[go: up one dir, main page]

JPH01172525A - Production of complex phase structure chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength - Google Patents

Production of complex phase structure chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength

Info

Publication number
JPH01172525A
JPH01172525A JP33091487A JP33091487A JPH01172525A JP H01172525 A JPH01172525 A JP H01172525A JP 33091487 A JP33091487 A JP 33091487A JP 33091487 A JP33091487 A JP 33091487A JP H01172525 A JPH01172525 A JP H01172525A
Authority
JP
Japan
Prior art keywords
stainless steel
heat treatment
strength
steel strip
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33091487A
Other languages
Japanese (ja)
Other versions
JPH0814005B2 (en
Inventor
Teruo Tanaka
照夫 田中
Katsuhisa Miyakusu
宮楠 克久
Hiroshi Fujimoto
廣 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP62330914A priority Critical patent/JPH0814005B2/en
Publication of JPH01172525A publication Critical patent/JPH01172525A/en
Publication of JPH0814005B2 publication Critical patent/JPH0814005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a complex phase chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength by executing the specific continuous heat treatment to the cold-rolled steel strip containing the specific composition of Cr, Ni, Mn, Cu, Ti, Nb, Zr, etc. CONSTITUTION:The hot-rolling and cold-rolling as conventional method is executed to the chromium stainless steel containing 10-20wt.% Cr, 0.1-4.0% one or more kinds among Ni, Mn and Cu and 0.05-0.50% one or more kinds among Ti, Nb and Zr as the essential components. The obtd. cold-rolled steel strip is heated at the temp., which becomes two phase zone of ferrite + austenite by using a continuous heat-treatment furnace. This temp. is suitable to be more than 700-1,100 deg.C and this heating time is desirable to be <=10min. Successively, the steel strip is cooled from this temp. to the prescribed temp. at 1-500 deg.C/sec cooling speed to make transformation from austenite to martensite. By this finished heat-treatment, the chromium stainless steel composing of hard martenstic phase and soft ferritic phase and excellent grain boundary corrosion resistance and good workability is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐粒界腐食性に優れ、実質的にフェライトお
よびマルテンサイト混合&111織からなる高延性高強
度の複相組織クロムステンレス鋼帯の新規な工業的製造
法に関し、高強度が必要とされ且つプレス成形などの加
工が施される成形用素材としての高延性高強度ステンレ
ス鋼帯を提供するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a highly ductile, high-strength, multi-phase chromium stainless steel strip that has excellent intergranular corrosion resistance and is substantially composed of ferrite and martensite mixed &111 weave. The present invention provides a highly ductile, high-strength stainless steel strip that requires high strength and is used as a forming material that is subjected to processing such as press forming.

なお2本発明法によれば、連続仕上熱処理工程を経た成
品は銅帯の形態で工業的に製造されるものであり、市場
に出荷される場合には銅帯のまま(コイル)か或いは鋼
板に成形された状態となる。
According to the method of the present invention, the product that has undergone the continuous finishing heat treatment process is manufactured industrially in the form of a copper strip, and when shipped to the market, it is shipped as a copper strip (coil) or as a steel plate. It will be in a molded state.

〔従来の技術] クロムを主合金成分として含有するクロムステンレス鋼
にはマルテンサイト系ステンレス鋼とフェライト系ステ
ンレス鋼とがある。
[Prior Art] Chromium stainless steel containing chromium as a main alloy component includes martensitic stainless steel and ferritic stainless steel.

従来より、高強度のクロムステンレス鋼帯としてはマル
テンサイト系ステンレス鋼が良く知られている。例えば
JIS G 4307には、マルテンサイト系ステンレ
ス鋼として7種の鋼が規定されている。
Martensitic stainless steel has been well known as a high-strength chromium stainless steel strip. For example, JIS G 4307 specifies seven types of martensitic stainless steel.

これらのマルテンサイト系ステンレス鋼は、C;0.0
8%以下(SUS410S)から0.60〜0.75%
(SO5440A)とフェライト系ステンレス鋼にくら
べて高いCを含存し、焼入れ処理または焼入れ焼もどし
処理により高強度を付与することができる。また、この
JIS G 4307において、 0.26〜0.40
%のCおよび12.00〜14.00%(DCrを含有
する5US420J2テは。
These martensitic stainless steels have a C; 0.0
8% or less (SUS410S) to 0.60-0.75%
(SO5440A) contains a higher amount of C than ferritic stainless steel, and can be given high strength by quenching or quenching and tempering. In addition, in this JIS G 4307, 0.26 to 0.40
5US420J2 containing % C and 12.00-14.00% (DCr).

980〜1040℃から)3、冷による焼入れ後、15
0〜400℃空冷の焼もどしによりHRC40以上の硬
さが得られることか、そして0.60〜0.75%のC
および16.00〜18.00%のCrを含有する5U
S440^では、1010〜1070℃からの急冷によ
る焼入れ後、 150〜400℃空冷の焼もどしにより
、同じ< IIRC40以上の硬さが得られることが示
されている。このようにマルテンサイト系ステンレス鋼
では熱処理により高強度が得られるものの、素材メーカ
ーからステンレス鋼板または銅帯として出荷される場合
には焼なまし状態で出荷されることがほとんどであり、
その時点では、 JTS G 4307の表16にも示
されるように強度および硬さは低い。したがって、焼入
れ。
(from 980 to 1040℃) 3, after quenching by cold, 15
Hardness of HRC40 or higher can be obtained by air-cooling tempering at 0 to 400°C, and C of 0.60 to 0.75%.
and 5U containing 16.00-18.00% Cr
For S440^, it has been shown that after quenching by rapid cooling from 1010 to 1070°C, tempering by air cooling from 150 to 400°C gives the same hardness of <IIRC40 or higher. Although martensitic stainless steel can achieve high strength through heat treatment, in most cases when it is shipped from material manufacturers as stainless steel sheets or copper strips, it is shipped in an annealed state.
At that point, the strength and hardness are low as also shown in Table 16 of JTS G 4307. Hence, quenching.

焼入れ一焼もどしなどの熱処理は加工メーカーにて行わ
れるのが通常である。
Heat treatments such as quenching and tempering are usually performed by processing manufacturers.

もう一種のクロムステンレス鋼であるフェライト系ステ
ンレス鋼帯では熱処理による硬化があまり期待できない
ので1強度を上昇させる方法としては焼なまし後、さら
に冷間でfA質圧延を行って加工硬化による強度上昇を
はがる場合がある。しかし、フェライト系ステンレス鋼
は元来が高強度を必要とする用途にはあまり供されては
いないのが実状である。
Ferritic stainless steel strips, which are another type of chromium stainless steel, cannot be expected to be hardened very much by heat treatment, so one way to increase the strength is to perform further cold fA quality rolling after annealing to increase the strength through work hardening. It may peel off. However, the reality is that ferritic stainless steels are not often used in applications that inherently require high strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

マルテンサイト系ステンレス鋼帯では、焼入れまたは焼
入れ一焼もどし処理後の組織はその名称のごとく基本的
にはマルテンサイト組織であり。
In martensitic stainless steel strips, the structure after quenching or quenching and tempering is basically a martensitic structure, as the name suggests.

非常に高い強度および硬さが得られる反面、伸びは非常
に低い。そのため、加工前の鋼板または鋼帯に熱処理を
施したのではその後の加工が困難となる。したがって、
最終製品にほぼ近い形に加工した後に熱処理を施すこと
が多い。特にプレス成形などの加工は熱処理後では不可
能である。いずれにしても、マルテンサイト系ステンレ
ス鋼では高強度を得るためには加工メーカーでの熱処理
工程が不可欠であるという加工メーカー側での負担増が
あり、またこのために最終製品のコストアップは避けら
れないという問題があった。
Although very high strength and hardness are obtained, elongation is very low. Therefore, if a steel plate or steel strip is subjected to heat treatment before processing, subsequent processing becomes difficult. therefore,
Heat treatment is often applied after processing into a shape that approximates the final product. In particular, processing such as press molding is not possible after heat treatment. In any case, in order to obtain high strength with martensitic stainless steel, a heat treatment process at the processing manufacturer is essential, which increases the burden on the processing manufacturer, and this increases the cost of the final product. The problem was that I couldn't do it.

一方、フェライト系ステンレス鋼帯を調質圧延により強
度を上昇させた場合には、伸びの低下が著しくなって強
度−延性のバランスが悪くなる結果、加工性に劣ること
になる。そして、調質圧延による強度上昇の程度は引張
強さよりも耐力の方が著しく高い。このために高圧延率
になると耐力と引張強さの差が小さくなり、降伏比(−
耐力/引張強さ)が1に近くなって材料の塑性加工域が
非常に狭くなると共に耐力が高いとスプリングバックが
大きくなってプレス加工などの後の形状性が悪くなる。
On the other hand, when the strength of a ferritic stainless steel strip is increased by temper rolling, the elongation decreases significantly and the balance between strength and ductility worsens, resulting in poor workability. The degree of increase in strength due to temper rolling is significantly higher in yield strength than in tensile strength. For this reason, when the rolling reduction becomes high, the difference between yield strength and tensile strength becomes smaller, and the yield ratio (-
When the yield strength (yield strength/tensile strength) approaches 1, the plastic working range of the material becomes very narrow, and when the yield strength is high, springback becomes large and shapeability after press working etc. becomes poor.

さらに調質圧延材は強度および伸びの面内異方性が非常
に大きく、軽度のプレス加工などでも加工後の形状が悪
くなる。また、圧延による加工歪みは板の表面に近いほ
ど大きいという特徴があるため、調質圧延材では板厚方
向のひずみ分布が不均一になることが避けられない。こ
れは残留応力の板厚方向の不均一分布をもたらし。
Furthermore, the temper-rolled material has very large in-plane anisotropy in strength and elongation, and even light press processing results in poor shape after processing. Furthermore, since the processing strain caused by rolling is larger closer to the surface of the plate, it is inevitable that the strain distribution in the thickness direction of the temper-rolled material will become non-uniform. This results in non-uniform distribution of residual stress in the thickness direction.

特に極gJ鋼板では打抜き加工やフォトエツチング処理
による穴あけ加工後に板の反りなどの形状変化を生ずる
場合があり、1a子部品などの高精度が必要とされる用
途では大きな問題となる。以上の調質圧延に起因する問
題のみならず、フェライト系ステンレス鋼では木質的な
欠点とも言えるリジングの問題があり、調質圧延後にお
いては一般に延性リジングと呼ばれるリジングを発生し
1表面の粗度が重視される用途ではやはり大きな問題と
なる。
In particular, in extremely gJ steel plates, changes in shape such as warpage may occur after punching or photo-etching, which is a major problem in applications that require high precision, such as 1A child parts. In addition to the above-mentioned problems caused by skin-pass rolling, ferritic stainless steels also have the problem of ridging, which can be considered a wood-related defect. This is a big problem in applications where importance is placed on

〔問題点を解決する手段〕[Means to solve problems]

前述のような問題は、適度な高強度を有し且つ所望の形
状に加工し得る良好な延性および加工性を具備し、異方
性が小さくリジング発生のないクロムステンレス鋼材料
が素材メーカー側で鋼板または調帯の形で提供できれば
解決し得る。そこで本発明者らはこの解決を目的として
化学成分並びに製造条件の両面からクロムステンレス鋼
について広範の研究を続けて来た。その結果、従来のフ
ェライト単相域温度での仕上焼鈍つまり鋼板または銅帯
製品に施す焼なまし処理ではなく、フェライト+オース
テナイト二相域への加熱とその後の急冷処理からなる仕
上熱処理をクロムステンレス鋼の鋼帯製品(通常の熱間
圧延、冷間圧延によって得られた冷延鋼板または調帯)
に施すならば。
To solve the above-mentioned problems, material manufacturers are trying to find a chromium stainless steel material that has moderately high strength, good ductility and workability that can be processed into the desired shape, has small anisotropy, and does not cause ridging. This could be solved if it could be provided in the form of steel plates or strips. In order to solve this problem, the present inventors have continued extensive research on chromium stainless steel from both the chemical composition and manufacturing conditions. As a result, instead of the conventional finish annealing at a temperature in the ferrite single-phase region, that is, the annealing treatment applied to steel sheets or copper strip products, the finish heat treatment consisting of heating to the ferrite + austenite two-phase region and subsequent rapid cooling treatment was applied to chromium stainless steel. Steel strip products (cold-rolled steel sheets or strips obtained by normal hot rolling or cold rolling)
If applied to.

前記の問題点の実質上すべて解決できるとう素晴らしい
成果を得ることができた。
We have achieved great results in solving virtually all of the problems mentioned above.

しかしながら、この場合新たな問題点として。However, in this case, there is a new problem.

仕上熱処理において高温に加熱、冷却した場合。When heated and cooled to high temperatures during finishing heat treatment.

鋭敏化を生じて耐食性が著しく劣下してしまう場合のあ
ることが明らかとなった。ここでの鋭敏化とは、仕上熱
処理前に析出していたクロム炭化物やクロム窒化物が高
温加熱時に一旦固溶し、これが冷却時にフェライトもし
くはマルテンサイトの粒界や相境界に析出する結果1粒
界や相境界近傍にCr欠乏層を生じ、仕上熱処理に引き
続いて連続酸洗を行った場合に9粒界が優先的に浸食さ
れ「ゴールドダスト」や「キラ星」などと呼ばれる粒単
位での脱落を生じたり、製品になってからも耐粒界腐食
性や耐発錆性が著しく低下することを指す。
It has become clear that there are cases where sensitization occurs and corrosion resistance is significantly degraded. Sensitization here means that chromium carbides and chromium nitrides that had precipitated before finishing heat treatment become solid solutions during high-temperature heating, and then precipitate at the grain boundaries or phase boundaries of ferrite or martensite during cooling, resulting in a single grain. Cr-depleted layers are formed near grain boundaries and phase boundaries, and when continuous pickling is performed following finishing heat treatment, the nine grain boundaries are preferentially eroded, resulting in formation of grain units called "gold dust" or "killer stars". This refers to the occurrence of falling off or a significant decrease in intergranular corrosion resistance and rust resistance even after the product is made.

そこで5 この鋭敏化についてさらに検討を行った結果
、仕上熱処理後の複相組織鋼の鋭敏化は主としてマルテ
ンサイト粒界もしくはマルテンサイト相境界で生じ高温
でのオーステナイト中の炭素もしくは窒素量が重要な因
子と推定されること5また鋭敏化を回避する手段として
は、 Ti、Nb、Zrなどの炭・窒化物形成元素を添
加し、鋼中の炭素および窒素をこれら元素の炭・窒化物
として固定することが最も有効であるとの知見を得た。
Therefore, 5 As a result of further investigation on this sensitization, it was found that the sensitization of dual-phase steel after finishing heat treatment occurs mainly at martensite grain boundaries or martensite phase boundaries, and the amount of carbon or nitrogen in austenite at high temperatures is important. 5 Also, as a means to avoid sensitization, carbon/nitride forming elements such as Ti, Nb, and Zr are added, and carbon and nitrogen in the steel are fixed as carbon/nitrides of these elements. We found that it is most effective to do so.

なお、鋭敏化を回避するにはその他にも仕上熱処理にお
ける加熱後の冷却速度を非常に大きくシ。
In addition, in order to avoid sensitization, the cooling rate after heating in the finishing heat treatment must be extremely high.

冷却時のクロム炭・窒化物の析出を抑制する方法や、炭
素および窒素量を低く押さえ同時にNi、Mn。
A method of suppressing the precipitation of chromium carbon and nitrides during cooling, and a method of suppressing the amount of carbon and nitrogen while simultaneously reducing the amount of Ni and Mn.

Cuなどのオーステナイト生成元素を添加してオーステ
ナイト量を高めて、オー久テナイト相中の炭素、窒素量
を低くする方法もある。しかしながら、いずれも特に板
厚の厚い場合などには、工業的な規模の連続熱処理炉に
おいてはその冷却速度に限界があることなどから鋭敏化
が避けられない場合もある。
There is also a method of adding an austenite-forming element such as Cu to increase the amount of austenite and lowering the amount of carbon and nitrogen in the austenite phase. However, in any case, especially when the plate thickness is thick, sensitization may be unavoidable because there is a limit to the cooling rate in an industrial-scale continuous heat treatment furnace.

かくして本発明は、必須成分として10.0〜20.0
重量%のCr、 0.1〜4.0重量%のNi、Mnま
たはCuのうちの1種または2種以上、 0.05〜0
.50重量%のTi、NbまたはZrのうちの1種また
は2種以上を含有するクロムステンレス鋼の冷延鋼帯を
通常の熱間圧延および冷間圧延を経て製造し、得られた
冷延鋼帯を連続熱処理炉を用いてフェライト+オーステ
ナイト二相域となる温度に加熱し。
Thus, the present invention provides 10.0 to 20.0 as an essential component.
Cr in weight%, 0.1 to 4.0 weight% of one or more of Ni, Mn or Cu, 0.05 to 0
.. A cold-rolled steel obtained by manufacturing a cold-rolled steel strip of chromium stainless steel containing 50% by weight of one or more of Ti, Nb, or Zr through normal hot rolling and cold rolling. The strip is heated in a continuous heat treatment furnace to a temperature where it becomes a ferrite + austenite two-phase region.

この温度から1℃/see以上500℃/see以下の
冷却速度で冷却する仕上熱処理を施すことを特徴とする
耐粒界腐食性に優れた高延性高強度の複相組織(実質上
、フェライトとマルテンサイトとからなる組織)を有す
るクロムステンレス鋼帯の製造法を提供するものである
A high-ductility, high-strength multi-phase structure with excellent intergranular corrosion resistance (substantially composed of ferrite and The present invention provides a method for manufacturing a chromium stainless steel strip having a structure consisting of martensite.

本発明法によれば前述の問題点の実質上全てが解決され
るのみならず、@組成または仕上熱処理時の加熱温度並
びに冷却速度を制御することにより強度を自在に且つ簡
単に調整できるという点でクロムステンレス鋼帯素材の
工業的製造にあたっての有利且つ新しい製造技術を提供
するものであり、従来より市場に出荷されているマルテ
ンサイト系ステンレス鋼板または銅帯やフェライト系ス
テンレス鋼板または鋼帯では有しない延性と強度の両特
性を兼備し且つ延性と強度の面内異方性の少ない新規ク
ロムステンレス鋼材料を市場に提供するものである。
According to the method of the present invention, not only virtually all of the above-mentioned problems are solved, but also the strength can be freely and easily adjusted by controlling the composition or the heating temperature and cooling rate during finishing heat treatment. This technology provides an advantageous and new manufacturing technology for the industrial production of chromium stainless steel strip materials, and is unique to martensitic stainless steel sheets or copper strips and ferritic stainless steel sheets or steel strips that have been shipped to the market. The objective is to provide the market with a new chromium stainless steel material that has both excellent ductility and strength properties and has little in-plane anisotropy in ductility and strength.

従来より1例えばフェライト系ステンレス鋼の代表鋼種
である5US430においても二相域温度に加熱すれば
オーステナイトが生成し、このオーステナイトは急冷に
よってマルテンサイトに変態してフェライト+マルテン
サイトの二相組織になること自体は知られていた。しか
しながら、高温でオーステナイトを生成するフェライト
系ステンレス鋼板または綱帯の製造においては、冷延後
の熱処理はあくまでもフェライト単相域温度での焼なま
し処理であり、冷却後にマルテンサイトを生成するよう
な高温の熱処理は延性の低下などの材質上の劣下をもた
らすものとして回避することが常識であり、鋼板または
鋼帯の実際の製造面では全く顧みられなかった。したが
って、クロムステンレス鋼の冷延後の鋼帯に本発明のよ
うな仕上熱処理を施した場合の加熱温度と強度および延
性の関係や、延性および強度の異方性などについて詳細
に研究がなされた例もない。
Conventionally, for example, even in 5US430, which is a representative steel type of ferritic stainless steel, austenite is generated when heated to a temperature in the two-phase region, and this austenite is transformed into martensite by rapid cooling, resulting in a two-phase structure of ferrite + martensite. That itself was known. However, in the production of ferritic stainless steel sheets or steel strips that produce austenite at high temperatures, the heat treatment after cold rolling is essentially an annealing treatment at a temperature in the ferrite single phase range, and martensite may be produced after cooling. It is common knowledge to avoid high-temperature heat treatment because it causes deterioration in material quality such as a decrease in ductility, and has not been considered at all in the actual production of steel plates or steel strips. Therefore, detailed research has been conducted on the relationship between heating temperature, strength, and ductility, as well as the anisotropy of ductility and strength when finishing heat treatment as in the present invention is applied to steel strips after cold rolling of chromium stainless steel. There are no examples.

本発明法を適用するクロムステンレス鋼におけるCr1
lについては、ステンレス鋼としての耐食性を維持する
うえで少なくとも10.0%は必要最低量として含有さ
せるべきであるが、あまりCr景が高いとマルテンサイ
ト相を生成させて高強度を得るに必要なNi、Mn、C
uなどのオーステナイト生成元素の量が多くなるととも
に靭性が低下するようになるため20.0%を上限とす
るのがよい。
Cr1 in chromium stainless steel to which the method of the present invention is applied
Regarding L, it should be contained at least 10.0% as the minimum necessary amount to maintain the corrosion resistance of stainless steel, but if the Cr content is too high, it will generate a martensitic phase, which is necessary to obtain high strength. Ni, Mn, C
As the amount of austenite-forming elements such as u increases, the toughness decreases, so it is preferable to set the upper limit to 20.0%.

Ni、Mn、Culについては、高温でフェライト+オ
ーステナイトニ相組繊を得るためにCrff1に応して
一定量以上必要であり、少なくとも0.1%以上含有さ
せる必要がある。しかしながら、あまり高いと仕上熱処
理後に生成するマルテンサイト相が多くなり、場合によ
っては100%マルテンサイトとなって強度は得られる
ものの延性が低下するため、それぞれ上限を4.0%と
するのが良い。
Regarding Ni, Mn, and Cul, in order to obtain a ferrite + austenite biphasic fiber at high temperatures, a certain amount or more is required depending on Crff1, and it is necessary to contain at least 0.1% or more. However, if it is too high, a large amount of martensite phase will be generated after finishing heat treatment, and in some cases, it will become 100% martensite, which may provide strength but reduce ductility, so it is better to set the upper limit to 4.0%. .

