JPS63169334A - Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength - Google Patents
Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strengthInfo
- Publication number
- JPS63169334A JPS63169334A JP61311961A JP31196186A JPS63169334A JP S63169334 A JPS63169334 A JP S63169334A JP 61311961 A JP61311961 A JP 61311961A JP 31196186 A JP31196186 A JP 31196186A JP S63169334 A JPS63169334 A JP S63169334A
- Authority
- JP
- Japan
- Prior art keywords
- less
- heat treatment
- temperature
- steel strip
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 50
- 239000010935 stainless steel Substances 0.000 title claims abstract description 37
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000011651 chromium Substances 0.000 title claims abstract description 32
- 229910052804 chromium Inorganic materials 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 123
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 66
- 239000010959 steel Substances 0.000 claims abstract description 66
- 238000001816 cooling Methods 0.000 claims abstract description 46
- 238000000137 annealing Methods 0.000 claims abstract description 37
- 238000005097 cold rolling Methods 0.000 claims abstract description 33
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 27
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 24
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 238000005098 hot rolling Methods 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 3
- 229910052717 sulfur Inorganic materials 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 65
- 239000010960 cold rolled steel Substances 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 description 68
- 229910000734 martensite Inorganic materials 0.000 description 37
- 238000005096 rolling process Methods 0.000 description 26
- 239000010949 copper Substances 0.000 description 22
- 238000010791 quenching Methods 0.000 description 15
- 230000000171 quenching effect Effects 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 230000007423 decrease Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000005496 tempering Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000002791 soaking Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 3
- 229910001035 Soft ferrite Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、延性に優れ強度および延性の面内異方性の小
さい高強度複相Mi織ツクロムステンレス鋼帯新規な工
業的製造法に関し、高強度が必要とされ且つプレス成形
などの加工が施される成形用素材としての高強度高延性
ステンレス鋼帯の製造法を提供するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a new industrial manufacturing method for a high-strength, multi-phase Mi-woven chromium stainless steel strip with excellent ductility and low in-plane anisotropy of strength and ductility. The present invention provides a method for manufacturing a high-strength, high-ductility stainless steel strip that is required to have high strength and is used as a forming material that is subjected to processing such as press forming.
クロムを主合金成分として含有するクロムステンレス鋼
にはマルテンサイト系ステンレス鋼とフェライト系ステ
ンレス鋼とがある。いずれも、クロムおよびニッケルを
主合金成分として含有するオーステナイト系ステンレス
鋼に比べて安価であり、そして強磁性を有し熱膨張係数
が小さいなどの物性面でオーステナイト系ステンレス鋼
には見られない特徴を有するので、単に経済的な理由の
みならず特性面からクロムステンレス鋼に限定される用
途も多い。特に近年の電子機器や精密機械部品などの分
野では、その需要拡大にともなってクロムステンレス鋼
板を使用する用途において加工成品の高機能化、小型化
、一体化、高精度化並びに加工工程の簡略化に対する要
求が益々厳しくなってきていることは周知のとおりであ
る。このために2ステンレス鋼本来の耐食性や上述のク
ロムステンレス鋼の特質に加えて、クロムステンレス鋼
板の素材面では、一層の強度、加工性および精度が必要
とされる。したがって、高強度と高延性という相反する
特性を兼備した鋼板素材であって素材鋼板時点で形状や
板厚精度に優れたもの。Chromium stainless steel containing chromium as a main alloy component includes martensitic stainless steel and ferritic stainless steel. Both are cheaper than austenitic stainless steels, which contain chromium and nickel as the main alloy components, and have physical properties that are not found in austenitic stainless steels, such as ferromagnetism and a small coefficient of thermal expansion. Therefore, there are many uses that are limited to chromium stainless steel not only for economic reasons but also for characteristics. Particularly in the fields of electronic equipment and precision mechanical parts in recent years, demand for chrome stainless steel sheets has increased, resulting in higher functionality, miniaturization, integration, higher precision, and simplification of processing processes for processed products in applications that use chrome stainless steel sheets. It is well known that the requirements for For this reason, in addition to the inherent corrosion resistance of No. 2 stainless steel and the above-mentioned characteristics of chrome stainless steel, the material of the chrome stainless steel plate requires even greater strength, workability, and precision. Therefore, it is a steel sheet material that has the contradictory characteristics of high strength and high ductility, and has excellent shape and thickness accuracy at the time of raw steel sheet.
そして加工後の形状精度に優れるといった緒特性を合わ
せもつクロムステンレス鋼板素材の出現が強く待たれて
いる。The emergence of a chromium stainless steel sheet material that also has the characteristics of excellent shape accuracy after processing is strongly awaited.
従来のクロムステンレス鋼板素材について9強度の観点
から見ると、先ずマルテンサイト系ステンレス鋼が高強
度を存するクロムステンレス鋼板として良く知られてい
る。例えばJIS G 4305の冷間圧延ステンレス
鋼板にはマルテンサイト系ステンレス鋼として7種の鋼
が規定されている。これらのマルテンサイト系ステンレ
ス鋼板は、Cが0.08%以下(SUS410S)から
0.60〜0.75 %(SUS440A)であり、フ
ェライト系ステンレス鋼に比べて同−Cr量レベルで見
ると、高いCを含有し、焼入れ処理または焼入れ焼もど
し処理により高強度を付与することができる。例えば、
このJIS G 4305において、 0.26〜0.
40%のCおよび 12.00〜14.00%のCrを
含有する5US420J2では、 980〜1040℃
からの急冷による焼入れ後、150〜400℃空冷の焼
もどしにより HRC40以上の硬さが得られることが
。When looking at conventional chrome stainless steel plate materials from the viewpoint of strength, martensitic stainless steel is well known as a chrome stainless steel plate with high strength. For example, JIS G 4305 stipulates seven types of steel as martensitic stainless steel for cold rolled stainless steel sheets. These martensitic stainless steel sheets have a carbon content ranging from 0.08% or less (SUS410S) to 0.60 to 0.75% (SUS440A), and compared to ferritic stainless steels at the same -Cr content level, It contains high C and can be given high strength by hardening treatment or hardening and tempering treatment. for example,
In this JIS G 4305, 0.26 to 0.
980-1040℃ for 5US420J2 containing 40% C and 12.00-14.00% Cr
Hardness of HRC40 or higher can be obtained by quenching by quenching from 150 to 400℃ and then tempering by air cooling at 150 to 400℃.
そして、 0.60〜0.75%のCおよび16.00
〜18.00%のCrを含有する5O5440Aでは、
1010〜1070℃からの急冷による焼入れ後、1
50〜400℃空冷の焼もどしにより、同じ<HRC4
0以上の硬さが得られることが示されている。and 0.60-0.75% C and 16.00
For 5O5440A containing ~18.00% Cr,
After quenching by rapid cooling from 1010 to 1070℃, 1
By air cooling tempering at 50-400℃, the same <HRC4
It has been shown that hardness of 0 or more can be obtained.
一方、クロムステンレス鋼であるフェライト系ステンレ
ス鋼板では熱処理による硬化があまり期待できないので
1強度を上昇させる方法としては焼なまし後、さらに冷
間で!J質圧延を行って加工硬化による強度上昇を図る
ことが行われている。On the other hand, ferritic stainless steel sheets, which are chromium stainless steels, cannot be expected to harden very well through heat treatment, so the only way to increase their strength is by annealing and then cold treatment! J quality rolling is performed to increase strength through work hardening.
しかし、フェライト系ステンレス鋼は元来が高強度を必
要とする用途にはあまり供されてはいないのが実状であ
る。However, the reality is that ferritic stainless steels are not often used in applications that inherently require high strength.
マルテンサイト系ステンレス鋼板では、焼入れまたは焼
入れ一焼もどし処理後の組織はその名称のごとく基本的
にはマルテンサイ)&[であり。In martensitic stainless steel sheets, the structure after quenching or quenching and tempering is basically martensitic, as the name suggests.
非常に高い強度および硬さが得られる反面、伸びは非常
に低い、そのため、焼入れまたは焼入れ焼もどし処理を
施したのではその後の加工が困難となる。特にプレス成
形などの加工は焼入れまたは焼入れ焼もどし後では不可
能である。したがって加工が施される場合には焼入れま
たは焼入れ焼もどし前に施される。すなわち、素材メー
カーからは焼なました状態、つまり、 JIS G 4
305の表16にも示されるように強度および硬さの低
い軟質な状態で出荷され、加工メーカーにおいて所望の
最終成品にほぼ近い形状に加工された後、焼入れまたは
焼入れ焼もどし処理を施すのが通常である。この焼入れ
または焼入れ焼もどし処理を施すことにより生成する表
面の酸化皮膜(スケール)は表面の美麗さが重要視され
るステンレス鋼では好ましくない場合が多く、その対策
として真空もしくは不活性ガス雰囲気による熱処理を施
したり1熱処理後に研磨などによりスケールを除去する
などの工程が必要となる。いずれにしても、マルテンサ
イト系ステンレス鋼板では高強度を得るためには加工メ
ーカーでの熱処理工程が不可欠であるという加工メーカ
ー側での負担増があり、またこのために最終製品のコス
トアップは避けられないという問題があった。Although it has very high strength and hardness, it has very low elongation, so it is difficult to process it after quenching or quenching and tempering. In particular, processing such as press forming is not possible after quenching or quench-tempering. Therefore, when processing is performed, it is performed before quenching or quenching and tempering. In other words, the material manufacturer says that it is in an annealed state, that is, JIS G 4.
As shown in Table 16 of 305, the product is shipped in a soft state with low strength and hardness, and after being processed by a processing manufacturer into a shape almost similar to the desired final product, it is subjected to quenching or quenching and tempering treatment. Normal. The surface oxide film (scale) produced by this quenching or quenching and tempering treatment is often undesirable for stainless steel, where surface beauty is important, and as a countermeasure, heat treatment in a vacuum or inert gas atmosphere is recommended. It is necessary to perform steps such as applying heat treatment or removing scale by polishing or the like after one heat treatment. In any case, in order to obtain high strength with martensitic stainless steel sheets, a heat treatment process at the processing manufacturer is essential, which increases the burden on the processing manufacturer, and this increases the cost of the final product. The problem was that I couldn't do it.
一方、フェライト系ステンレス鋼板を調質圧延により強
度を上昇させた場合には、伸びの低下が著しくなって強
度−延性バランスが悪くなる結果。On the other hand, when the strength of a ferritic stainless steel sheet is increased by temper rolling, the elongation decreases significantly and the strength-ductility balance deteriorates.
加工性に劣ることになる。そして、調質圧延による強度
上昇の程度は引張強さよりも耐力の方が著しく高い、ご
のために高圧延率になると耐力と引張強さの差が小さく
なり、降伏比(−耐力/引張強さ)が1に近くなって材
料の塑性加工域が非常に狭くなると共に、耐力が高いと
スプリングバックが大きくなってプレス加工などの後の
形状性が悪くなる。さらに調質圧延材は強度および伸び
の面内異方性が非常に大きく、軽度のプレス加工などで
も加工後の形状が悪くなる。また、圧延による加工歪み
は板の表面に近いほど大きいという特徴があるため1
m延圧延材では板厚方向のひずみ分布が不均一になるこ
とが避けられない。これは残留応力の板厚方向の不均一
分布をもたらし、特に極薄鋼板では打抜き加工やフォト
エツチング処理による穴あけ加工後に板の反りなどの形
状変化を生ずる場合があり、電子部品などの高精度が必
要とされる用途では大きな問題となる。This results in poor workability. The degree of increase in strength due to temper rolling is significantly higher in yield strength than in tensile strength.As the rolling rate increases, the difference between yield strength and tensile strength becomes smaller, resulting in a yield ratio (-proof strength/tensile strength). When the value of the material becomes close to 1, the plastic working range of the material becomes very narrow, and if the yield strength is high, the springback becomes large and the shapeability after press working etc. becomes poor. Furthermore, the temper-rolled material has very large in-plane anisotropy in strength and elongation, and even light press processing results in poor shape after processing. In addition, since processing distortion due to rolling is larger closer to the surface of the plate, 1
In m-rolled materials, it is inevitable that the strain distribution in the thickness direction becomes non-uniform. This results in non-uniform distribution of residual stress in the plate thickness direction, which may cause changes in shape such as warping of the plate after punching or photo-etching, especially in ultra-thin steel plates. This is a big problem in the applications where it is needed.
以上の材質特性面での問題のみならず、調質圧延材はそ
の製造性においても多くの問題を抱えている。先ず強度
の制御について見ると1調質圧延は冷間圧延による加工
硬化を利用しているため圧延率が強度を決定する最も重
要な因子である。したがって、成品として板厚精度に優
れ且つ目標の強度レベルを精度よく安定して得るために
は、圧延率の厳密な制御、具体的にはiil質圧延圧砥
削期板厚の厳密な管理が非常に重要であることに加えて
、調質圧延前の素材の強度レベルの管理が必要となる。In addition to the above-mentioned problems in terms of material properties, skin-pass rolled materials also have many problems in their manufacturability. First, regarding the control of strength, 1. Since temper rolling utilizes work hardening due to cold rolling, the rolling rate is the most important factor determining strength. Therefore, in order to obtain excellent plate thickness accuracy and the target strength level accurately and stably as a finished product, strict control of the rolling rate, specifically, strict control of the plate thickness during IIL rolling and grinding is required. In addition to being very important, it is necessary to control the strength level of the material before temper rolling.
また形状制御の面では、いわゆるスキンパス圧延やテン
パーローリングと呼ばれる形状修正を目的とした高々2
〜3%の軽圧延率の調質圧延とは異なり、高強度化を目
的とする調質圧延では圧延率が数十パーセントにもおよ
ぶ実質的な冷間圧延であるため、冷延ままで形状性に優
れた調帯を得ることは困難である。このため、形状修正
を目的として材料の回復・再結晶温度域よりも低く軟化
しない温度域に加熱し、応力除去処理を必要とする場合
がある。このように1!質圧延材は製造性においても数
々の問題がある。In addition, in terms of shape control, there are at most two
Unlike skin pass rolling, which has a light rolling reduction of ~3%, temper rolling, which aims to increase strength, is essentially cold rolling with a rolling reduction of several tens of percent. It is difficult to obtain a tone belt with excellent properties. Therefore, for the purpose of shape correction, it may be necessary to heat the material to a temperature range lower than the recovery/recrystallization temperature range at which it does not soften, and to perform stress relief treatment. Like this 1! There are also many problems with manufacturability of rolled materials.
以上の調質圧延に起因する問題のみならず、フェライト
系ステンレス鋼板では本質的な欠点とも言えるリジング
の問題がある。リジングは通常。In addition to the problems caused by the above-mentioned temper rolling, ferritic stainless steel sheets also have the problem of ridging, which can be said to be an essential drawback. Rigging is normal.
フェライト系ステンレス鋼の冷延焼鈍板にプレス成形な
どの加工を施した際に生ずる表面欠陥の一種であるが、
冷間圧延後においても一般に冷延リジングと呼ばれるリ
ジングを発生する場合があり。It is a type of surface defect that occurs when a cold rolled annealed ferritic stainless steel plate is subjected to processing such as press forming.
Even after cold rolling, ridging, generally called cold rolling ridging, may occur.
表面の粗度が重視される用途ではやはり大きな問題とな
る。This is still a big problem in applications where surface roughness is important.
前述のような問題は、適度な高強度を有し且つ所望の形
状に加工し得る良好な延性および加工性を具備し、異方
性が小さくリジング発生のないクロムステンレス鋼材料
が素材メーカー側で鋼板または鋼帯の形で提供できれば
解決し得る。そこで本発明者らはこの解決を目的として
化学成分並びに製造条件の両面からクロムステンレス鋼
について広範な研究を続けて来た。その結果、鋼成分を
適正に制御し、さらに製造条件として、熱間圧延のあと
、更に必要に応じて熱延板焼鈍を行ったあと、フェライ
ト単相域での中間焼鈍を挟む皿回以上の冷間圧延を行っ
て製品板厚の冷延鋼帯を製造し、この冷延鋼帯を、従来
のフェライト単相域温度での仕上焼鈍つまり鋼板または
鋼帯成品に施す焼なまし処理ではなく、適正なフェライ
ト+オーステナイトニ相域への加熱とその後の急冷処理
からなる特定条件下での連続仕上熱処理を施すならば、
実質的に軟質なフェライト相と硬質なマルテンサイト相
が均一に混在した複相組織とすることができ、前記の問
題点の実質上すべてが解決できるという素晴らしい成果
を得ることができた。が(して本発明は。To solve the above-mentioned problems, material manufacturers are trying to find a chromium stainless steel material that has moderately high strength, good ductility and workability that can be processed into the desired shape, has small anisotropy, and does not cause ridging. This can be solved if it can be provided in the form of steel plates or steel strips. In order to solve this problem, the present inventors have continued extensive research on chromium stainless steel from both the chemical composition and manufacturing conditions. As a result, the steel composition was appropriately controlled, and the manufacturing conditions were as follows: after hot rolling and, if necessary, hot-rolled plate annealing, a plate rolling process or more with intermediate annealing in the ferrite single phase region. Cold rolling is performed to produce a cold-rolled steel strip of product thickness, and this cold-rolled steel strip is finished annealed at a temperature in the conventional ferrite single-phase range temperature, rather than the annealing treatment applied to steel plates or steel strip products. , if continuous finishing heat treatment is performed under specific conditions consisting of heating to the proper ferrite + austenite dual phase region and subsequent rapid cooling treatment,
It was possible to obtain a multi-phase structure in which a substantially soft ferrite phase and a hard martensitic phase were uniformly mixed, and to obtain an excellent result in which substantially all of the above-mentioned problems could be solved. However, the present invention is
重量%において。In weight%.
c : o、os%以下。c: o, os% or less.
S i : 2.0%以下。Si: 2.0% or less.
Mn:3.0%以下。Mn: 3.0% or less.
p:o、o4o%以下。p: o, o4o% or less.
S : 0.030%以下。S: 0.030% or less.
Ni:3.0%以下。Ni: 3.0% or less.
Cr : 10.0%以上14.0%以下。Cr: 10.0% or more and 14.0% or less.
N : 0.08%以下。N: 0.08% or less.
0 : 0.02%以下。0: 0.02% or less.
Cu:3.0%以下。Cu: 3.0% or less.
を含有し、場合によっては、さらに0.20%以下のA
f、 0.0050%以下のB、1.0%以下のM o
、 0 、10%以下のREM、0.20%以下のY
の一種または二種以上を含有し、残部がFeおよび不可
避的不純物からなる鋼であって、且つ
0.01%≦C+N≦0.12%、および0.5%≦N
i十 (Mn+Cu)/3 ≦3.0の関係を満足す
る鋼のスラブを製造し、これを熱間圧延して熱延鋼帯を
製造する工程。and, in some cases, further contain 0.20% or less of A.
f, B of 0.0050% or less, Mo of 1.0% or less
, 0, REM below 10%, Y below 0.20%
A steel containing one or more of the following, with the remainder consisting of Fe and unavoidable impurities, and 0.01%≦C+N≦0.12% and 0.5%≦N
A process of manufacturing a steel slab that satisfies the relationship of i10 (Mn+Cu)/3≦3.0, and hot rolling it to manufacture a hot rolled steel strip.
フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼帯を製造する工程、
そして。A process of producing a cold-rolled steel strip of product thickness by two or more cold rollings sandwiching intermediate annealing in the ferrite single-phase region temperature heating;
and.
得られた冷延鋼帯を連vt熱処理炉に通板して。The obtained cold rolled steel strip was passed through a continuous VT heat treatment furnace.
A c +意思上1100℃以下のフェライト十オース
テナイトの二相域温度に10分以内の保持のあと、最高
加熱温度から100℃までを平均冷却速度1℃/sec
以上500℃/see以下で冷却する仕上熱処理を施す
連続仕上熱処理工程。A c + After holding within 10 minutes at the two-phase region temperature of ferrite ten austenite, which is intentionally below 1100°C, the average cooling rate is 1°C/sec from the maximum heating temperature to 100°C.
A continuous finishing heat treatment process in which finishing heat treatment is performed by cooling at a temperature above 500°C/see.
からなる、且つHV 200以上の硬さを有する面内異
方性の小さい高延性高強度の複組紐¥a(実質上フェラ
イトとマルテンサイトからなる組織)のクロムステンレ
ス調帯の製造法を提供するものである。To provide a method for producing a chromium stainless steel band consisting of a highly ductile and high-strength double braided cord (structure substantially consisting of ferrite and martensite) with small in-plane anisotropy and a hardness of HV 200 or more. It is something.
本発明法によれば前述の問題点の実質上すべてが解決さ
れるのみならず2w4組成または仕上熱処理時の加熱温
度並びに冷却速度を前記範囲で制御することにより強度
を自在に且つ簡単に調整できるという点でクロムステン
レス鋼板または鋼帯素材の工業的製造にあたっての存利
且つ新しい製造技術を提供するものであり、従来より市
場に出荷されているマルテンサイト系ステンレス鋼板ま
たは調帯やフェライト系ステンレス鋼板または鋼帯では
有しない延性と強度の両特性を兼備し且つ延性と強度の
面内異方性の少ない新規クロムステンレス鋼材料を市場
に提供するものである。なお。According to the method of the present invention, not only can virtually all of the above-mentioned problems be solved, but also the strength can be freely and easily adjusted by controlling the 2w4 composition or the heating temperature and cooling rate during finishing heat treatment within the above ranges. In this sense, it provides an advantageous and new manufacturing technology for the industrial production of chrome stainless steel sheets or steel strip materials, and it is a method that can be used to manufacture martensitic stainless steel sheets, strips, and ferritic stainless steel sheets that have been conventionally shipped on the market. Another object of the present invention is to provide the market with a new chromium stainless steel material that has both ductility and strength properties that steel strips do not have, and has less in-plane anisotropy in ductility and strength. In addition.
本発明法によれば、最終の連続仕上熱処理工程を経た成
品は鋼帯の形態で工業的に製造されるものであり、これ
が市場に出荷される場合には鋼帯のまま(コイル)か或
いは鋼板に整形された状態となる。According to the method of the present invention, the product that has undergone the final continuous finishing heat treatment process is industrially manufactured in the form of a steel strip, and when it is shipped to the market, it is either left as a steel strip (coil) or as a coil. It is shaped into a steel plate.
従来より7例えばフェライト系ステンレス鋼の代表鋼種
である5US430においても二相域温度に加熱すれば
オーステナイトが生成し、このオーステナイトは急冷に
よってマルテンサイトに変態してフェライト+マルテン
サイトの二相m 織になること自体は知られていた。し
かしなめ(ら、高ン昌でオーステナイトを生成するフェ
ライト系ステンレス鋼帯の製造においては、冷延後の熱
処理はあくまでもフェライト単相域温度での焼なまし処
理であり、マルテンサイトを生成するような高温の熱処
理は延性の低下などの材質上の劣下をもたらすものとし
て回避することが常識であり、工業的な鋼帯の実際の製
造面では全く顧みられなかった。Conventionally, for example, even in 5US430, which is a representative steel type of ferritic stainless steel, austenite is generated when heated to a temperature in the two-phase region, and this austenite is transformed into martensite by rapid cooling, resulting in a two-phase structure of ferrite + martensite. It was known that it would happen. However, in the production of ferritic stainless steel strips that produce austenite at Name (et al., Gaonchang), the heat treatment after cold rolling is strictly annealing treatment at a temperature in the ferrite single phase region, and it is difficult to produce martensite. It is common sense to avoid such high-temperature heat treatment as it causes deterioration in material properties such as a decrease in ductility, and has not been considered at all in the actual manufacture of industrial steel strips.
したがって、クロムステンレス鋼の冷延工程後に本発明
のような連続熱処理を想定し且つフェライト+オーステ
ナイトニ相域に加熱する仕上熱処理を施した場合の加熱
温度と強度および延性の関係や延性および強度の異方性
などについて詳細に研究がなされた例もない0本発明は
、高強度クロムステンレス鋼帯の工業的製造法として従
来顧みられることのなかった全く新しい製造方法を提供
するものであり、その結果として従来のクロムステンレ
ス鋼板または調帯では有しなかった優れた特性をもつ新
規なりロムステンレス鋼板材料を提供するものである。Therefore, assuming continuous heat treatment as in the present invention after the cold rolling process of chrome stainless steel, and performing finishing heat treatment to heat to the ferrite + austenite dual phase region, the relationship between heating temperature, strength and ductility, and the relationship between ductility and strength. There have been no detailed studies on anisotropy, etc. The present invention provides a completely new manufacturing method that has not been considered as an industrial manufacturing method for high-strength chromium stainless steel strips. As a result, a new chrome stainless steel sheet material with excellent properties not possessed by conventional chrome stainless steel sheets or belts is provided.
以下に2本発明で規制する鋼の化学成分値の範囲限定の
理由並びに本発明法で深川する各製造工程の内容を具体
的に詳述する。Below, the reasons for limiting the range of chemical composition values of steel regulated by the present invention and the content of each manufacturing process carried out by the method of the present invention will be specifically explained in detail.
まず1本発明法を適用するクロムステンレス鋼の成分の
含有量範囲41%)の限定理由は次のとおりである。First, the reasons for limiting the content range of the components of chromium stainless steel (41%) to which the method of the present invention is applied are as follows.
CおよびNは、 N i + M n + Cuなど
に比べて強力且つ安価なオーステナイト生成元素である
と共にマルテンサイト強化能の大きい元素であるから。This is because C and N are stronger and cheaper austenite-forming elements than N i + M n + Cu and the like, and are also elements with a large ability to strengthen martensite.
連続仕上熱処理後の強度の制御並びに富強炭化に有効な
元素である。したがって、連続仕上熱処理工程後に20
%以上のマルテンサイトを含む複相組織としHv200
以上の十分な強度を得るには、 Ni。It is an effective element for controlling strength and enriching carbonization after continuous finishing heat treatment. Therefore, after the continuous finishing heat treatment process, 20
Multi-phase structure containing % or more of martensite Hv200
To obtain sufficient strength, use Ni.
Mn、Cuなどのオーステナイト生成元素が添加されて
いても、(C+N)lとして少なくとも0.01%以上
を必要とする。しかし、CとN量があまり高いと連続仕
上熱処理工程後に生成するマルテンサイトfitが多く
なり、場合によっては100%マルテンサイトとなると
共にマルテンサイト相そのものの硬さも非常に高くなる
ので高強度は得られるものの延性は低下する。したがっ
て、(C+N)量として0.12%以下とし、 0.0
1%≦C+N≦0.12%の関係を満足させることが必
要である。Even if austenite forming elements such as Mn and Cu are added, at least 0.01% or more of (C+N)l is required. However, if the amounts of C and N are too high, a large amount of martensite fit will be generated after the continuous finishing heat treatment process, and in some cases it will become 100% martensite, and the hardness of the martensite phase itself will also become very high, making it difficult to achieve high strength. However, the ductility decreases. Therefore, the amount of (C+N) should be 0.12% or less, and 0.0
It is necessary to satisfy the relationship 1%≦C+N≦0.12%.
またCを多量に添加すると連続仕上熱処理での冷却時に
Cr炭化物が結晶粒界に析出し、耐食性が劣下する場合
がある。したがって、C量としてはO,OS%以下とす
る。Furthermore, if a large amount of C is added, Cr carbides may precipitate at grain boundaries during cooling during continuous finishing heat treatment, resulting in a decrease in corrosion resistance. Therefore, the amount of C is set to be less than O,OS%.
また、Nは溶解度の関係から多量に添加することは困難
であると共に、多量の添加は表面欠陥の増加を招(ため
0.08%以下とする。Furthermore, it is difficult to add a large amount of N due to its solubility, and addition of a large amount leads to an increase in surface defects (therefore, it is limited to 0.08% or less.
Siはフェライト生成元素であると共にフェライト°お
よびマルテンサイトの両相に対し強力な固溶強化能を存
する。したがってマルテンサイト量のf111御および
強度レベルの制御に有効な元素である。しかしながら多
量の添加は熱間加工性や冷間加工性の低下を招くために
2.0%を上限とする。Si is a ferrite-forming element and has a strong solid solution strengthening ability for both ferrite and martensite phases. Therefore, it is an effective element for controlling the f111 amount of martensite and the strength level. However, addition of a large amount leads to deterioration of hot workability and cold workability, so the upper limit is set at 2.0%.
Mn、Ni、Cuはオーステナイト生成元素であり。Mn, Ni, and Cu are austenite-forming elements.
連続仕上熱処理後のマルテンサイト量並びに強度の制御
に有効な元素である。またM n + N i + C
uの添加によりCの添加量を低減することができ、軟質
なマルテンサイトとして延性を向上させたり粒界へのC
「炭化物の析出を抑制して耐食性の劣下を防止すること
ができる。更にM n + N i+ Cuの重要な効
果は、後記の試験結果(例えば第1図の関係)や実施例
にも示すが1本発明に従う連続仕上熱処理工程において
、Mn、Ni+Cuの添加によってより低温側から且つ
広い温度範囲にわたって硬さ変動の小さい安定領域が得
られることであり。It is an effective element for controlling the amount of martensite and strength after continuous finishing heat treatment. Also, M n + N i + C
By adding u, the amount of C added can be reduced, improving ductility as soft martensite, and adding C to grain boundaries.
"It is possible to suppress the precipitation of carbides and prevent deterioration of corrosion resistance. Furthermore, the important effects of M n + N i + Cu are shown in the test results (for example, the relationship in Figure 1) and examples below. One is that in the continuous finishing heat treatment process according to the present invention, by adding Mn, Ni+Cu, a stable region with small hardness fluctuations can be obtained from a lower temperature side and over a wide temperature range.
連続仕上熱処理のために必要な高温強度の点でもまた省
エネルギーの点でも実操業において多大のメリットがも
たらされることである。したがってMn、Ni+Cuの
添加は、安定した強度特性を有する複相組織鋼帯の製造
に寄与するのみならず、高温強度のより高い低温での熱
処理が可能になることによって連続仕上熱処理による炉
内のコイル破断などの高温強度低下にもとづくトラブル
の発生を回避できるとともに、省エネルギーの観点から
も多大の効果をもたらす、このような効果を得るにはM
n、 N i+ Cuはその総量で少なくとも0.5%
以上を必要とするが、連続仕上熱処理後の複相組織材の
硬さ上昇に対してはNiの影響が最も大きく、MnとC
uはおおむねNiの3分の工程度である。したがって、
Mn、Ni、Cuの添加量を定めるにあたっては、Ni
+ (Mn +Cu)/3の関係式を用いて規制し、
Ni+ (Mn +Cu)/3として少なくとも0.
5%以上添加する。しかし、多量に添加すると製品が高
価となり9本発明鋼帯の特徴の一つである経済性に影響
を与える。したがってMn+Ni+Cuの各々単独では
それぞれ3.0 %以下とし、Ni+ (Mn+Cu
)/3としても3.0%以下とする。This provides great advantages in actual operation, both in terms of high-temperature strength necessary for continuous finishing heat treatment and in terms of energy savings. Therefore, the addition of Mn, Ni+Cu not only contributes to the production of multi-phase steel strips with stable strength properties, but also enables heat treatment at low temperatures with higher high-temperature strength, which improves in-furnace heat treatment during continuous finishing heat treatment. In order to achieve this effect, M
n, N i + Cu in its total amount at least 0.5%
However, Ni has the greatest influence on the increase in hardness of the multiphase structure material after continuous finishing heat treatment, and Mn and C
u is approximately the process degree of 3 minutes of Ni. therefore,
When determining the amounts of Mn, Ni, and Cu added, Ni
+ (Mn +Cu) / 3 is regulated using the relational expression,
At least 0.0 as Ni+ (Mn +Cu)/3.
Add 5% or more. However, if a large amount is added, the product becomes expensive, which affects the economic efficiency, which is one of the characteristics of the steel strip of the present invention. Therefore, each of Mn+Ni+Cu alone should be 3.0% or less, and Ni+ (Mn+Cu
)/3 is also 3.0% or less.
Sは、高すぎると耐食性や熱間加工性に悪影響をおよぼ
すので低いほうが好ましく 、 0.030%を上限と
する。If S is too high, it will adversely affect corrosion resistance and hot workability, so it is preferably lower, and the upper limit is 0.030%.
Pは、固溶強化能が大きい元素であるが、多量の添加は
靭性の低下を招く場合があるため2通常許容されている
程度の0.040%以下とする。P is an element that has a large solid solution strengthening ability, but since adding a large amount may lead to a decrease in toughness, it is limited to 0.040% or less, which is the normally allowed level.
Crは、ステンレス鋼としての耐食性を維持するうえで
少なくとも10.0%は必要最低量として含有させるべ
きであるが、あまりCr量が高いと。Although at least 10.0% of Cr should be contained as the minimum necessary amount in order to maintain the corrosion resistance of stainless steel, if the Cr content is too high.
マルテンサイト相を生成させて高強度を得るに必要なオ
ーステナイト生成元素の量が多くなると共に製品が高価
となるので、 14.0%を上限とする。The upper limit is set at 14.0% because the amount of austenite-forming elements required to generate martensitic phase and obtain high strength increases and the product becomes expensive.
○は、酸化物系の非金属介在物を形成し、鋼の清浄度を
低下させるので低い方が望ましく 、0.02%以下と
する。◯ forms oxide-based nonmetallic inclusions and reduces the cleanliness of the steel, so a lower value is desirable, and the content should be 0.02% or less.
AAは、脱酸に有効な元素であると共にプレス加工性に
悪影響を及ぼす^2系介在物を著減せしめる効果がある
。しかし、 0.20%を超えて含有させてもその効果
が飽和するばかりでなく表面欠陥の増加を招くなど5悪
影響をもたらすのでその上限を0.20%とする。AA is an effective element for deoxidizing and has the effect of significantly reducing ^2 inclusions that adversely affect press workability. However, if the content exceeds 0.20%, the effect not only becomes saturated, but also brings about adverse effects such as an increase in surface defects, so the upper limit is set at 0.20%.
Bは、靭性改善に有効な成分であるが、極く微量でその
効果はもたらされ、 0.0050%を超えるとその効
果が飽和するのでその上限をo、ooso%とする。B is an effective component for improving toughness, but its effect is brought about in a very small amount, and its effect is saturated when it exceeds 0.0050%, so its upper limit is set to o, ooso%.
Moは、耐食性の向上に有効な元素であるが。Mo is an element effective in improving corrosion resistance.
多量に添加すると製品が高価となるために1.0%を上
限とする。If added in large amounts, the product becomes expensive, so the upper limit is set at 1.0%.
REMおよびYは、熱間加工性の向上に有効な元素であ
る。また、耐酸化性の向上にも有効な元素である。高温
での連続仕上熱処理を施す本発明法においては酸化スケ
ールの発生を抑制してデスケール後に良好な表面肌を得
るのに有効に作用する。しかし、これらの効果は、RE
Mでは0.10%を超えると、またYでは0.20%を
超えると飽和するので、上限をREVは0.10%、Y
は0.20%とする。REM and Y are elements effective in improving hot workability. It is also an effective element for improving oxidation resistance. The method of the present invention, which performs continuous finishing heat treatment at high temperatures, is effective in suppressing the generation of oxidized scale and obtaining a good surface texture after descaling. However, these effects
M saturates when it exceeds 0.10% and Y exceeds 0.20%, so the upper limit is 0.10% for REV and 0.10% for Y.
is 0.20%.
次に本発明で採用する複相&Il織調帯の各製造工程の
内容について説明する。Next, the contents of each manufacturing process of the multi-phase & Il texture belt employed in the present invention will be explained.
本発明法においては、前記ように成分範囲を調整したク
ロムステンレス鋼のスラブを通常の製鋼鋳造技術によっ
て製造し、このスラブを熱間圧延して熱延鋼帯を製造す
る。熱間圧延後は熱延板焼鈍とデスケールを行なうのが
よい。熱延板焼鈍は必ずしも実施する必要はないが、こ
の焼鈍によって熱延鋼帯を軟質化させて冷延性の向上を
図ったり、熱延鋼帯に残存する変態相(高温でオーステ
ナイト相であった部分)をフェライト+炭化物に変態・
分解させることができるので、冷間圧延・連続仕上熱処
理後に均一な複相&[l織をもつ調帯とするうえで望ま
しい、この熱延板焼鈍は連続焼鈍または箱焼鈍のいずれ
でもよい、またデスケール工程は通常の酸洗を行なえば
よい、ここまでのスラブ製造工程、28間圧延工程、熱
延板焼鈍工程および脱スケール工程は従来のクロムステ
ンレス鋼帯の製造技術をそのまま本発明法に適用するこ
とができる。In the method of the present invention, a slab of chromium stainless steel whose composition range has been adjusted as described above is produced by ordinary steel casting technology, and this slab is hot rolled to produce a hot rolled steel strip. After hot rolling, it is preferable to perform hot rolled sheet annealing and descaling. Although it is not necessary to carry out hot-rolled sheet annealing, this annealing softens the hot-rolled steel strip and improves its cold-rollability, and also removes the transformed phase remaining in the hot-rolled steel strip (austenitic phase at high temperatures). part) into ferrite + carbide.
Since it can be decomposed, it is desirable to obtain a toning zone with a uniform multi-phase texture after cold rolling and continuous finishing heat treatment.This hot rolled sheet annealing can be either continuous annealing or box annealing. The descaling process can be carried out by ordinary pickling.The conventional chrome stainless steel strip manufacturing technology is applied to the method of the present invention as is for the slab manufacturing process, 28-hour rolling process, hot-rolled plate annealing process, and descaling process. can do.
次いで冷間圧延工程と連続仕上熱処理工程を経て複相組
織鋼帯を製造するのであるが、これらの工程は本発明法
において特徴的な工程であるので詳しく説明する。Next, a dual-phase steel strip is manufactured through a cold rolling process and a continuous finishing heat treatment process, and these processes are characteristic of the method of the present invention and will be explained in detail.
「冷間圧延工程」
冷間圧延工程では、熱延鋼帯(熱延板tA鈍後の熱延綱
帯)をフェライト単相域温度加熱の中間焼鈍を挟む2回
以上の冷間圧延によって製品板厚にまで圧延する工程で
ある。この冷間圧延の間に挟む中間焼鈍は連続仕上熱処
理工程後の複相組織鋼帯の延性の面内異方性を少なくす
る上で重要な役割を果たす、これを代表的な試験結果に
基づいて説明する。"Cold rolling process" In the cold rolling process, a hot rolled steel strip (hot rolled steel strip after hot rolled sheet tA annealing) is cold rolled two or more times with intermediate annealing of ferrite single phase region temperature heating. This is the process of rolling the material to the thickness of the plate. This intermediate annealing sandwiched between cold rolling plays an important role in reducing the in-plane anisotropy of the ductility of the multiphase steel strip after the continuous finishing heat treatment process, based on representative test results. I will explain.
第1表に示す化学成分を有する111A、BおよびCの
鋼を溶製し2通常の条件の熱間圧延にて板厚3.61の
熱延板とし、780℃×6時間加熱、炉冷の焼鈍を施し
たあと酸洗を行った。なお鋼BおよびCは本発明の対象
とする鋼であるが、鋼AはM ’n +Nj、Co11
が本発明で規定するNj+(Mn+Cu)/3≧0.5
%を満足しない点で本発明の対゛象外の鋼である。111A, B and C steels having the chemical composition shown in Table 1 were melted and hot-rolled under normal conditions to form a hot-rolled plate with a thickness of 3.61 mm, heated at 780°C for 6 hours, and then cooled in the furnace. After annealing, pickling was performed. Steels B and C are steels targeted by the present invention, but steel A has M'n +Nj, Co11
is defined in the present invention as Nj+(Mn+Cu)/3≧0.5
This steel is outside the scope of the present invention in that it does not satisfy the above requirements.
この熱延板を用いて冷間圧延条件と仕上熱処理条件を変
えて試験を行った(第1図と第2図のデータもこの試験
結果を示したものであるが、その内容については後に説
明する)。Tests were conducted using this hot-rolled sheet under different cold rolling conditions and finishing heat treatment conditions (the data in Figures 1 and 2 also show the results of this test, the details of which will be explained later). do).
下記の第2表は、第1表の1m1Bについて。Table 2 below is for 1m1B in Table 1.
(a)、冷間圧延のさいに中間焼鈍を挟む2回冷間圧延
を行なって仕上熱処理を施した複相組織材(以後、ZC
R材と呼ぶ)。(a), a multi-phase structure material (hereinafter referred to as ZC
(referred to as R material).
(b)、中間焼鈍を行なうことなく1回のみの冷間圧延
を行なって仕上熱処理を施した複相組織材(以後、IC
R材と呼ぶ)。(b), a multi-phase structure material (hereinafter referred to as IC
(referred to as R material).
ic+、xcR材およびZCR材と同等の強度を冷間圧
延によって付与した調質圧延材。A temper-rolled material that has the same strength as ic+, xcR and ZCR materials through cold rolling.
の3種の方法により製造した各鋼板の引張強さくkgf
/mm”)および伸び(χ)を圧延方向の値(L)、圧
延方向に対して45’方向の値(D)および圧延方向に
対し90’方向の値(T)を示したものである。The tensile strength of each steel plate manufactured by the following three methods is kgf.
/mm") and elongation (χ) in the rolling direction (L), the value in the 45' direction (D), and the value in the 90' direction (T) with respect to the rolling direction. .
なお、(a)の2CR材は、前記の熱延板を冷間圧延に
より板厚IIII*とし、750℃×1分加熱、空冷の
中間焼鈍を行った後、さらに冷間圧延により板厚0.3
mmの冷間圧延板とした。この冷間圧延板を960℃の
温度に1分間均熱したあと、その温度から100℃まで
を平均冷却速度20℃/secで冷却する仕上熱処理を
施した。The 2CR material in (a) is obtained by cold rolling the above-mentioned hot-rolled plate to a thickness of III*, then performing intermediate annealing at 750°C for 1 minute and air cooling, and then cold rolling to a thickness of 0. .3
It was made into a cold rolled plate of mm. This cold-rolled plate was soaked for 1 minute at a temperature of 960°C, and then subjected to finishing heat treatment in which it was cooled from that temperature to 100°C at an average cooling rate of 20°C/sec.
またtblのICR材は、前記の熱延板を中間焼鈍を施
すことなく冷間圧延にて板厚0.3mmとし、この冷間
圧延板を960℃の温度に1分間均熱したあと、その温
度から100℃までを平均冷却速度20℃/secで冷
却する仕上熱処理を施した。In addition, TBL's ICR material is produced by cold-rolling the hot-rolled sheet described above to a thickness of 0.3 mm without performing intermediate annealing, and soaking this cold-rolled sheet at a temperature of 960°C for 1 minute. Finishing heat treatment was performed by cooling from temperature to 100°C at an average cooling rate of 20°C/sec.
(clの調質圧延材については、ICR材およびzCR
材と同等の強度が板厚0.3mmの状態で得られるよう
に、焼鈍後の熱延板を所定の板厚まで冷間圧延し、焼鈍
した後、所定の圧延率で調質圧延した。(For cl temper rolled materials, ICR materials and zCR materials
The annealed hot rolled plate was cold rolled to a predetermined thickness, annealed, and then temper rolled at a predetermined rolling rate so that the same strength as that of the steel was obtained at a plate thickness of 0.3 mm.
第1表
第2表
(C)、調頁圧辻打・・圧延率73%
第2表から明らかなように、ZCR材およびICR材と
もに複相組織材の伸びは、同等の硬さおよび強度レベル
の調質圧延材に比べて著しく優れており2強度−伸びバ
ランスに優れていることがわかる。また2面内異方性に
ついて見ると、引張強さではZCR材およびICR材と
もに複相組織材は方向による引張強さの差、つまり面内
異方性が小さいのに対し、m賀正延材は引張強さの最も
低いし方向と最も高いT方向の引張強さの差は10kg
f/ma+”以上もあり面内異方性が大きい。また。Table 1, Table 2 (C), Adjusted page rolling, rolling rate: 73% As is clear from Table 2, the elongation of the multi-phase structure material for both ZCR and ICR materials is equivalent to hardness and strength. It can be seen that this is significantly superior to the level temper rolled material, and has an excellent two-strength-elongation balance. In addition, looking at the two-plane anisotropy, in terms of tensile strength, both the ZCR material and the ICR material have a small difference in tensile strength depending on the direction, that is, the in-plane anisotropy, whereas the The difference between the tensile strength in the T direction, which has the lowest tensile strength, and the T direction, which has the highest tensile strength, is 10 kg.
It has a large in-plane anisotropy.
伸びについては、伸びが高い複相mm材は伸びが低い調
質圧延材よりも面内異方性も比較的小さく。Regarding elongation, multi-phase mm material with high elongation also has relatively smaller in-plane anisotropy than temper rolled material with low elongation.
特にZCR材はICR材よりも面内異方性が更に小さい
ことがわかる。すなわち、中間焼鈍は複相&Il織材の
伸びの面内異方性を小さくする上で非常に重要であると
言える。従って、第2表の結果がら、熱間圧延、熱延板
焼鈍、中間焼鈍を挟んだ冷間圧延を経て、複相Ml織と
する仕上熱処理を施した場合には、延性に優れ且つ強度
および延性の面内異方性の小さい複相組織の高強度クロ
ムステンレス鋼板が得られることが明らかである。In particular, it can be seen that the ZCR material has even smaller in-plane anisotropy than the ICR material. That is, it can be said that intermediate annealing is very important in reducing the in-plane anisotropy of elongation of the multi-phase &Il woven material. Therefore, from the results in Table 2, when finishing heat treatment is applied to form a multi-phase Ml weave through hot rolling, hot-rolled sheet annealing, and cold rolling with intermediate annealing, the weave has excellent ductility and strength. It is clear that a high-strength chromium stainless steel sheet with a dual-phase structure with small ductile in-plane anisotropy can be obtained.
この試験結果に見られるように、また後記の実施例でも
示すように、複相組織材の伸びの面内異方性は、冷間圧
延工程を中間焼鈍を挟む2回以上の冷間圧延を実施する
ことによって小さくすることができる。したがって、延
性の面内異方性の小さい複相組織鋼帯を製造するうえで
、製品板厚までの板厚減少を2回以上の冷間圧延で行い
、その間に中間焼鈍を実施することが本発明法において
重要である。この中間焼鈍の加熱温度はフェライト単相
域温度、すなわち、 Ac+点以下の温度である。ま
た中間焼鈍の前後の冷間圧延の冷間圧延率は各々少なく
とも30%以上とするのがよい。As seen in this test result, and as shown in the examples below, the in-plane anisotropy of elongation of the multiphase structure material can be improved by cold rolling two or more times with intermediate annealing in between. It can be made smaller by implementing Therefore, in manufacturing a dual-phase steel strip with small in-plane ductility anisotropy, it is necessary to reduce the thickness to the product thickness by cold rolling two or more times, and perform intermediate annealing in between. This is important in the method of the present invention. The heating temperature for this intermediate annealing is the ferrite single phase region temperature, that is, the temperature below the Ac+ point. Further, the cold rolling ratios of the cold rolling before and after the intermediate annealing are preferably at least 30% or more.
「連続仕上熱処理工程」
冷間圧延工程で得られた製品板厚の冷延鋼帯を次に連続
熱処理炉に通板して+ A c 1点以上で1100
℃以下のフェライト+オーステナイトの二相域温度に1
0分以内の保持のあと、最高加熱温度から100℃まで
を平均冷却速度1 ’C/see以上、500℃/se
c以下で冷却する連続仕上熱処理を施すのであるが。"Continuous finishing heat treatment process" The cold rolled steel strip with the product thickness obtained in the cold rolling process is then passed through a continuous heat treatment furnace to achieve +A c 1 or more points of 1100.
1 for the two-phase region temperature of ferrite + austenite below ℃
After holding for less than 0 minutes, the average cooling rate from the maximum heating temperature to 100℃ is 1'C/see or more, 500℃/se
Continuous finishing heat treatment is performed by cooling at temperatures below c.
この連続仕上熱処理工程は本発明法の最も特徴とする工
程であり、この連続仕上熱処理条件は後記の実施例でも
示すとおり本発明において重要な意義を有している。こ
の連続仕上熱処理工程での加熱条件と冷却条件を規制し
た理由の概要を説明すると次のとおりである。This continuous finishing heat treatment step is the most characteristic step of the method of the present invention, and the conditions for this continuous finishing heat treatment have an important meaning in the present invention, as will be shown in Examples below. An overview of the reasons for regulating the heating conditions and cooling conditions in this continuous finishing heat treatment step is as follows.
連続仕上熱処理時の加熱温度はフェライト+オーステナ
イトニ相域温度であることが絶対条件である0本発明法
の実施にあたっては、連続熱処理炉で低温から加熱した
場合にオーステナイトが生成し始める温度(つまりAc
+点の温度)の近傍では温度変化に対するオーステナイ
トIの変動が大きく、急冷後に安定した硬さが得られな
い場合がある。しかし9本発明が対象とする鋼成分範囲
においては、 Ac+点より100’C以上の高温域に
加熱した場合にはこのような硬さの変動が実質上止じな
いことがわかった。したがって、連続仕上熱処理時の加
熱温度はAcI点+1oo℃以上とするのがよい。より
具体的には850 を以上、さらに好ましくは900℃
以上とするのがよい。一方、加熱温度の上限については
、あまり高温では強度上昇が飽和するのみならず、場合
によっては低下することもあり、また製造コストの面で
も不利となるので1100℃を上限とするのがよい。It is an absolute condition that the heating temperature during continuous finishing heat treatment is within the ferrite + austenite two-phase region temperature.In carrying out the method of the present invention, it is necessary to Ac
In the vicinity of + point temperature), austenite I fluctuates greatly with respect to temperature changes, and stable hardness may not be obtained after rapid cooling. However, in the steel composition range targeted by the present invention, it has been found that such hardness fluctuations do not substantially stop when heated to a high temperature range of 100'C or higher from the Ac+ point. Therefore, the heating temperature during the continuous finishing heat treatment is preferably set to the AcI point +100° C. or higher. More specifically, 850°C or higher, more preferably 900°C
It is better to set it to the above. On the other hand, the upper limit of the heating temperature is preferably set at 1100° C., since if the temperature is too high, the increase in strength will not only be saturated, but also decrease in some cases, and also be disadvantageous in terms of manufacturing cost.
本発明法における連続仕上熱処理時のフェライト+オー
ステナイトニ相域加熱の冶金的意義として、■CrCr
炭化物化窒化物溶、■オーステナイト相の生成、■生成
したオーステナイト中へのCおよびNの濃縮の3点を挙
げることができる。The metallurgical significance of heating in the ferrite + austenite two-phase region during continuous finishing heat treatment in the method of the present invention is as follows: ■CrCr
Three points can be mentioned: carbide-nitride dissolution, (1) generation of austenite phase, and (2) concentration of C and N in the generated austenite.
本発明法で対象とするクロムステンレス鋼帯の場合には
、これらのIM、象はいずれも短時間のうちにほぼ平衡
状態に達するので1本発明における連続仕上熱処理時の
上記二相温度域での加熱時間は短時間、おおむね10分
間以内の加熱でよい、この短時間加熱でよいことは本発
明法の実際操業の点でも生産効率、製造コストの面がら
非常に有利である。以上の加熱条件および保持時間によ
って以後の冷却によって生成するマルテンサイト量が2
0容量%以上となるに必要なオーステナイトを生成させ
ることができる。In the case of the chromium stainless steel strip targeted by the method of the present invention, both of these IMs reach an almost equilibrium state within a short period of time, so 1. The heating time may be short, about 10 minutes or less. The fact that this short heating time is sufficient is very advantageous in terms of production efficiency and manufacturing cost in terms of actual operation of the method of the present invention. Due to the above heating conditions and holding time, the amount of martensite produced by subsequent cooling is 2
It is possible to generate the austenite necessary to achieve 0% by volume or more.
仕上熱処理時の冷却速度についてはマルテンサイト相と
軟質なフェライト相との複相組織を得るうえから1℃八
へ〇以上の冷却速度とする必要があるが、500℃/s
eeを超える冷却速度を得るのは実質上困難である。し
たがって1本発明において二相温度域加熱からの冷却は
1〜500 ’C/secの範囲の冷却速度で実施する
。この冷却速度は最高加熱温度から100℃までの平均
冷却速度とするが、オーステナイトがマルテンサイトに
変態してしまった後の冷却過程では必ずしもこの冷却速
度を採用する必要はない、この冷却速度と冷却終点温度
は前述の加熱条件によって高温で生成したオーステナイ
トがマルテンサイトに変態するに十分なものである。冷
却の方法としては気体および/または液体の冷却媒体を
調帯に吹き付ける強制冷却方式または水冷ロールによる
ロール冷却方式などを適用できる。このような条件での
連続加熱と冷却はコイル巻戻し機から巻取り機に至る間
に加熱均熱帯域と急冷帯域を有する連続熱処理炉を用い
て実施することができる。Regarding the cooling rate during finishing heat treatment, in order to obtain a multi-phase structure of martensitic phase and soft ferrite phase, it is necessary to set the cooling rate to 1°C 8 to 0 or more, but it is 500°C/s.
It is virtually difficult to obtain cooling rates exceeding ee. Therefore, in one aspect of the present invention, cooling from two-phase temperature range heating is carried out at a cooling rate in the range of 1 to 500'C/sec. This cooling rate is the average cooling rate from the maximum heating temperature to 100℃, but it is not necessary to use this cooling rate in the cooling process after austenite has transformed into martensite. The end point temperature is sufficient for the austenite produced at high temperature under the above-mentioned heating conditions to transform into martensite. As a cooling method, a forced cooling method in which a gas and/or liquid cooling medium is sprayed onto the belt, a roll cooling method using water-cooled rolls, etc. can be applied. Continuous heating and cooling under such conditions can be carried out using a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil unwinding machine and the winding machine.
第1図は、前記第1表の各綱について、既に説明した方
法で製造した熱延板(熱延板焼鈍および酸洗後の熱延板
)を、冷間圧延により板厚1+w+wとし、750℃×
1分加熱・空冷の中間焼鈍を行ったあと、さらに冷間圧
延により板厚0.3mmの冷間圧延板とし、そして、こ
の冷間圧延板を800〜1100℃の間の各温度で1分
間均熱したあと、その温度から100℃までを平均冷却
速度20℃7secで冷却する仕上熱処理を施した場合
に得られた仕上熱処理材のマルテンサイト量(容量%)
と硬さくIIV)を。FIG. 1 shows hot-rolled sheets (hot-rolled sheets after hot-rolled sheet annealing and pickling) manufactured by the method already described for each steel in Table 1 above, which are cold-rolled to a thickness of 1+w+w, with a thickness of 750 mm. ℃×
After performing intermediate annealing by heating and air cooling for 1 minute, the cold rolled plate was further cold rolled to a thickness of 0.3 mm, and this cold rolled plate was heated at each temperature between 800 and 1100°C for 1 minute. Amount of martensite (volume %) in finished heat-treated material obtained when finishing heat treatment is performed by soaking and then cooling from that temperature to 100 °C at an average cooling rate of 20 °C 7 seconds
and hardness IV).
仕上熱処理時の加熱温度の関係で示したものである(図
中のA、B、Cは第1表の各鋼を表す)。This is shown in terms of the heating temperature during finishing heat treatment (A, B, and C in the figure represent each steel in Table 1).
第1図から明らかなように、加熱温度がフェライト+オ
ーステナイトニ相域になると、仕上熱処理後にマルテン
サイトが出現し、加熱温度の上昇とともにマルテンサイ
ト量は増加するが、鋼BおよびCについては850〜9
00℃を超えるとその増加の程度は小さくなって次第に
飽和する傾向を示す。硬さの挙動もマルテンサイト量の
変化に対応して同様の傾向を示し、またマルテンサイト
iが多いほど硬さは高い、これに対し+ Pvl n
+ N i+ Cu量が本発明の規定以下である鋼Aは
マルテンサイト量および硬さの飽和する温度域が高温側
にあるとともにその範囲が狭い、この第1図の結果は仕
上熱処理を連続熱処理ラインで行なう上での重要な意義
を有している。すなわち連続熱処理ラインでは成る程度
の温度変動はやむを得ず、特に調帯の長さ方向での変動
、および目標温度は同しであっても通板チャンスの違い
による熱処理温度の違いは、実ラインでの操業では目標
温度に対して±20℃程度の変動を見込む必要がある。As is clear from Fig. 1, when the heating temperature reaches the ferrite + austenite dual phase region, martensite appears after the final heat treatment, and the amount of martensite increases as the heating temperature increases, but for Steels B and C, 850 ~9
When the temperature exceeds 00°C, the degree of increase decreases and the temperature tends to gradually become saturated. The behavior of hardness also shows a similar tendency in response to changes in the amount of martensite, and the more martensite i, the higher the hardness, whereas + Pvl n
+N i+ Steel A, in which the amount of Cu is less than the specification of the present invention, has a temperature range in which the amount of martensite and hardness saturate is on the high temperature side and is narrow. It has an important meaning when performing on the line. In other words, a certain degree of temperature fluctuation is unavoidable in a continuous heat treatment line, and in particular, fluctuations in the length direction of the strip, and differences in heat treatment temperature due to differences in threading opportunities even if the target temperature is the same, will occur on the actual line. During operation, it is necessary to allow for fluctuations of about ±20°C with respect to the target temperature.
第1図は。Figure 1 is.
冷却速度をほぼ一定にし且つ硬さ変動の小さい熱処理温
度域を採用するならば、連続熱処理ラインにおいて多少
の温度変動があったとしても、硬さすなわち強度の変動
の小さい銅帯が製造できることを示している。そして、
特にMn、Ni、Cuを適正量添加することにより、硬
さ変動の小さい仕上熱処理温度域が低温側で且つ広範囲
に得られることになるので一層有利となる。そして強度
レベルの制御は前記のような成分制御によって行なうこ
とによって目標とする強度は安定して得ることができ、
鋼帯の全長にわたって強度変動の小さい。It was shown that if the cooling rate is kept almost constant and a heat treatment temperature range with small hardness fluctuations is adopted, it is possible to produce copper strips with small fluctuations in hardness, that is, strength, even if there are slight temperature fluctuations in the continuous heat treatment line. ing. and,
In particular, by adding appropriate amounts of Mn, Ni, and Cu, a finishing heat treatment temperature range with small hardness fluctuations can be obtained at a low temperature side and over a wide range, which is even more advantageous. By controlling the intensity level by controlling the components as described above, the target intensity can be stably obtained.
Small strength variation over the entire length of the steel strip.
また鋼帯間での強度差の小さい高強度素材が既存の連続
熱処理ラインを用いて容易に且つ安価に製造できる。Furthermore, a high-strength material with small strength differences between steel strips can be easily and inexpensively produced using an existing continuous heat treatment line.
第2図は1本発明で規制する範囲の鋼成分と製造条件内
でマルテンサイト量の異なる複相組織材を幾つか作りそ
の硬さと伸び(3方向の重みつき平均値)の相関を調べ
5これを!Pi質圧延圧延材関と比較して示したもので
ある。なお複相組織材の製造は第1図で説明したのと同
じであり仕上熱処理の加熱温度は900℃以上である。Figure 2 shows the correlation between hardness and elongation (weighted average value in three directions) of several multiphase materials with different amounts of martensite made within the range of steel composition and manufacturing conditions regulated by the present invention. this! It is shown in comparison with Pi-based rolled material. Note that the production of the multi-phase structure material is the same as that explained in FIG. 1, and the heating temperature in the finishing heat treatment is 900° C. or higher.
また調質圧延材は冷延後に焼鈍を行ったあと図中の添字
で示す調質圧延率を変えることによって硬さを変えたも
のである。Further, the temper-rolled material is obtained by annealing after cold rolling, and then changing the hardness by changing the temper rolling rate indicated by the subscript in the figure.
第2図から明らかなように、!J1質圧延圧延材!質圧
延率の上昇に伴う硬さの上昇につれて伸びは急激に低下
する。これに対して複相組織材は硬さが上昇しても伸び
の低下は緩やかである。特に、複相組織材の伸びが調質
圧延材に比べて優るのけ硬さの高い領域、具体的にはH
ν200以上の領域において顕著となる。すなわち複相
組織材とすることによる高延性化はHv 200以上の
領域で一段と顕著に発揮されるのであり、そのためには
前述の第1図からもわかるように、約20容量%以上の
マルテンサイト量のところである。このように硬さがH
v200以上での高延性が図れる点に11質圧延材では
達成できない本発明法による複相組織材の特徴があり、
この強度−伸びバランスが良好なことから本発明法によ
って得られた複相mm鋼帯はプレス成形性などの加工性
についてもm!圧延では得られない特質をもつことにな
る。As is clear from Figure 2,! J1 quality rolled material! As the hardness increases with the increase in quality rolling rate, the elongation decreases rapidly. On the other hand, even if the hardness of the multiphase structure material increases, the elongation decreases slowly. In particular, the elongation of the multi-phase structure material is superior to that of the temper-rolled material, in areas with high shear hardness, specifically H
This becomes noticeable in the region of ν200 or more. In other words, the increase in ductility achieved by forming a material with a multi-phase structure is even more pronounced in the Hv 200 or higher region, and for this purpose, as can be seen from Figure 1 above, martensite with a content of about 20% by volume or more is required. It's about quantity. In this way, the hardness is H
A feature of the multi-phase structure material produced by the present invention method is that it can achieve high ductility at v200 or higher, which cannot be achieved with 11 quality rolled material.
Due to this good strength-elongation balance, the multi-phase mm steel strip obtained by the method of the present invention also has a good workability such as press formability. It has characteristics that cannot be obtained by rolling.
第3図は、第1表のIIBを第2表のta+の方法で製
造した場合の金属組織写真である。写真中の白く見える
領域がフェライト、黒もしくは灰色に見える領域がマル
テンサイトである。この写真かられかるように、この材
料は微細なフェライトおよびマルテンサイトが均一に混
在した複相組織を有している。FIG. 3 is a photograph of the metallographic structure of IIB shown in Table 1 produced by the method ta+ shown in Table 2. The white area in the photo is ferrite, and the black or gray area is martensite. As can be seen from this photo, this material has a multi-phase structure in which fine ferrite and martensite are evenly mixed.
以上に説明したように1強度並びに延性の異方性の小さ
い高延性高強度の調帯材料が得られたのは、熱間圧延、
熱延板焼鈍、中間焼鈍を挟む2回以上の冷間圧延のあと
にフェライト上オーステナイトの二相域に加熱し急冷す
る仕上熱処理によって、微細なフェライトと急冷によっ
てオーステナイトから変態して生成したマルテンサイト
とが均一に混在した複相組織としたことで達成し得たも
のである。すなわち、硬質なマルテンサイトによる強度
(硬さ)を得、軟質なフェライトにより延性を得たもの
であり、そして両相を微細且つ均一に混在させたことに
より強度と延性の面内異方性を小さくし得たものである
。なお、仕上熱処理後の組織はX線的な調査では微量の
残留オーステナイトが検出される場合がある。As explained above, the high ductility and high strength belt material with low strength and ductility anisotropy was obtained by hot rolling.
After hot-rolled plate annealing and two or more cold rollings with intermediate annealing in between, finishing heat treatment involves heating to a two-phase region of ferrite-on-austenite and rapidly cooling, resulting in fine ferrite and martensite that is transformed from austenite by rapid cooling. This was achieved by creating a multi-phase structure with a uniform mixture of In other words, the hard martensite provides strength (hardness), the soft ferrite provides ductility, and the in-plane anisotropy of strength and ductility is achieved by finely and uniformly mixing both phases. It could have been made smaller. Note that a trace amount of retained austenite may be detected in X-ray examination of the structure after finishing heat treatment.
以下に2本発明法を実施した実施例を挙げて。Two examples in which the method of the present invention was implemented are listed below.
本発明法で得られた複相組織鋼帯の特性を比較例と対比
しながら具体的に示す。The characteristics of a multi-phase steel strip obtained by the method of the present invention will be specifically shown in comparison with a comparative example.
実施例
第3表に示す化学成分を有する鋼を溶製してスラブを製
造した。そしていずれも板厚3.611+1に熱間圧延
後、780℃×6時間・炉冷の熱延板焼鈍を行い、酸洗
のあと、第4表に示す冷延条件で冷間圧延して板厚0.
3+am+の冷延鋼帯とし、第4表に示した仕上熱処理
条件のもとて連続熱処理炉にて連続仕上熱処理を施した
。なお冷間圧延、工程での中間焼鈍の均熱時間はいずれ
も1分であり、また連続仕上熱処理工程での均熱時間も
いずれも1分である。仕上熱処理後の鋼帯の材料特性を
第4表に併記した。Example Slabs were manufactured by melting steel having the chemical components shown in Table 3. After hot rolling to a thickness of 3.611+1, hot rolled sheets were annealed at 780°C for 6 hours in a furnace, and after pickling, the sheets were cold rolled under the cold rolling conditions shown in Table 4. Thickness 0.
A cold-rolled steel strip of 3+am+ was subjected to continuous finish heat treatment in a continuous heat treatment furnace under the finish heat treatment conditions shown in Table 4. The soaking time for both cold rolling and intermediate annealing in the process is 1 minute, and the soaking time for the continuous finishing heat treatment step is also 1 minute. The material properties of the steel strip after finishing heat treatment are also listed in Table 4.
第4表から明らかなように1本発明法によればいずれも
高い引張強さと硬さおよび良好な伸びを有した複相組織
鋼帯が得られたことがわかる。また1本発明法による鋼
帯は、0.2%耐力、引張強さおよび伸びの異方性が小
さいことが明らかであり、また破断後の引張試験片にリ
ジングの発生が見られなかった。As is clear from Table 4, according to the method of the present invention, multiphase steel strips having high tensile strength, hardness, and good elongation were obtained. Furthermore, it is clear that the steel strip produced by the method of the present invention has small anisotropy in 0.2% proof stress, tensile strength, and elongation, and no ridging was observed in the tensile test piece after fracture.
これに対し比較例阻1では製造条件は本発明で規定する
範囲であるが、綱のM n + N i+ Cu il
lが本発明で規定するN++(Mn+Cu)/3≧0.
5%の要件から外れる0、19%と低い第3表の隘8の
鋼であるため、連続仕上熱処理後にマルテンサイトが生
成しておらず、硬さが低い。On the other hand, in Comparative Example 1, the manufacturing conditions are within the range specified by the present invention, but the M n + N i + Cu il of the steel
l is defined in the present invention as N++(Mn+Cu)/3≧0.
Since it is a steel in column 8 of Table 3, which is low at 0.19%, which is outside the requirement of 5%, no martensite is generated after continuous finishing heat treatment, and the hardness is low.
比較何階2では、やはり製造条件は本発明の範囲内にあ
るが、鋼のC量およびNi量がそれぞれ本発明で規定す
る0、08%以下および3.0%以下よりも高い0.3
10%および3.20%のCおよびNiを含有する鋼患
9であるため、連続仕上熱処理後のマルテンサイト量が
100%となり2強度は高いものの、伸びが低い。In comparison No. 2, the manufacturing conditions are still within the scope of the present invention, but the C content and Ni content of the steel are 0.3% or less and higher than the 0.08% or less and 3.0% or less stipulated in the present invention, respectively.
Since this steel contains 10% and 3.20% of C and Ni, the amount of martensite after continuous finishing heat treatment is 100% and the strength is high, but the elongation is low.
比較何階3では連続仕上熱処理での加熱温度が780℃
と低く、この加熱温度では鋼阻1の鋼はフェライト+オ
ーステナイトニ相域にならず、したがって仕上熱処理後
の金属組織はマルテンサイトの存在しないフェライト単
相組織であり、伸びは高いものの強度および硬さが低い
。For comparison, the heating temperature for continuous finishing heat treatment on floor 3 is 780℃.
At this heating temperature, the steel of Steel 1 does not enter the ferrite + austenite dual phase region, so the metal structure after finishing heat treatment is a ferrite single phase structure without martensite, and although the elongation is high, the strength and hardness are low. is low.
比較何階4は、仕上熱処理を箱型炉で行ない。In Comparison Level 4, the final heat treatment is performed in a box furnace.
その冷却も炉冷によるため冷却速度が0.03℃/se
cと非常に低いので熱処理後にマルテンサイトが生成し
ておらず、比較例阻3と同様に伸びは高いものの1強度
および硬さが低い。Since the cooling is also by furnace cooling, the cooling rate is 0.03℃/se
Since the c is very low, no martensite is generated after heat treatment, and like Comparative Example 3, the elongation is high but the strength and hardness are low.
比較例Fh5は、調質圧延材であり9本発明のものに比
較して伸びが著しく低い、また引張強さに対する0、2
%耐力の比、すなわち降伏比が高いと共に、0.2%耐
力、引張強さ、伸びの異方性が大きい、したがって本発
明法によって得られた鋼帯に比べて加工性並びに加工後
の形状性に劣ることが明らかである。Comparative example Fh5 is a temper-rolled material and has significantly lower elongation than that of the present invention, and has a tensile strength of 0 and 2.
The ratio of % proof stress, that is, the yield ratio is high, and the anisotropy of 0.2% proof stress, tensile strength, and elongation is large. Therefore, the workability and shape after processing are higher than that of the steel strip obtained by the method of the present invention. It is clear that they are inferior in gender.
比較何階6は、連続仕上熱処理前の冷間圧延において中
間焼鈍を行っていないので1強度が高く伸びも優れてい
るものの、伸びの面内異方性が中間焼鈍を施した本発明
例のものに比べると大きくなっている。Comparative No. 6 has high strength and excellent elongation because no intermediate annealing was performed during cold rolling before continuous finishing heat treatment, but the in-plane anisotropy of elongation is lower than that of the present invention example subjected to intermediate annealing. It's bigger compared to the others.
なお、比較例11hl、3.4および5の銅帯について
は、破断後の引張試験片でいずれもリジングの発生が見
られたの対し2本発明例の複相組織鋼帯はりジングの発
生が見られず、プレス成形などの加工が良好に行えるこ
とがわかる。Regarding the copper strips of Comparative Examples 11hl, 3.4, and 5, the occurrence of ridging was observed in the tensile test specimens after fracture, whereas the occurrence of ridging was observed in the two inventive steel strips. It can be seen that processing such as press molding can be performed satisfactorily.
以上のように1本発明法によれば、高延性と高強度を兼
備し9強度と延性の面内異方性が小さく且つ低耐力、低
降伏比の複相組織鋼帯が提供される。クロムステンレス
鋼板の分野において、従来かような良好な加工性を兼備
したHv 200以上の高強度素材が鋼板または鋼帯の
形で市場に出荷された例は見ない。したがって1本発明
は従来のクロムステンレス鋼板分野に新規素材鋼板また
は銅帯を提供するものである0本発明に従う材料は電子
部品、精密機械部品などへの加工性が要求される高強度
材として特に存用であり、この分野において多大の成果
が発揮され得る。As described above, according to the method of the present invention, a dual-phase steel strip having both high ductility and high strength, small in-plane anisotropy of strength and ductility, low proof stress, and low yield ratio is provided. In the field of chrome stainless steel sheets, there has never been an example of such a high strength material with Hv 200 or more combined with good workability being shipped to the market in the form of a steel plate or steel strip. Therefore, the present invention provides a new material steel sheet or copper strip for the conventional chrome stainless steel sheet field. The material according to the present invention is particularly useful as a high-strength material that requires workability into electronic parts, precision mechanical parts, etc. are currently in use, and much work could be done in this field.
第1図は9本発明に従う仕上熱処理の加熱温度とマルテ
ンサイト量および硬さとの関係を示した図。
第2図は本発明に従う仕上熱処理材とtPI賞圧延圧延
材いて硬さ−伸びの相関関係を示した図。
第3図は本発明に従う連続仕上熱処理を施したクロムス
テンレス鋼帯の金属組織を示した顕微鏡写真である。FIG. 1 is a diagram showing the relationship between heating temperature, amount of martensite, and hardness in finishing heat treatment according to the present invention. FIG. 2 is a diagram showing the correlation between hardness and elongation of the finish heat-treated material according to the present invention and the tPI award-rolled material. FIG. 3 is a micrograph showing the metallographic structure of a chromium stainless steel strip subjected to continuous finishing heat treatment according to the present invention.
Claims (1)
であって、且つ 0.01%≦C+N≦0.12%および 0.5%≦Ni+(Mn+Cu)/3≦3.0の関係を
満足する鋼のスラブを製造し、これを熱間圧延して熱延
鋼帯を製造する工程、 フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼帯を製造する工程、
そして、 得られた冷延鋼帯を連続熱処理炉に通板して、Ac_1
点以上1100℃以下のフェライト+オーステナイトの
二相域温度に10分以内の保持のあと、最高加熱温度か
ら100℃までを平均冷却速度1℃/sec以上500
℃/sec以下で冷却する仕上熱処理を施す連続仕上熱
処理工程、 からなる、HV200以上の硬さを有する面内異方性の
小さい高延性高強度の複相組織クロムステンレス鋼帯の
製造法。 (2)連続仕上熱処理工程における加熱温度はAc_1
点+100℃以上1100℃以下である特許請求の範囲
第1項記載の製造法。 (3)連続仕上熱処理工程における加熱温度は850℃
以上1100℃以下である特許請求の範囲第1項記載の
製造法。 (4)重量%において、 C:0.08%以下、 Si:2.0%以下、 Mn:3.0%以下、 P:0.040%以下、 S:0.030%以下、 Ni:3.00%以下、 Cr:10.0以上で14.0%以下、 N:0.08%以下、 O:0.02%以下、 Cu:3.0%以下、 および、0.20%以下のAl、0.0050%以下の
B、1.0%以下のMo、0.10%以下のREM、0
.20%以下のYの一種または二種以上を含有し、残部
がFeおよび不可避的不純物からなる鋼であって、且つ
0.01%≦C+N≦0.12%および 0.5%≦Ni+(Mn+Cu)/3≦3.0の関係を
満足する鋼のスラブを製造し、これを熱間圧延して熱延
鋼帯を製造する工程、 フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼帯を製造する工程、
そして、 得られた冷延鋼帯を連続熱処理炉に通板して、Ac_1
点以上1100℃以下のフェライト+オーステナイトの
二相域温度に10分以内の保持のあと、最高加熱温度か
ら100℃までを平均冷却速度1℃/sec以上500
℃/sec以下で冷却する仕上熱処理を施す連続仕上熱
処理工程、 からなる、HV200以上の硬さを有する面内異方性の
小さい高延性高強度の複相組織クロムステンレス鋼帯の
製造法。 (5)連続仕上熱処理工程における加熱温度はAc_1
点+100℃以上1100℃以下である特許請求の範囲
第4項記載の製造法。 (6)連続仕上熱処理工程における加熱温度は850℃
以上1100℃以下である特許請求の範囲第4項記載の
製造法。[Claims] (1) In weight%, C: 0.08% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.040% or less, S: 0.030. % or less, Ni: 3.0% or less, Cr: 10.0 or more and 14.0% or less, N: 0.08% or less, O: 0.02% or less, Cu: 3.0% or less. , the balance is Fe and unavoidable impurities, and the steel satisfies the relationships of 0.01%≦C+N≦0.12% and 0.5%≦Ni+(Mn+Cu)/3≦3.0. A process of producing a slab and hot rolling it to produce a hot-rolled steel strip. A process of producing a cold-rolled steel strip of the product thickness by cold rolling two or more times with intermediate annealing in the ferrite single-phase region temperature heating. The process of
Then, the obtained cold rolled steel strip was passed through a continuous heat treatment furnace to obtain Ac_1
After maintaining the ferrite + austenite two-phase region temperature of 1100°C or higher for less than 10 minutes, the average cooling rate from the maximum heating temperature to 100°C is 1°C/sec or more and 500°C.
A method for producing a highly ductile, high-strength, multi-phase structure chromium stainless steel strip with a hardness of HV200 or more and a small in-plane anisotropy, the method comprising: a continuous finishing heat treatment process in which finishing heat treatment is performed by cooling at a temperature of 0.degree. C./sec or less. (2) The heating temperature in the continuous finishing heat treatment process is Ac_1
The manufacturing method according to claim 1, wherein the temperature is +100°C or more and 1100°C or less. (3) The heating temperature in the continuous finishing heat treatment process is 850℃
The manufacturing method according to claim 1, wherein the temperature is above 1100°C. (4) In weight%, C: 0.08% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 3 .00% or less, Cr: 10.0 or more and 14.0% or less, N: 0.08% or less, O: 0.02% or less, Cu: 3.0% or less, and 0.20% or less Al, 0.0050% or less B, 1.0% or less Mo, 0.10% or less REM, 0
.. A steel containing 20% or less of one or more types of Y, with the remainder consisting of Fe and unavoidable impurities, and 0.01%≦C+N≦0.12% and 0.5%≦Ni+(Mn+Cu )/3≦3.0, and hot rolling the steel slab to produce a hot rolled steel strip. A process of manufacturing cold rolled steel strip of product thickness by cold rolling,
Then, the obtained cold rolled steel strip was passed through a continuous heat treatment furnace to obtain Ac_1
After maintaining the ferrite + austenite two-phase region temperature of 1100°C or higher for less than 10 minutes, the average cooling rate from the maximum heating temperature to 100°C is 1°C/sec or more and 500°C.
A method for producing a highly ductile, high-strength, multi-phase structure chromium stainless steel strip with a hardness of HV200 or more and a small in-plane anisotropy, the method comprising: a continuous finishing heat treatment process in which finishing heat treatment is performed by cooling at a temperature of 0.degree. C./sec or less. (5) The heating temperature in the continuous finishing heat treatment process is Ac_1
The manufacturing method according to claim 4, wherein the temperature is +100°C or more and 1100°C or less. (6) The heating temperature in the continuous finishing heat treatment process is 850℃
The manufacturing method according to claim 4, wherein the temperature is above 1100°C.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31196186A JPH07100822B2 (en) | 1986-12-30 | 1986-12-30 | Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy. |
DE3787961T DE3787961T2 (en) | 1986-12-30 | 1987-12-11 | Process for the production of stainless chrome steel strip with two-phase structure with high strength and high elongation and with low anisotropy. |
ES87118422T ES2044905T3 (en) | 1986-12-30 | 1987-12-11 | PROCESS FOR THE PRODUCTION OF A CHROME STAINLESS STEEL BELT OF A DOUBLE STRUCTURE THAT HAS A HIGH STRENGTH AND EXTENSION AS WELL AS A BETTER FLAT ANISTROPY. |
EP87118422A EP0273279B1 (en) | 1986-12-30 | 1987-12-11 | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy |
US07134873 US4824491B1 (en) | 1986-12-30 | 1987-12-18 | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy |
CA000555161A CA1308997C (en) | 1986-12-30 | 1987-12-22 | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy |
BR8707115A BR8707115A (en) | 1986-12-30 | 1987-12-26 | PROCESS FOR THE PRODUCTION OF A STEEL STEEL STRIP TO THE DUPLEX STRUCTURE CHROME, HAVING HIGH RESISTANCE AND STRETCHING AND ALSO REDUCED FLAT ANISOTROPY |
CN87105997A CN1011987B (en) | 1986-12-30 | 1987-12-29 | Process for production of double structure stainless cr-steel band having high strength, high ductility and low degree aeolotropy |
KR1019870015473A KR950013188B1 (en) | 1986-12-30 | 1987-12-30 | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31196186A JPH07100822B2 (en) | 1986-12-30 | 1986-12-30 | Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63169334A true JPS63169334A (en) | 1988-07-13 |
JPH07100822B2 JPH07100822B2 (en) | 1995-11-01 |
Family
ID=18023519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31196186A Expired - Fee Related JPH07100822B2 (en) | 1986-12-30 | 1986-12-30 | Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07100822B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02217420A (en) * | 1989-02-20 | 1990-08-30 | Nippon Steel Corp | Manufacturing method of ferritic stainless steel thin plate with excellent workability without surface flaws |
WO1995013405A1 (en) * | 1993-11-12 | 1995-05-18 | Nisshin Steel Co., Ltd. | High-strength high-ductility two-phase stainless steel and process for producing the same |
US6050835A (en) * | 1997-01-27 | 2000-04-18 | Molex Incorporated | Electrical connection device for mounting a component in a motor vehicle |
JP2002275596A (en) * | 2001-03-21 | 2002-09-25 | Nisshin Steel Co Ltd | Fe-Cr based steel sheet excellent in ridging resistance and method for producing the same |
JP2004115888A (en) * | 2002-09-27 | 2004-04-15 | Nisshin Steel Co Ltd | Tire rim material and frame material for stainless steel-made two-wheeled vehicle excellent in deflecting resistance |
JP2007276592A (en) * | 2006-04-05 | 2007-10-25 | Yazaki Corp | Wiring harness wiring structure |
US7294212B2 (en) | 2003-05-14 | 2007-11-13 | Jfe Steel Corporation | High-strength stainless steel material in the form of a wheel rim and method for manufacturing the same |
-
1986
- 1986-12-30 JP JP31196186A patent/JPH07100822B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02217420A (en) * | 1989-02-20 | 1990-08-30 | Nippon Steel Corp | Manufacturing method of ferritic stainless steel thin plate with excellent workability without surface flaws |
WO1995013405A1 (en) * | 1993-11-12 | 1995-05-18 | Nisshin Steel Co., Ltd. | High-strength high-ductility two-phase stainless steel and process for producing the same |
US5624504A (en) * | 1993-11-12 | 1997-04-29 | Nisshin Steel Co., Ltd. | Duplex structure stainless steel having high strength and elongation and a process for producing the steel |
US6050835A (en) * | 1997-01-27 | 2000-04-18 | Molex Incorporated | Electrical connection device for mounting a component in a motor vehicle |
JP2002275596A (en) * | 2001-03-21 | 2002-09-25 | Nisshin Steel Co Ltd | Fe-Cr based steel sheet excellent in ridging resistance and method for producing the same |
JP2004115888A (en) * | 2002-09-27 | 2004-04-15 | Nisshin Steel Co Ltd | Tire rim material and frame material for stainless steel-made two-wheeled vehicle excellent in deflecting resistance |
US7294212B2 (en) | 2003-05-14 | 2007-11-13 | Jfe Steel Corporation | High-strength stainless steel material in the form of a wheel rim and method for manufacturing the same |
JP2007276592A (en) * | 2006-04-05 | 2007-10-25 | Yazaki Corp | Wiring harness wiring structure |
Also Published As
Publication number | Publication date |
---|---|
JPH07100822B2 (en) | 1995-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950013188B1 (en) | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy | |
KR100324892B1 (en) | High-strength, high-strength superstructure tissue stainless steel and its manufacturing method | |
KR950013187B1 (en) | Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy | |
JP3292671B2 (en) | Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance | |
JPH01172524A (en) | Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength | |
JPH04154921A (en) | Manufacture of high strength stainless steel strip having excellent shape | |
CN115176042A (en) | Steel sheet and method for producing steel sheet | |
JP2000144258A (en) | Method for producing Ti-containing ferritic stainless steel sheet with excellent ridging resistance | |
JP3363590B2 (en) | High-strength duplex stainless steel and method for producing the same | |
JPS63169334A (en) | Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength | |
JPS63169331A (en) | Production of chromium stainless steel strip of high strength double phase structure having excellent ductility | |
JPS63169330A (en) | Production of chromium stainless steel strip of high-strength double phase structure having excellent ductility | |
JPS63169335A (en) | Production of chromium stainless steel strip of double phase structure having small ntra-surface anisotropy and high ductility and high strength | |
JP2001207244A (en) | Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same | |
JPS63169333A (en) | Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength | |
JP3144228B2 (en) | Method for producing high-chromium cold-rolled steel strip excellent in ridging resistance and workability and method for producing hot-rolled steel strip for the material | |
JPH10280087A (en) | High-strength cold-rolled steel sheet excellent in surface properties and formability and its manufacturing method | |
CN115917029A (en) | Ferritic stainless steel and method for producing ferritic stainless steel | |
JPS63169332A (en) | Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength | |
JP2658706B2 (en) | Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance | |
JP3222239B2 (en) | Hard surface-treated original sheet with high BH property and excellent workability | |
JPS59133324A (en) | Manufacture of high-tension cold-rolled steel plate with superior formability | |
JPH01172525A (en) | Production of complex phase structure chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength | |
JP2971192B2 (en) | Manufacturing method of cold-rolled steel sheet for deep drawing | |
JPS637338A (en) | Production of composite phase structure chromium stainless steel sheet or steel strip having small intrasurface anisotropy and high ductility and high strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |