja) * | 2016-06-13 | 2017-12-21 | 東洋インキScホールディングス株式会社 | 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池 |
JP2018010848A (ja) * | 2016-06-30 | 2018-01-18 | トヨタ自動車株式会社 | 電池 |
WO2017120594A3 (en) * | 2016-01-07 | 2018-08-23 | The Board Of Trustees Of The Leland Stanford Junior University | Fast and reversible thermoresponsive polymer switching materials |
WO2019171761A1 (ja) * | 2018-03-09 | 2019-09-12 | パナソニックIpマネジメント株式会社 | 二次電池用正極、二次電池用正極集電体、及び二次電池 |
JP2020017422A (ja) * | 2018-07-26 | 2020-01-30 | トヨタ自動車株式会社 | 非水電解質二次電池 |
US10626264B2 (en) | 2015-03-30 | 2020-04-21 | Toyo Ink Sc Holdings Co., Ltd. | Conductive composition, current collector with base layer for electric storage device, electrode for electric storage device, and electric storage device |
JP2020095867A (ja) * | 2018-12-13 | 2020-06-18 | トヨタ自動車株式会社 | 非水電解質二次電池 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150087372A (ko) * | 2012-11-19 | 2015-07-29 | 가부시키가이샤 유에이씨제이 | 집전체, 전극 구조체, 축전부품 및 집전체용 조성물 |
JP7117643B2 (ja) * | 2017-04-27 | 2022-08-15 | パナソニックIpマネジメント株式会社 | 二次電池 |
EP3664196A1 (en) * | 2018-12-06 | 2020-06-10 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Battery cells comprising elastic compressible functional layers and manufacturing process |
CN114284471A (zh) * | 2021-12-23 | 2022-04-05 | 湖北亿纬动力有限公司 | 一种负极极片及其制备方法和应用 |
CN114843436A (zh) * | 2022-05-17 | 2022-08-02 | 珠海冠宇电池股份有限公司 | 一种电极片、电池及电子设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0411635B2 (ja) | 1984-06-22 | 1992-03-02 | Sumitomo Metal Ind | |
JPH10241665A (ja) | 1996-12-26 | 1998-09-11 | Mitsubishi Electric Corp | 電極及びこれを用いた電池 |
JPH11297332A (ja) * | 1998-04-13 | 1999-10-29 | Tdk Corp | 集電体及びこれを用いたシート型電気化学素子 |
JP2001357854A (ja) | 2000-06-13 | 2001-12-26 | Matsushita Electric Ind Co Ltd | 非水系二次電池 |
WO2002054524A1 (fr) | 2000-12-28 | 2002-07-11 | Matsushita Electric Industrial Co., Ltd. | Accumulateur electrolytique non aqueux |
JP2009176599A (ja) * | 2008-01-25 | 2009-08-06 | Panasonic Corp | 非水電解質二次電池 |
JP2011065797A (ja) * | 2009-09-16 | 2011-03-31 | Daicel Chemical Industries Ltd | リチウムイオン電池の負極材の集電体に対する密着性向上剤 |
WO2012057031A1 (ja) * | 2010-10-27 | 2012-05-03 | 協立化学産業株式会社 | 導電性アンダーコート剤組成物 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10302780A (ja) * | 1997-04-30 | 1998-11-13 | Hitachi Maxell Ltd | リチウム二次電池の製造方法 |
KR100560546B1 (ko) * | 2003-11-27 | 2006-03-15 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
-
2014
- 2014-03-26 KR KR1020157030468A patent/KR20150139875A/ko not_active Withdrawn
- 2014-03-26 EP EP14774946.9A patent/EP2980898A1/en not_active Withdrawn
- 2014-03-26 JP JP2015508624A patent/JPWO2014157405A1/ja active Pending
- 2014-03-26 US US14/779,554 patent/US20160042878A1/en not_active Abandoned
- 2014-03-26 WO PCT/JP2014/058669 patent/WO2014157405A1/ja active Application Filing
- 2014-03-26 CN CN201480019139.9A patent/CN105122522A/zh active Pending
- 2014-03-28 TW TW103111812A patent/TW201503477A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0411635B2 (ja) | 1984-06-22 | 1992-03-02 | Sumitomo Metal Ind | |
JPH10241665A (ja) | 1996-12-26 | 1998-09-11 | Mitsubishi Electric Corp | 電極及びこれを用いた電池 |
JPH11297332A (ja) * | 1998-04-13 | 1999-10-29 | Tdk Corp | 集電体及びこれを用いたシート型電気化学素子 |
JP2001357854A (ja) | 2000-06-13 | 2001-12-26 | Matsushita Electric Ind Co Ltd | 非水系二次電池 |
WO2002054524A1 (fr) | 2000-12-28 | 2002-07-11 | Matsushita Electric Industrial Co., Ltd. | Accumulateur electrolytique non aqueux |
JP2009176599A (ja) * | 2008-01-25 | 2009-08-06 | Panasonic Corp | 非水電解質二次電池 |
JP2011065797A (ja) * | 2009-09-16 | 2011-03-31 | Daicel Chemical Industries Ltd | リチウムイオン電池の負極材の集電体に対する密着性向上剤 |
WO2012057031A1 (ja) * | 2010-10-27 | 2012-05-03 | 協立化学産業株式会社 | 導電性アンダーコート剤組成物 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10626264B2 (en) | 2015-03-30 | 2020-04-21 | Toyo Ink Sc Holdings Co., Ltd. | Conductive composition, current collector with base layer for electric storage device, electrode for electric storage device, and electric storage device |
US11001695B2 (en) | 2016-01-07 | 2021-05-11 | The Board Of Trustees Of The Leland Stanford Junior University | Fast and reversible thermoresponsive polymer switching materials |
WO2017120594A3 (en) * | 2016-01-07 | 2018-08-23 | The Board Of Trustees Of The Leland Stanford Junior University | Fast and reversible thermoresponsive polymer switching materials |
JP2017224407A (ja) * | 2016-06-13 | 2017-12-21 | 東洋インキScホールディングス株式会社 | 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池 |
JP7055589B2 (ja) | 2016-06-13 | 2022-04-18 | 東洋インキScホールディングス株式会社 | 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池 |
JP2018010848A (ja) * | 2016-06-30 | 2018-01-18 | トヨタ自動車株式会社 | 電池 |
WO2019171761A1 (ja) * | 2018-03-09 | 2019-09-12 | パナソニックIpマネジメント株式会社 | 二次電池用正極、二次電池用正極集電体、及び二次電池 |
JPWO2019171761A1 (ja) * | 2018-03-09 | 2021-02-18 | パナソニックIpマネジメント株式会社 | 二次電池用正極、二次電池用正極集電体、及び二次電池 |
JP7233010B2 (ja) | 2018-03-09 | 2023-03-06 | パナソニックIpマネジメント株式会社 | 二次電池用正極、二次電池用正極集電体、及び二次電池 |
US11742492B2 (en) | 2018-03-09 | 2023-08-29 | Panasonic Intellectual Property Management Co., Ltd. | Secondary battery positive electrode, secondary battery positive electrode current collector, and secondary battery |
JP2020017422A (ja) * | 2018-07-26 | 2020-01-30 | トヨタ自動車株式会社 | 非水電解質二次電池 |
CN111326703A (zh) * | 2018-12-13 | 2020-06-23 | 丰田自动车株式会社 | 非水电解质二次电池 |
JP2020095867A (ja) * | 2018-12-13 | 2020-06-18 | トヨタ自動車株式会社 | 非水電解質二次電池 |
Also Published As
Publication number | Publication date |
---|---|
KR20150139875A (ko) | 2015-12-14 |
JPWO2014157405A1 (ja) | 2017-02-16 |
TW201503477A (zh) | 2015-01-16 |
EP2980898A1 (en) | 2016-02-03 |
CN105122522A (zh) | 2015-12-02 |
US20160042878A1 (en) | 2016-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014157405A1 (ja) | 集電体、電極構造体、電池およびキャパシタ | |
TWI591889B (zh) | Current Collector, Electrode Structure, Nonaqueous Electrolyte Battery, Conductivity Packing and storage components | |
JP5648869B2 (ja) | 電池用電極およびその利用 | |
WO2014077367A1 (ja) | 集電体、電極構造体および蓄電部品 | |
JP6185984B2 (ja) | 集電体、電極構造体、非水電解質電池又は蓄電部品 | |
TW201444169A (zh) | 集電體、電極結構體、蓄電部件、以及用於集電體的組成物 | |
WO2013151046A1 (ja) | 集電体、電極構造体、非水電解質電池及び蓄電部品 | |
TW201836196A (zh) | 集電體、電極以及非水電解質二次電池 | |
JP2015204221A (ja) | 集電体、電極構造体及び蓄電部品 | |
WO2016158480A1 (ja) | 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
JP5939346B1 (ja) | 導電性組成物、非水電解質二次電池用下地付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池 | |
WO2013172256A1 (ja) | 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法 | |
JP5359444B2 (ja) | リチウムイオン二次電池 | |
CN101983448A (zh) | 锂二次电池的正极及其制造方法 | |
JP2005259639A (ja) | リチウム二次電池およびその製造方法 | |
WO2013172257A1 (ja) | 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法 | |
WO2014077225A1 (ja) | 活物質粒子、蓄電デバイス用正極、蓄電デバイスおよび活物質粒子の製造方法 | |
JP2016021391A (ja) | 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極および電気化学素子 | |
JP2017054682A (ja) | 集電体、電極構造体および蓄電部品 | |
JP2017224562A (ja) | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
JP6874283B2 (ja) | 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
JP7009048B2 (ja) | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
WO2024190354A1 (ja) | リチウムイオン二次電池用導電性複合体、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14774946 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14779554 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015508624 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157030468 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014774946 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014774946 Country of ref document: EP |