Ti、Nb、Zrは、  C,Nをそれぞれの炭・窒化
物として固定し、仕上熱処理時における鋭敏化を防止し
、耐粒界腐食性の劣下を抑制するために必要である。こ
のためには、C,Nlによっても異なるが、少なくとも
それぞれ0.05%以上の添加が必要であり、より好ま
しくは、Ti単独添加の場合で(C十N)量の約4倍以
上、Nb、Zr各々単独添加では(C十N)ilの約8
倍以上とするのがよい。なお、複合で添加する場合は、
 Ti、Nb、Zrの合計量がC,Nの固定に十分な量
であればよい。
Ti, Nb, and Zr are necessary to fix C and N as carbon and nitride, prevent sensitization during finishing heat treatment, and suppress deterioration of intergranular corrosion resistance. For this purpose, it is necessary to add at least 0.05% or more of each of C and Nl, although it varies depending on C and Nl. , Zr is added alone to about 8 of (C0N)il.
It is better to double or more. In addition, when adding in combination,
It is sufficient that the total amount of Ti, Nb, and Zr is sufficient to fix C and N.

一方、Ti、Nb、Zrはフェライト生成元素でもある
ため、これらを過剰に添加するとそれに見合った量のN
i、Mn、Cuなとのオーステナイト生成元素をさらに
添加する必要があり、このために製品が高価となるので
それぞれ0.50%を上限とするのが良い。
On the other hand, Ti, Nb, and Zr are also ferrite-forming elements, so if they are added in excess, a commensurate amount of N will be added.
It is necessary to further add austenite-forming elements such as i, Mn, and Cu, which makes the product expensive, so it is preferable to set the upper limit to 0.50% for each.

C,Nについては特にその量を規制するものでではない
が、前述のTi、Nb、Zr添加量を少くするうえでは
、  C,N量は低い方が望ましく、Cは0.03%以
下、Nは0.015%以下がそれぞれ好ましいと言える
There is no particular restriction on the amounts of C and N, but in order to reduce the amounts of Ti, Nb, and Zr mentioned above, it is desirable that the amounts of C and N be lower, and C should be 0.03% or less. It can be said that N is preferably 0.015% or less.

以上の成分個々の規制とともに本発明を適用するクロム
ステンレス鋼では高温でフェライト+オーステナイトニ
相組繊となるよう成分調整されたものである必要がある
ことは言うまでもない。
It goes without saying that the chromium stainless steel to which the present invention is applied in addition to the above-mentioned restrictions on individual components must have its components adjusted so that it becomes a biphasic fiber of ferrite and austenite at high temperatures.

本発明における仕上熱処理時の加熱温度はフェライト+
オーステナイト二相域温度であることが絶対条件である
1本発明が有利に実施し得るクロムステンレス鋼ではフ
ェライト+オーステナイト二相IJ1mとなる下限の温
度はおおむね700〜900℃の範囲であり、換言すれ
ばそのように成分調整したクロムステンレス鋼を対象と
した場合に本発明の効果が最も良く現れるとも言いえる
。この仕上熱処理時の加熱温度の上限については、あま
り高温では強度上昇が飽和するとともに製造コスト面で
も不利となるので1100℃を上限とするのがよい。
The heating temperature during the finishing heat treatment in the present invention is ferrite +
An absolute condition is that the temperature be in the austenite two-phase region.1 In chromium stainless steel, in which the present invention can be advantageously implemented, the lower limit temperature at which the ferrite + austenite two-phase IJ1m is achieved is approximately in the range of 700 to 900°C. It can also be said that the effects of the present invention are best manifested when the target is chromium stainless steel whose composition has been adjusted in this manner. Regarding the upper limit of the heating temperature during this finishing heat treatment, it is preferable to set the upper limit to 1100° C., since if the temperature is too high, the increase in strength will be saturated and it will also be disadvantageous in terms of manufacturing cost.

本発明法における仕上熱処理時のフェライト+オーステ
ナイト二相域加熱では短時間のうちにほぼ平衡状態の量
のオーステナイト相が生成するので、加熱時間は短時間
、おおむね10分間以内の加熱でよい。この短時間加熱
でよいことは本発明法の実際操業の点でも連続熱処理が
可能となり生産効率、製造コストの面から非常に有利で
ある。
In the heating in the ferrite + austenite two-phase region during the finishing heat treatment in the method of the present invention, an approximately equilibrium amount of austenite phase is generated within a short time, so the heating time may be short, approximately 10 minutes or less. The fact that heating is sufficient for a short period of time enables continuous heat treatment in the actual operation of the method of the present invention, which is very advantageous in terms of production efficiency and manufacturing cost.

仕上熱処理時の冷却速度についてはTi、Nb、Zr含
有鋼を対象とする本発明では、鋭敏化の観点からは特に
規制する必要はないが、マルテンサイト相と軟質なフェ
ライト相との複相組織を得るうえから1℃/sec以上
の冷却速度とする必要があるが。
In the present invention, which targets Ti, Nb, and Zr-containing steels, there is no need to particularly regulate the cooling rate during finishing heat treatment from the viewpoint of sensitization. In order to obtain this, it is necessary to set the cooling rate to 1° C./sec or more.

500℃/secを超える冷却速度を得るのは実質上困
難である。したがって2本発明において二相温度域加熱
からの冷却は1〜500℃/secの範囲の冷却速度で
実施する。この冷却速度は常温までの終点冷却温度まで
としてもよいが、低温変態相すなわちマルテンサイト相
に変態してしまったあとの冷却過程では必ずしもこの冷
却速度を採用する必要はない。冷却の方法としては気体
および/または液体の冷却媒体を綱板または銅帯に吹き
付ける強制冷却方式、水冷ロールによるロール冷却方式
などを適用できる。本発明に従う仕上熱処理はコイル巻
戻し機から巻取り機に至る間に加熱均熱帯域と急冷帯域
を有する連続熱処理炉にクロムステンレス鋼の冷延スト
リップを通板するという連続熱処理方式で行うことがで
きる。具体的には、ステンレス鋼用の連続光輝焼鈍炉や
連続焼鈍酸洗炉。
It is virtually difficult to obtain cooling rates in excess of 500° C./sec. Therefore, in the present invention, cooling from two-phase temperature range heating is carried out at a cooling rate in the range of 1 to 500° C./sec. Although this cooling rate may be up to the final cooling temperature to room temperature, it is not necessarily necessary to employ this cooling rate in the cooling process after transformation to a low-temperature transformation phase, that is, a martensitic phase. As a cooling method, a forced cooling method in which a gas and/or liquid cooling medium is sprayed onto a steel plate or a copper strip, a roll cooling method using water-cooled rolls, etc. can be applied. The finishing heat treatment according to the present invention can be carried out by a continuous heat treatment method in which the cold rolled strip of chrome stainless steel is passed through a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil unwinding machine and the winding machine. can. Specifically, continuous bright annealing furnaces and continuous annealing and pickling furnaces for stainless steel.

また普通鋼用の連続焼鈍炉が適用し得る。Further, a continuous annealing furnace for ordinary steel can be applied.

なお5 この仕上連続熱処理に供する銅帯は5通常の熱
延工程、冷延工程を経て製造することができる。そのさ
い、冷延工程では1回冷延によって所望板厚まで圧下を
行ってもよいし、中間焼鈍を挟む2回以上の冷延によっ
て所望板厚まで圧下してもよい、前者の場合にも本発明
に従う仕上連続熱処理を行なうことによって複相組織鋼
帯には面内異方性は実質上現れなくなるが、後者の場合
にはさらにその面内異方性を低減させることができる。
Note that the copper strip to be subjected to this finishing continuous heat treatment can be manufactured through a normal hot rolling process and a cold rolling process. At that time, in the cold rolling process, the plate thickness may be reduced to the desired thickness by one cold rolling, or may be reduced to the desired plate thickness by two or more cold rollings with intermediate annealing in between. By performing the finishing continuous heat treatment according to the present invention, in-plane anisotropy substantially disappears in the dual-phase steel strip, but in the latter case, the in-plane anisotropy can be further reduced.

本発明法により得られる複相組織鋼の強度は主としてマ
ルテンサイト相の量(体積分率)に依存する。したがっ
て1本発明法の実施に際し、化学成分面からはN t、
 Mn、 Cuなどのオーステナイト生成元素とCr、
Si、Ti、Nb、Zr、A1.Moなどのフェライト
生成元素の成分バランスを調整することにより高温での
オーステナイト量すなわち急冷後のマルテンサイト相の
体積分率を制御でき、これによって仕上熱処理後の強度
は自在に制御することができる。また、製造条件の面か
らも仕上熱処理時の加熱温度の制御により、マルテンサ
イト相の体積分率の制御が行い得る。
The strength of the multiphase steel obtained by the method of the present invention mainly depends on the amount (volume fraction) of the martensitic phase. Therefore, when carrying out the method of the present invention, from the chemical composition point of view, Nt,
Austenite forming elements such as Mn and Cu and Cr,
Si, Ti, Nb, Zr, A1. By adjusting the component balance of ferrite-forming elements such as Mo, the amount of austenite at high temperatures, that is, the volume fraction of the martensite phase after quenching, can be controlled, and thereby the strength after finishing heat treatment can be freely controlled. Also, from the viewpoint of manufacturing conditions, the volume fraction of the martensitic phase can be controlled by controlling the heating temperature during the finishing heat treatment.

なお、化学成分面では強度制御のみならず、耐食性の向
上を目的としてMoを添加したり、耐酸化性向上の観点
からYやREMを添加したりするなど、?5J相組m鋼
の各種特性を向上させる目的で種々の元素を添加、また
はその含有量を規制することができる。また、炭・窒化
物成形元素としては、 T t、 Nb、 Z r以外
にもV、Taなどの元素も同様な効果を有する。
In addition, in terms of chemical composition, in addition to controlling strength, Mo is added to improve corrosion resistance, and Y and REM are added to improve oxidation resistance. Various elements can be added or their contents can be regulated for the purpose of improving various properties of the 5J interlaced m steel. Further, as carbon/nitride forming elements, in addition to Tt, Nb, and Zr, elements such as V and Ta also have similar effects.

〔実施例〕〔Example〕

第1表に示す化学成分を有する鋼を溶製し、いずれも板
厚3.6mmに熱間圧延後、780℃X6時間の熱延板
焼鈍を行い、酸洗を経て板厚0.7mmの冷間圧延鋼帯
とした。これらの冷延鋼帯について第2表に示した仕上
熱処理条件のもとて連続仕上熱処理を施した。但し、比
較例Nα4は仕上熱処理を連続熱処理炉ではなくパンチ
式の箱型炉で930℃X6時間、炉冷の熱処理を施した
ものであり、また比較例Nα5は前記酸洗後の熱延鋼帯
を冷間圧延により板厚1.0mmとした後1730℃X
I分の中間焼鈍を施し、さらに冷間圧延により0.7m
mとしだ調質圧延材である。これらの材料特性を第2表
に併記した。
Steel having the chemical composition shown in Table 1 is melted, hot-rolled to a thickness of 3.6 mm, annealed at 780°C for 6 hours, and pickled to a thickness of 0.7 mm. It was made into a cold rolled steel strip. These cold rolled steel strips were subjected to continuous finish heat treatment under the finish heat treatment conditions shown in Table 2. However, in Comparative Example Nα4, the finish heat treatment was performed in a punch-type box furnace rather than in a continuous heat treatment furnace, and the furnace cooling was performed at 930°C for 6 hours, and in Comparative Example Nα5, the hot rolled steel after pickling was After the strip was cold rolled to a thickness of 1.0 mm, it was heated at 1730℃
Intermediate annealing for I minutes and further cold rolling to 0.7 m
m is a temper-rolled material. These material properties are also listed in Table 2.

第2表から明らかなように9本発明法によればいずれも
高い引張強さと硬さおよび良好な伸びを有している。ま
た1本発明法ではりジング発生は認められず、さらに仕
上熱処理後の鋭敏化も認められない。
As is clear from Table 2, all nine samples obtained by the method of the present invention have high tensile strength, hardness, and good elongation. Further, in the method of the present invention, no occurrence of peeling was observed, and furthermore, no sensitization after finishing heat treatment was observed.

これに対し、比較例Nα1.2では仕上熱処理条件は本
発明で規定する範囲であり機械的性質ならびにリジング
特性は良好であるが、比較例NαlはTi添加量が0.
03%と低く、また比較例No、 2はTi。
On the other hand, in Comparative Example Nα1.2, the finishing heat treatment conditions are within the range specified by the present invention and the mechanical properties and ridging properties are good, but in Comparative Example Nα1, the Ti addition amount is 0.
Comparative Example No. 2 is Ti.

Nb、Zrの炭・窒化物形成元素を特に添加していない
ことから、いずれも鋭敏化を生しており耐粒界腐食性が
劣る。
Since carbon/nitride-forming elements such as Nb and Zr are not particularly added, both are sensitized and have poor intergranular corrosion resistance.

比較例Nα3は仕上熱処理温度が730℃と低く。Comparative Example Nα3 has a low finishing heat treatment temperature of 730°C.

この温度ではNo、 4の鋼はフェライト+オーステナ
イト二相域にはならず、したがって仕上熱処理後の金属
組織はマルテンサイトの存在しないフェライト単相組織
であり、伸びは比較的高いものの。
At this temperature, steel No. 4 does not reach the ferrite + austenite two-phase region, so the metal structure after finishing heat treatment is a ferrite single-phase structure without martensite, and although the elongation is relatively high.

強度および硬さが低く、またリジングを発生している。The strength and hardness are low, and ridging occurs.

比較例Nα4は仕上熱処理での冷却速度が0.03”C
/secと非常に低いので熱処理後にマルテンサイトが
生成しておらず、比較例Nα3と同様に、伸びは高いも
のの強度および硬さが低く、また、リジングを発生して
いる。
Comparative example Nα4 has a cooling rate of 0.03”C during finishing heat treatment.
/sec, so no martensite was generated after the heat treatment, and like Comparative Example Nα3, the elongation was high but the strength and hardness were low, and ridging occurred.

比較何階5は調質圧延材であり本発明例のものに比べ引
張強さ(硬さ)に対する伸びが著しく低く2強度−伸び
バランスに劣る。また、引張強さに対する0、2%耐力
の比、すなわち降伏比が高いとともに、0.2%耐力お
よび引張強さの面内異方性が非常に大きい。したがって
2本発明例によって得られた材料に比べて加工性ならび
に加工後の形状性に劣ることが明らかである。
Comparative number 5 is a temper-rolled material, and compared to the inventive example, the elongation with respect to tensile strength (hardness) is significantly lower and the two-strength-elongation balance is inferior. Furthermore, the ratio of 0.2% proof stress to tensile strength, that is, the yield ratio, is high, and the in-plane anisotropy of 0.2% proof stress and tensile strength is very large. Therefore, it is clear that the workability and shape properties after processing are inferior to the materials obtained by the second invention example.

以上のように1本発明法によれば、耐粒界腐食性に優れ
、高延性と高強度を兼備し2強度と延性の面内異方性が
小さく且つ低耐力、低降伏比の複相組織鋼帯が提供され
る。クロムステンレス鋼板の分野において、従来かよう
な良好な加工性を兼備した高強度素材が鋼板または鋼帯
の形で市場に出荷された例は見ない、したがって1本発
明は従来のクロムステンレス鋼板分野に新規素材鋼板ま
たは鋼1帯を提供するものである。本発明に従う材料は
電子部品、精密機械部品などへの加工性が要求される高
強度材として特に有用であり、この分野において多大の
成果が発揮され得る。
As described above, (1) the method of the present invention has excellent intergranular corrosion resistance, high ductility and high strength, and (2) a complex phase with small in-plane anisotropy of strength and ductility, low proof stress, and low yield ratio. A textured steel strip is provided. In the field of chrome stainless steel sheets, there has never been an example of a high-strength material with such good workability being shipped to the market in the form of steel plates or steel strips. The purpose is to provide a new material steel plate or steel strip. The material according to the present invention is particularly useful as a high-strength material that requires processability into electronic parts, precision mechanical parts, etc., and can achieve great results in this field.

Claims (5)

【特許請求の範囲】[Claims] (1)必須成分として、10.0〜20.0重量%のC
r、0.1〜4.0重量%のNi、MnまたはCuのう
ちの1種または2種以上、0.05〜0.50重量%の
Ti、NbまたはZrのうちの1種または2種以上を含
有するクロムステンレス鋼の冷延鋼帯を通常の熱間圧延
および冷間圧延を経て製造し、得られた冷延鋼帯を連続
熱処理炉を用いてフェライト+オーステナイトの二相域
となる温度に加熱し、この温度から1℃/sec以上5
00℃/sec以下の冷却速度で冷却する仕上熱処理を
施すことを特徴とする耐粒界腐食性に優れた高延性高強
度の複相組織クロムステンレス鋼帯の製造法。
(1) 10.0 to 20.0% by weight of C as an essential component
r, 0.1 to 4.0% by weight of one or more of Ni, Mn or Cu, 0.05 to 0.50% by weight of one or two of Ti, Nb or Zr A cold-rolled steel strip of chromium stainless steel containing the above is produced through normal hot rolling and cold rolling, and the obtained cold-rolled steel strip is converted into a two-phase region of ferrite + austenite using a continuous heat treatment furnace. Heat to a temperature of 1°C/sec or more from this temperature 5
A method for producing a multi-phase chromium stainless steel strip with high ductility and high strength and excellent intergranular corrosion resistance, characterized by performing finishing heat treatment by cooling at a cooling rate of 00° C./sec or less.
(2)クロムステンレス鋼は、フェライト+オーステナ
イト二相域となる温度が700℃を超える温度となるよ
う成分調整された鋼である特許請求の範囲第1項記載の
製造法。
(2) The manufacturing method according to claim 1, wherein the chromium stainless steel is a steel whose composition is adjusted so that the temperature at which the ferrite + austenite two-phase region occurs exceeds 700°C.
(3)仕上熱処理の加熱温度は1100℃以下である特
許請求の範囲第1項または第2項記載の製造法。
(3) The manufacturing method according to claim 1 or 2, wherein the heating temperature of the finishing heat treatment is 1100°C or less.
(4)仕上熱処理の加熱時間は10分以内である特許請
求の範囲第1項、第2項または第3項記載の製造法。
(4) The manufacturing method according to claim 1, 2, or 3, wherein the heating time of the finishing heat treatment is 10 minutes or less.
(5)仕上熱処理における冷却はオーステナイトがマル
テンサイトに変態するに十分な冷却速度と冷却終点温度
で行う特許請求の範囲第1項、第2項、第3項または第
4項記載の製造法。
(5) The manufacturing method according to claim 1, 2, 3, or 4, in which cooling in the finishing heat treatment is performed at a cooling rate and cooling end point temperature sufficient to transform austenite into martensite.
JP62330914A 1987-12-26 1987-12-26 Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance Expired - Fee Related JPH0814005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330914A JPH0814005B2 (en) 1987-12-26 1987-12-26 Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330914A JPH0814005B2 (en) 1987-12-26 1987-12-26 Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance

Publications (2)

Publication Number Publication Date
JPH01172525A true JPH01172525A (en) 1989-07-07
JPH0814005B2 JPH0814005B2 (en) 1996-02-14

Family

ID=18237884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330914A Expired - Fee Related JPH0814005B2 (en) 1987-12-26 1987-12-26 Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0814005B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013405A1 (en) 1993-11-12 1995-05-18 Nisshin Steel Co., Ltd. High-strength high-ductility two-phase stainless steel and process for producing the same
JPH11279654A (en) * 1998-03-31 1999-10-12 Nisshin Steel Co Ltd Manufacture of titanium-containing ferritic stainless steel strip
AT411069B (en) * 1999-10-18 2003-09-25 Haldex Garphyttan Aktiebolag WIRE-SHAPED PRODUCT, THE USE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
JP2010094903A (en) * 2008-10-16 2010-04-30 Nanjo Sobi Kogyo Kk Multilayer mold and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156236A (en) * 1984-08-23 1986-03-20 Sumitomo Metal Ind Ltd Method for manufacturing duplex stainless steel hot-rolled steel strip for processing
JPS61284532A (en) * 1985-06-10 1986-12-15 Nippon Kokan Kk <Nkk> Production of two-phase stainless uoe steel pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156236A (en) * 1984-08-23 1986-03-20 Sumitomo Metal Ind Ltd Method for manufacturing duplex stainless steel hot-rolled steel strip for processing
JPS61284532A (en) * 1985-06-10 1986-12-15 Nippon Kokan Kk <Nkk> Production of two-phase stainless uoe steel pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013405A1 (en) 1993-11-12 1995-05-18 Nisshin Steel Co., Ltd. High-strength high-ductility two-phase stainless steel and process for producing the same
US5624504A (en) * 1993-11-12 1997-04-29 Nisshin Steel Co., Ltd. Duplex structure stainless steel having high strength and elongation and a process for producing the steel
JPH11279654A (en) * 1998-03-31 1999-10-12 Nisshin Steel Co Ltd Manufacture of titanium-containing ferritic stainless steel strip
AT411069B (en) * 1999-10-18 2003-09-25 Haldex Garphyttan Aktiebolag WIRE-SHAPED PRODUCT, THE USE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
JP2010094903A (en) * 2008-10-16 2010-04-30 Nanjo Sobi Kogyo Kk Multilayer mold and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0814005B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
US5178693A (en) Process for producing high strength stainless steel of duplex structure having excellent spring limit value
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
CN114717478A (en) Lightweight high-strength steel and method for producing the same
JPS5827329B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent ductility
JP2000273577A (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and material stability and method for producing the same
JPH0733551B2 (en) Method for producing high strength steel sheet having excellent formability
JPH0830212B2 (en) Manufacturing method of ultra high strength cold rolled steel sheet with excellent workability
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPH01172525A (en) Production of complex phase structure chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JP2004124123A (en) Low-yield-ratio high-strength cold-rolled steel sheet excellent in workability and shape freezing property and method for producing the same
JPS63169330A (en) Production of chromium stainless steel strip of high-strength double phase structure having excellent ductility
JPH0394017A (en) Production of high strength sheet metal excellent in local elongation
JP5163431B2 (en) Method for producing high strength cold-rolled steel sheet with small strength fluctuation
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
US4594114A (en) Process for producing strip of corrosion resistant alloy steel
JPH07100821B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0572449B2 (en)
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JPH0426719A (en) Production of 13cr stainless steel having high strength and high ductility
KR101528014B1 (en) Cold-rolled steel plate and method for producing same
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees