JPS63169330A - Production of chromium stainless steel strip of high-strength double phase structure having excellent ductility - Google Patents
Production of chromium stainless steel strip of high-strength double phase structure having excellent ductilityInfo
- Publication number
- JPS63169330A JPS63169330A JP62000100A JP10087A JPS63169330A JP S63169330 A JPS63169330 A JP S63169330A JP 62000100 A JP62000100 A JP 62000100A JP 10087 A JP10087 A JP 10087A JP S63169330 A JPS63169330 A JP S63169330A
- Authority
- JP
- Japan
- Prior art keywords
- less
- heat treatment
- steel strip
- temperature
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 51
- 239000010935 stainless steel Substances 0.000 title claims abstract description 37
- 239000011651 chromium Substances 0.000 title claims abstract description 35
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229910052804 chromium Inorganic materials 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 109
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 66
- 239000010959 steel Substances 0.000 claims abstract description 66
- 238000001816 cooling Methods 0.000 claims abstract description 46
- 238000005097 cold rolling Methods 0.000 claims abstract description 44
- 238000000137 annealing Methods 0.000 claims abstract description 34
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 25
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 22
- 238000005098 hot rolling Methods 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 3
- 229910052717 sulfur Inorganic materials 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 57
- 239000010960 cold rolled steel Substances 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 description 53
- 229910000734 martensite Inorganic materials 0.000 description 34
- 238000005096 rolling process Methods 0.000 description 24
- 239000000047 product Substances 0.000 description 15
- 238000010791 quenching Methods 0.000 description 11
- 230000000171 quenching effect Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000005496 tempering Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910001035 Soft ferrite Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229930091051 Arenine Natural products 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、延性に優れ強度および延性の面内異方性の小
さい高強度複相Mi織ツクロムステンレス鋼帯新規な工
業的製造法に関し、高強度が必要とされ且つプレス成形
などの加工が施される成形用素材としての高強度高延性
ステンレス鋼帯の製造法を提供するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a new industrial manufacturing method for a high-strength, multi-phase Mi-woven chromium stainless steel strip with excellent ductility and low in-plane anisotropy of strength and ductility. The present invention provides a method for manufacturing a high-strength, high-ductility stainless steel strip that is required to have high strength and is used as a forming material that is subjected to processing such as press forming.
クロムを主合金成分として含有するクロムステンレス鋼
にはマルテンサイト系ステンレス鋼とフェライト系ステ
ンレス鋼とがある。いずれも、クロムおよびニッケルを
主合金成分として含有するオーステナイト系ステンレス
鋼に比べて安価であり、そして強磁性を有し熱膨張係数
が小さいなどの物性面でオーステナイト系ステンレス鋼
には見られない特徴を有するので、単に経済的な理由の
みならず特性面からクロムステンレス鋼に限定される用
途も多い。特に近年の電子機器や精密機械部品などの分
野では、その需要拡大にともなってクロムステンレス鋼
板を使用する用途において加工成品の高機能化、小型化
、一体化、高精度化並びに加工工程の簡略化に対する要
求が益々厳しくなってきている。このために、ステンレ
ス鋼本来の耐食性や上述のクロムステンレス鋼の特質に
加えて、クロムステンレス鋼板の素材面では、一層の強
度、加工性や精度が必要とされる。したがって、高強度
と高延性という相反する特性を兼備したもの、素材鋼板
時点での形状や板厚精度に優れたもの、加工後の形状精
度に優れるといった緒特性を合わせもつクロムステンレ
ス鋼板素材の出現が待たれている。Chromium stainless steel containing chromium as a main alloy component includes martensitic stainless steel and ferritic stainless steel. Both are cheaper than austenitic stainless steels, which contain chromium and nickel as the main alloy components, and have physical properties that are not found in austenitic stainless steels, such as ferromagnetism and a small coefficient of thermal expansion. Therefore, there are many uses that are limited to chromium stainless steel not only for economic reasons but also for characteristics. Particularly in the fields of electronic equipment and precision mechanical parts in recent years, demand for chrome stainless steel sheets has increased, resulting in higher functionality, miniaturization, integration, higher precision, and simplification of processing processes for processed products in applications that use chrome stainless steel sheets. requirements are becoming increasingly strict. For this reason, in addition to the inherent corrosion resistance of stainless steel and the above-mentioned characteristics of chromium stainless steel, the material of the chrome stainless steel plate needs to have even greater strength, workability, and precision. Therefore, the emergence of chromium stainless steel sheet materials that have the contradictory properties of high strength and high ductility, excellent shape and thickness accuracy at the time of raw steel sheet, and excellent shape accuracy after processing. is awaited.
〔従来の技術〕
従来のクロムステンレス鋼板素材について2強度の観点
から見ると、先ずマルテンサイト系ステンレス鋼が高強
度を有するクロムステンレス鋼として良く知られている
0例えばJIS G 4305の冷間圧延ステンレス鋼
板にはマルテンサイト系ステンレス鋼として7種の鋼が
規定されている。これらのマルテンサイト系ステンレス
鋼は、Cが0,08%以下(SUS410S)から0.
60〜0.75%(SUS440A)であり、フェライ
ト系ステンレス鋼に比べて同−Cr量レベルで見ると、
高いCを含有し、焼入れ処理または焼入れ焼もどし処理
により高強度を付与することができる。例えば、このJ
IS G 4305において、 0.26〜0.40%
のCおよび 12.00〜14.00%のCrを含有す
る5US420J2では、 980〜1040℃からの
急冷による焼入れ後、150〜400℃空冷の焼もどし
により)IRC40以上の硬さが得られることが、そし
て、 0.60〜0.75%のCおよび16.00〜1
8.00%のCrを含有する5US440Aでは、 1
010〜1070℃からの急冷による焼入れ後、150
〜400℃空冷の焼もどしにより、同じ<HRC40以
上の硬さが得られることが示されている。[Prior Art] Looking at conventional chromium stainless steel sheet materials from the viewpoint of two strengths, firstly, martensitic stainless steel is well known as a chromium stainless steel with high strength.For example, cold rolled stainless steel according to JIS G 4305 Seven types of martensitic stainless steel are specified for steel plates. These martensitic stainless steels have a C content ranging from 0.08% or less (SUS410S) to 0.08% or less (SUS410S).
60 to 0.75% (SUS440A), compared to ferritic stainless steel at the same -Cr content level.
It contains high C and can be given high strength by hardening treatment or hardening and tempering treatment. For example, this J
In IS G 4305, 0.26-0.40%
5US420J2 containing 12.00% to 14.00% Cr, it is possible to obtain a hardness of IRC40 or higher (after quenching by quenching from 980 to 1040°C and then tempering by air cooling at 150 to 400°C). , and 0.60-0.75% C and 16.00-1
For 5US440A containing 8.00% Cr, 1
After quenching by rapid cooling from 010 to 1070℃, 150℃
It has been shown that the same hardness <HRC40 or higher can be obtained by air-cooling tempering at ~400°C.
一方、クロムステンレス鋼であるフェライト系ステンレ
ス鋼板では熱処理による硬化があまり期待できないので
9強度を上昇させる方法としては焼なまし後、さらに冷
間でtIIX圧延を行って加工硬化による強度上昇を図
ることが行われている。On the other hand, ferritic stainless steel sheets, which are chromium stainless steels, cannot be expected to be hardened very much by heat treatment, so a way to increase the strength is to perform further cold tIIX rolling after annealing to increase the strength through work hardening. is being carried out.
しかし、フェライト系ステンレス鋼は元来が高強度を必
要とする用途にはあまり供されてはいないのが実状であ
る。However, the reality is that ferritic stainless steels are not often used in applications that inherently require high strength.
マルテンサイト系ステンレス鋼板では、焼入れまたは焼
入れ一焼もどし処理凌のMi織はその名称のごとく基本
的にはマルテンサイト組織であり。In martensitic stainless steel sheets, the Mi weave that is hardened or tempered after hardening is basically a martensitic structure, as its name suggests.
非常に高い強度および硬さが得られる反面、伸びは非常
に低い、そのため、焼入れまたは焼入れ焼もどし処理を
施したのではその後の加工が困難となる。特にプレス成
形などの加工は焼入れまたは焼入れ焼もどし後では不可
能である。したがって加工が施される場合には焼入れま
たは焼入れ焼もどし前に施される。すなわち、素材メー
カーからは焼なました状態、つまり、 JIS G 4
305の表16にも示されるように強度および硬さの低
い軟質な状態で出荷され、加工メーカーにおいて最終成
品にほぼ近い形状に加工された後、焼入れまたは焼入れ
焼もどし処理を施すのが通常である。この焼入れまたは
焼入れ焼もどし処理を施すことにより生成する表面の酸
化皮膜(スケール)は表面の美麗さが重要視されるステ
ンレス鋼では好ましくない場合が多く、その対策として
真空もしくは不活性ガス雰囲気による熱処理を施したり
、熱処理後に研摩などによりスケールを除去するなどの
工程が必要となる。いずれにしても、マルテンサイト系
ステンレス鋼板では高強度を得るためには加工メーカー
での熱処理工程が不可欠であるという加工メーカー側で
の負担増があり、またこのために最終製品のコストアッ
プは避けられないという問題があった。Although it has very high strength and hardness, it has very low elongation, so it is difficult to process it after quenching or quenching and tempering. In particular, processing such as press forming is not possible after quenching or quench-tempering. Therefore, when processing is performed, it is performed before quenching or quenching and tempering. In other words, the material manufacturer says that it is in an annealed state, that is, JIS G 4.
As shown in Table 16 of 305, it is usually shipped in a soft state with low strength and hardness, and after being processed into a shape almost similar to the final product at a processing manufacturer, it is quenched or quenched and tempered. be. The surface oxide film (scale) produced by this quenching or quenching and tempering treatment is often undesirable for stainless steel, where surface beauty is important, and as a countermeasure, heat treatment in a vacuum or inert gas atmosphere is recommended. This requires steps such as applying heat treatment and removing scale by polishing or the like after heat treatment. In any case, in order to obtain high strength with martensitic stainless steel sheets, a heat treatment process at the processing manufacturer is essential, which increases the burden on the processing manufacturer, and this increases the cost of the final product. The problem was that I couldn't do it.
一方、フェライト系ステンレス鋼板を調質圧延により強
度を上昇させた場合には、伸びの低下が著しくなって強
度−延性バランスが悪くなる結果。On the other hand, when the strength of a ferritic stainless steel sheet is increased by temper rolling, the elongation decreases significantly and the strength-ductility balance deteriorates.
加工性に劣ることになる。そして、調質圧延による強度
上昇の程度は引張強さよりも耐力の方が著しく高い。こ
のために高圧延率になると耐力と引張強さの差が小さく
なり、降伏比(=耐力/引張強さ)が1に近くなって材
料の塑性加工域が非常に狭くなると共に、耐力が高いと
スプリングバンクが大きくなってプレス加工などの後の
形状性が悪くなる。さらに調質圧延材は強度および伸び
の面内異方性が非常に大きく、軽度のプレス加工などで
も加工後の形状が悪くなる。また、圧延による加工歪み
は板の表面に近いほど大きいという特徴があるため、l
i質正圧延材は板厚方向のひずみ分布が不均一になるこ
とが避けられない。これは残留応力の板厚方向の不均一
分布をもたらし、特に極薄a仮では打抜き加工やフォト
エツチング処理による穴あけ加工後に板の反りなどの形
状変化を生ずる場合があり、電子部品などの高精度が必
要とされる用途では大きな問題となる。以上の材質特性
面での問題のみならず、 #A’l圧延材はその製造性
においても多くの問題を抱えている。先ず強度の制御に
ついて見ると、!質圧延は冷間圧延による加工硬化を利
用しているため圧延率が強度を決定する最も重要な因子
である。したがって。This results in poor workability. The degree of increase in strength due to temper rolling is significantly higher in yield strength than in tensile strength. For this reason, when the rolling rate becomes high, the difference between proof stress and tensile strength becomes smaller, and the yield ratio (= proof stress / tensile strength) becomes close to 1, the plastic working area of the material becomes very narrow, and the yield strength becomes high. As a result, the spring bank becomes larger and the shape after pressing etc. becomes worse. Furthermore, the temper-rolled material has very large in-plane anisotropy in strength and elongation, and even light press processing results in poor shape after processing. In addition, since processing distortion due to rolling is larger closer to the surface of the plate,
It is unavoidable that the strain distribution in the thickness direction of the i-quality positive rolled material becomes non-uniform. This results in non-uniform distribution of residual stress in the thickness direction of the plate, which may cause changes in shape such as warping of the plate after punching or photo-etching, especially in ultra-thin a-plates. This becomes a big problem in applications where this is required. In addition to the above-mentioned problems in terms of material properties, the #A'l rolled material also has many problems in its manufacturability. First, let's look at intensity control! Since quality rolling utilizes work hardening caused by cold rolling, the rolling rate is the most important factor determining strength. therefore.
成品として板厚精度に優れ且つ目標の強度レベルを精度
よく安定して得るためには、圧延率の厳密な制御、具体
的には調質圧延前の初′#J4板厚の厳密な管理が非常
に重要であることに加えて、調實圧砥削の素材の強度レ
ベルの管理が必要となる。また形状制御の面では、いわ
ゆるスキンパス圧延やテンパーローリングと呼ばれる形
状修正を目的とした高々2〜3%の軽圧延率の11質圧
延とは異なり、高強度化を目的とする調質圧延では圧延
率が数十パーセントにもおよぶ実質的な冷間圧延である
ため、冷延ままで形状性に優れた調帯を得ることは困難
である。このため、形状修正を目的として材料の回復・
再結晶温度域よりも低く軟化しない温度域に加熱し、応
力除去処理を必要とする場合がある。このように調質圧
延材は製造性においても数々の問題がある。In order to achieve excellent plate thickness accuracy as a finished product and to obtain the target strength level accurately and stably, strict control of the rolling rate, specifically strict control of the initial #J4 plate thickness before temper rolling, is required. In addition to being very important, control of the strength level of the material for pressure abrasion is required. In addition, in terms of shape control, unlike so-called skin pass rolling and temper rolling, which have a light rolling rate of at most 2 to 3% and have a light rolling ratio of 11 quality, temper rolling aims to improve strength. Since this is essentially cold rolling with a rolling rate of several tens of percent, it is difficult to obtain a belt with excellent shape properties as cold-rolled. For this reason, material recovery and
It may be necessary to heat the material to a temperature range below the recrystallization temperature range at which it does not soften, and to perform stress relief treatment. As described above, temper-rolled materials have many problems in terms of manufacturability.
以上の調質圧延に起因する問題のみならず、フェライト
系ステンレス鋼板では本質的な欠点とも言えるリジング
の問題がある。リジングは通常。In addition to the problems caused by the above-mentioned temper rolling, ferritic stainless steel sheets also have the problem of ridging, which can be said to be an essential drawback. Rigging is normal.
フェライト系ステンレス鋼の冷延焼鈍板にプレス成形な
どの加工を施した際に生ずる表面欠陥の一種であるが、
冷間圧延後においても一般に冷延リジングと呼ばれるリ
ジングを発生する場合があり。It is a type of surface defect that occurs when a cold rolled annealed ferritic stainless steel plate is subjected to processing such as press forming.
Even after cold rolling, ridging, generally called cold rolling ridging, may occur.
表面の粗度が重視される用途ではやはり大きな問題とな
る。This is still a big problem in applications where surface roughness is important.
前述のような問題は、適度な高強度を有し且つ所望の形
状に加工し得る良好な延性および加工性を具備し、異方
性が小さくリジング発生のないクロムステンレス鋼材料
が素材メーカー側で鋼板または調帯の形で提供できれば
解決し得る。そこで本発明者らはこの解決を目的として
化学成分並びに製造条件の両面からクロムステンレス鋼
について広範な研究を続けて来た。その結果、鋼成分を
適正に制御し、さらに製造条件として熱間圧延のあと、
更に必要に応じて、熱延板焼鈍を行ったあと、冷間圧延
を行って製品板厚の冷延鋼帯を製造し、この冷延鋼帯を
、従来のフェライト単相域温度での仕上焼鈍つまり鋼板
または鋼帯成品に施す焼なまし処理ではなく、適正なフ
ェライト+オーステナイトニ相域への加熱とその後の急
冷処理からなる特定条件下での連続仕上熱処理を施すな
らば、実質的に軟質なフェライト相と硬質なマルテンサ
イト相が均一に混在した複相組織とすることができ、前
記の問題点の実質上すべてが解決できるという素晴らし
い成果を得ることができた。かくして本発明は。To solve the above-mentioned problems, material manufacturers are trying to find a chromium stainless steel material that has moderately high strength, good ductility and workability that can be processed into the desired shape, has small anisotropy, and does not cause ridging. This could be solved if it could be provided in the form of steel plates or strips. In order to solve this problem, the present inventors have continued extensive research on chromium stainless steel from both the chemical composition and manufacturing conditions. As a result, we have been able to properly control the steel composition, and furthermore, as manufacturing conditions, after hot rolling,
Furthermore, if necessary, after hot-rolled sheet annealing, cold rolling is performed to produce a cold-rolled steel strip of product thickness, and this cold-rolled steel strip is finished at a conventional ferrite single-phase region temperature. Rather than annealing, which is applied to steel sheets or steel strip products, if continuous finishing heat treatment is applied under specific conditions consisting of heating to the appropriate ferrite + austenite dual phase region and subsequent rapid cooling treatment, it is practically possible to We were able to obtain a multi-phase structure in which a soft ferrite phase and a hard martensitic phase were uniformly mixed, and were able to obtain an excellent result in which virtually all of the above-mentioned problems could be solved. Thus, the present invention.
重量%において。In weight%.
C:0.15%以下。C: 0.15% or less.
S i : 2.0%以下。Si: 2.0% or less.
Mn : 1.0%以下。Mn: 1.0% or less.
P : 0.040%以下。P: 0.040% or less.
S : 0.030%以下。S: 0.030% or less.
Ni:Q、5Q%以下。Ni: Q, 5Q% or less.
Cr : 10.0%以上で20.0%以下。Cr: 10.0% or more and 20.0% or less.
N:0.12%以下。N: 0.12% or less.
0 : 0.02%以下。0: 0.02% or less.
を含有し、場合によっては、さらに0.20%以下のA
j!、 0.0050%以下のB、1.0%以下のM
o 、 0 、10%以下のRE M、 0.20%以
下のYの一種または二種以上を含有し、残部がFeおよ
び不可避的不純物からなる鋼であって、且つ
0.02%≦C+N≦0.20%
の関係を満足する鋼のスラブを製造し、これを熱間圧延
して熱延鋼帯を製造する工程。and, in some cases, further contain 0.20% or less of A.
j! , B of 0.0050% or less, M of 1.0% or less
Steel containing one or more of o, 0, 10% or less of RE M, and 0.20% or less of Y, with the balance consisting of Fe and inevitable impurities, and 0.02%≦C+N≦ A process of producing a steel slab that satisfies the 0.20% relationship and hot rolling it to produce a hot rolled steel strip.
中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程。A cold rolling process in which a cold-rolled steel strip is manufactured by cold-rolling to the product thickness by one-time cold rolling without intermediate annealing.
そして。and.
得られた冷延鋼帯を連続熱処理炉に通板して。The obtained cold rolled steel strip is passed through a continuous heat treatment furnace.
Ac+点以上1100℃以下のフェライト中オーステナ
イトの二相域温度に10分以内の保持のあと、最高加熱
温度から100℃までを平均冷却速度1℃/sec以上
500℃/sec以下で冷却する仕上熱処理を施す連続
仕上熱処理工程。After maintaining the temperature in the two-phase region of austenite in ferrite of Ac+ point or higher and 1100°C or lower for less than 10 minutes, finishing heat treatment involves cooling from the maximum heating temperature to 100°C at an average cooling rate of 1°C/sec to 500°C/sec. Continuous finishing heat treatment process.
からなる、 HV 200以上の硬さを有し且つ延性に
優れた高強度複相組織クロムステンレス鋼帯の製造法を
提供するものである。The present invention provides a method for producing a high-strength multi-phase chromium stainless steel strip having a hardness of HV 200 or more and excellent ductility.
本発明法によれば前述の問題点の実質上すべてが解決さ
れるのみならず、鋼組成または仕上熱処理時の加熱温度
並びに冷却速度を制御することにより強度を自在に且つ
簡単に調整できるという点でクロムステンレス鋼板また
は調帯素材の工業的製造にあたっての有利且つ新しい製
造技術を提供するものであり、従来より市場に出荷され
ているマルテンサイト系ステンレス鋼板または銅帯やフ
ェライト系ステンレス鋼板または銅帯では有しない延性
と強度の両特性を兼備し且つ延性と強度の面内異方性の
少ない新規クロムステンレス鋼材料を市場に提供するも
のである。なお3本発明法によれば、最終の連続仕上熱
処理工程を経た成品は鋼帯の形態で工業的に製造される
ものであり、これが市場に出荷される場合には銅帯のま
ま(コイル)か或いは鋼板に整形された状態となる。According to the method of the present invention, not only virtually all of the above-mentioned problems are solved, but also the strength can be freely and easily adjusted by controlling the steel composition or the heating temperature and cooling rate during finishing heat treatment. It provides an advantageous and new manufacturing technology for the industrial production of chromium stainless steel sheets or toning materials, and it can be applied to martensitic stainless steel sheets or copper strips or ferritic stainless steel sheets or copper strips that have been conventionally shipped on the market. The purpose of the present invention is to provide the market with a new chromium stainless steel material that has both ductility and strength characteristics that are not available in other materials, and has less in-plane anisotropy in ductility and strength. According to the method of the present invention, the product that has undergone the final continuous finishing heat treatment process is industrially manufactured in the form of a steel strip, and when it is shipped to the market, it is left as a copper strip (coil). Or it will be shaped into a steel plate.
従来より1例えばフェライト系ステンレス鋼の代表鋼種
である5US430においても二相域温度に加熱すれば
オーステナイトが生成し、このオーステナイトは急冷に
よってマルテンサイトに変態してフェライト+マルテン
サイトの二相組織になること自体は知られていた。しか
しながら、高温でオーステナイトを生成するフェライト
系ステンレス鋼帯の製造においては、冷延後の熱処理は
あくまでもフェライト単相域温度での焼なまし処理であ
り、マルテンサイトを生成するような高温の熱処理は延
性の低下などの材質上の劣下をもたらすものとして回避
することが常識であり、工業的な調帯の実際の製造面で
は全く顧みられなかった。Conventionally, for example, even in 5US430, which is a representative steel type of ferritic stainless steel, austenite is generated when heated to a temperature in the two-phase region, and this austenite is transformed into martensite by rapid cooling, resulting in a two-phase structure of ferrite + martensite. That itself was known. However, in the production of ferritic stainless steel strips that produce austenite at high temperatures, the heat treatment after cold rolling is only annealing at a temperature in the ferrite single phase region, and high-temperature heat treatment that produces martensite is not recommended. It is common sense to avoid this because it causes deterioration in material properties such as a decrease in ductility, and it has not been given any consideration in the actual manufacturing of industrial belts.
したがって、クロムステンレス鋼の冷延工程後に本発明
のような連続熱処理を想定し且つフェライト+オーステ
ナイトニ相域に加熱する仕上熱処理を施した場合の加熱
温度と強度および延性の関係や延性および強度の異方性
などについて詳細に研究がなされた例もない0本発明は
、高強度クロムステンレス鋼帯の工業的製造法として従
来顧みられることのなかった全く新しい製造方法を提供
するものであり、その結果として従来のクロムステンレ
ス鋼板または調帯では有しなかった優れた特性をもつ新
規なりロムステンレス鋼板材料を提供するものである。Therefore, assuming continuous heat treatment as in the present invention after the cold rolling process of chrome stainless steel, and performing finishing heat treatment to heat to the ferrite + austenite dual phase region, the relationship between heating temperature, strength and ductility, and the relationship between ductility and strength. There have been no detailed studies on anisotropy, etc. The present invention provides a completely new manufacturing method that has not been considered as an industrial manufacturing method for high-strength chromium stainless steel strips. As a result, a new chrome stainless steel sheet material with excellent properties not possessed by conventional chrome stainless steel sheets or belts is provided.
以下に1本発明で規制する鋼の化学成分値の範囲限定の
理由並びに本発明法で採用する各製造工程の内容を具体
的に詳述する。Below, the reason for limiting the range of chemical composition values of steel regulated by the present invention and the contents of each manufacturing process adopted by the method of the present invention will be specifically explained in detail.
まず2本発明法を適用するクロムステンレス鋼の成分の
含有量範囲(重量%)の限定理由は次のとおりである。First, the reasons for limiting the content range (wt%) of the components of the chromium stainless steel to which the method of the present invention is applied are as follows.
CおよびNは2強力なオーステナイト生成元素であると
共にマルテンサイト強化能の大きい元素であるから、連
続仕上熱処理後の強度の制御並びに高強度化に有効な元
素である。したがって、連続仕上熱処理工程後に10%
以上のマルテンサイトを含む複相組織としHv200以
上の十分な強度を得るには(C+ N)量として少な(
とも0.02%以上を必要とする。しかし、CとN!が
あまり高いと連続仕上熱処理工程後に生成するマルテン
サイト量が多くなり、場合によっては100%マルテン
サイトとなると共にマルテンサイト相そのものの硬さも
非常に高くなるので高強度は得られるものの延性は低下
する。したがって、(C+N)itとして0.20%以
下とし、 0.02%≦C+N≦0.20%の関係を満
足させることが必要であり、またclとしては0.15
%以下とする。Since C and N are two strong austenite-forming elements and have a large ability to strengthen martensite, they are effective elements for controlling and increasing the strength after continuous finishing heat treatment. Therefore, after continuous finishing heat treatment process, 10%
In order to obtain a multi-phase structure containing the above martensite and sufficient strength of Hv200 or more, the amount of (C+N) must be small (
Both require 0.02% or more. However, C and N! If the is too high, the amount of martensite generated after the continuous finishing heat treatment process will increase, and in some cases it will become 100% martensite, and the hardness of the martensite phase itself will become very high, so although high strength can be obtained, ductility will decrease. . Therefore, it is necessary to set (C+N)it to 0.20% or less and satisfy the relationship 0.02%≦C+N≦0.20%, and cl to be 0.15%.
% or less.
また、Nは溶解度の関係から多量に添加することは困難
であると共に、多量の添加は表面欠陥の増加を招くため
0.12%以下とする。Further, it is difficult to add a large amount of N due to its solubility, and addition of a large amount causes an increase in surface defects, so the amount is set to 0.12% or less.
Siばフェライト生成元素であると共にフェライトおよ
びマルテンサイトの両相に対し強力な固溶強化能を有す
る。したがってマルテンサイトlの制御および強度レベ
ルの制御に有効な元素である。しかしながら多量の添加
は熱間加工性や冷間加工性の低下を招くために2.0%
を上限とする。Si is a ferrite-forming element and has a strong solid solution strengthening ability for both ferrite and martensite phases. Therefore, it is an effective element for controlling martensite l and controlling the strength level. However, adding a large amount leads to a decrease in hot workability and cold workability, so 2.0%
is the upper limit.
MnとNiは、オーステナイト生成元素であり。Mn and Ni are austenite forming elements.
連続仕上熱処理後のマルテンサイ)!並びに強度の制御
に有効な元素である。しかし多量に添加すると製品が高
価となり1本発明鋼帯の特徴の一つである経済性に影響
を与える。したがって2通常許容されている限度のMn
;1.0%以下、Ni;0.6%をそれぞれ上限とする
。martensai after continuous finishing heat treatment)! It is also an effective element for controlling strength. However, if added in large amounts, the product becomes expensive, which affects the economic efficiency, which is one of the characteristics of the steel strip of the present invention. Therefore, 2 the normally allowed limit of Mn
; 1.0% or less; Ni; 0.6%, respectively.
Sは、高すぎると耐食性や熱間加工性に悪影響をおよぼ
すので低いほうが好ましく、0.030%を上限とする
。If S is too high, it will adversely affect corrosion resistance and hot workability, so it is preferably lower, and the upper limit is 0.030%.
Pは、固溶強化能の大きい元素であるが、多量の添加は
靭性の低下を招く場合があるため1通常許容される程度
の0.040%以下とする。Although P is an element with a large solid solution strengthening ability, addition of a large amount may lead to a decrease in toughness.
Crは、ステンレス鋼としての耐食性を維持するうえで
少なくとも10.0%は必要最低量として含有させるべ
きであるが、あまりCr量が高いと。Although at least 10.0% of Cr should be contained as the minimum necessary amount in order to maintain the corrosion resistance of stainless steel, if the Cr content is too high.
マルテンサイト相を生成させて高強度を得るに必要なオ
ーステナイト生成元素の量が多くなると共に製品が高価
となるので、 20.0%を上限とする。The upper limit is set at 20.0% because the amount of austenite-forming elements required to generate martensitic phase and obtain high strength increases and the product becomes expensive.
○は、酸化物系の非金属介在物を形成し、鋼の清浄度を
低下させるので低い方が望ましく 、0.02%以下と
する。◯ forms oxide-based nonmetallic inclusions and reduces the cleanliness of the steel, so a lower value is desirable, and the content should be 0.02% or less.
^pは、脱酸に有効な元素であると共にプレス加工性に
悪影響を及ぼすA2系介在物を著滅せしめる効果がある
。しかし、 0.20%を超えて含有させてもその効果
が飽和するばかりでなく表面欠陥の増加を招くなどの悪
影響をもたらすのでその上限を0.20%とする。^p is an effective element for deoxidizing, and has the effect of significantly destroying A2-based inclusions that adversely affect press workability. However, if the content exceeds 0.20%, the effect not only becomes saturated, but also brings about adverse effects such as an increase in surface defects, so the upper limit is set at 0.20%.
Bは、靭性改善にを効な成分であるが、掻く微量でその
効果はもたらされ、 0.0050%を超えるとその効
果が飽和するのでその上限をo、ooso%とする。B is a component that is effective in improving toughness, but its effect is brought about by a very small amount, and if it exceeds 0.0050%, its effect is saturated, so its upper limit is set to o, ooso%.
Moは、耐食性の向上に有効な元素であるが。Mo is an element effective in improving corrosion resistance.
多量に添加すると製品が高価となるために1.0%を上
限とする。If added in large amounts, the product becomes expensive, so the upper limit is set at 1.0%.
REMおよびYは、熱間加工性の向上に有効な元素であ
る。また、耐酸化性の向上にも有効な元素である。高温
での連続仕上熱処理を施す本発明法においては酸化スケ
ールの発生を抑制してデスケール後に良好な表面肌を得
るのに有効に作用する。しかし、これらの効果は、RE
Vでは0.10%を超えると、またYでは0.20%を
超えると飽和するので、上限をREVは0.10%、Y
は0.20%とする。REM and Y are elements effective in improving hot workability. It is also an effective element for improving oxidation resistance. The method of the present invention, which performs continuous finishing heat treatment at high temperatures, is effective in suppressing the generation of oxidized scale and obtaining a good surface texture after descaling. However, these effects
V saturates when it exceeds 0.10%, and Y exceeds 0.20%, so the upper limit is 0.10% for REV and 0.10% for Y.
is 0.20%.
次に1本発明による複相&II織鋼帯の各製造工程の内
容について説明する。Next, the contents of each manufacturing process of the multi-phase & II woven steel strip according to the present invention will be explained.
本発明法においては2以上の鋼成分範囲に調整したクロ
ムステンレス鋼のスラブを通常の製鋼鋳造技術によって
製造し、このスラブを通常の熱間圧延によって熱延鋼帯
を製造する。熱間圧延後は熱延板焼鈍とデスケールを行
なうのがよい。熱延板焼鈍は必ずしも実施する必要はな
いが、この焼鈍によって熱延鋼帯を軟質化させて冷延性
の向上を図ったり、熱延鋼帯に残存する変態相(高温で
オーステナイト相であった部分)をフェライト+炭化物
に変態・分解させることができるので、冷間圧延・連続
仕上熱処理後に均一な複相組織をもつ鋼帯とするうえで
望ましい、この熱延板焼鈍は連続焼鈍または箱焼鈍のい
ずれでもよい。またデスケール工程は通常の酸洗を行な
えばよい。ここまでのスラブ製造工程、熱間圧延工程、
熱延板焼鈍工程および脱スケール工程は従来のクロムス
テンレス鋼帯の製造技術をそのまま本発明法に適用する
ことができる。In the method of the present invention, a slab of chromium stainless steel adjusted to have a steel composition range of two or more is produced by ordinary steel casting techniques, and this slab is produced into a hot rolled steel strip by ordinary hot rolling. After hot rolling, it is preferable to perform hot rolled sheet annealing and descaling. Although it is not necessary to carry out hot-rolled sheet annealing, this annealing softens the hot-rolled steel strip and improves its cold-rollability, and also removes the transformed phase remaining in the hot-rolled steel strip (austenitic phase at high temperatures). This hot-rolled sheet annealing is preferable for producing a steel strip with a uniform multi-phase structure after cold rolling and continuous finishing heat treatment because it can transform and decompose the ferrite and carbide into ferrite + carbide. Either of these is fine. Further, the descaling step may be carried out by ordinary pickling. The slab manufacturing process so far, hot rolling process,
For the hot-rolled sheet annealing process and the descaling process, conventional chrome stainless steel strip manufacturing techniques can be applied to the method of the present invention as they are.
次いで冷間圧延工程と連続仕上熱処理工程を経て複相組
織鋼帯を製造するのであるが、これらの工程は本発明法
において特徴的な工程であるので詳しく説明する。Next, a dual-phase steel strip is manufactured through a cold rolling process and a continuous finishing heat treatment process, and these processes are characteristic of the method of the present invention and will be explained in detail.
「冷間圧延工程」
冷間圧延工程では、熱延鋼帯(熱延板焼鈍後の熱延鋼帯
)を中間焼鈍無しの一回冷延によって製品板厚まで冷間
圧延して冷延綱帯を製造する。ここで、″中間焼鈍無し
の一回冷延”とは、中間焼鈍を挟んだ二回以上の冷延で
はないという意味であり、より具体的には、冷間圧延を
1パス冷延または中間焼鈍無しの多パス冷延によって実
施することにより製品板厚にまで冷間圧延して冷延鋼帯
を製造することを意味し、したがって、熱延鋼帯の板厚
から冷延鋼帯の製品板厚にまで圧延ロールへの通板回数
は問わず中間焼鈍無しに板W−減少を行なうことである
。"Cold rolling process" In the cold rolling process, hot rolled steel strip (hot rolled steel strip after hot rolled sheet annealing) is cold rolled to the product thickness by one cold rolling without intermediate annealing to produce cold rolled steel. Manufacture obi. Here, "single cold rolling without intermediate annealing" means not cold rolling two or more times with intermediate annealing in between, and more specifically, cold rolling is one-pass cold rolling or intermediate It means manufacturing cold-rolled steel strip by cold-rolling to the product thickness by performing multi-pass cold rolling without annealing. Regardless of the number of times the sheet is passed through the rolling rolls until the sheet thickness is reached, the sheet W-reduction is performed without intermediate annealing.
本発明法の場合には、冷間圧延工程のあとに後述の連続
仕上熱処理工程を有するので、冷延鋼帯に生じている方
向性をもった圧延Mi織に由来する強度や伸びに関する
面内異方性の履歴が後続の連続仕上熱処理によって得ら
れた複相Mi織鋼帯では実質上消去されることがわかっ
た。したがって。In the case of the method of the present invention, since the continuous finishing heat treatment step described below is performed after the cold rolling step, the in-plane strength and elongation derived from the directional rolled Mi weave occurring in the cold rolled steel strip are It has been found that the anisotropic history is virtually eliminated in the dual-phase Mi woven steel strip obtained by subsequent continuous finishing heat treatment. therefore.
本発明による冷延鋼帯の製造は中間焼鈍を行なうことな
く製品板厚まで板厚減少を行っても2最終的な複相m織
では強度および伸びの面内異方性が小さい鋼帯とするこ
とができる。もっとも、中間焼鈍を行って複数回冷延を
行なった場合には複相U織鋼帯の特に伸びの面内異方性
が一層小さくなることが判明したが、この場合には中間
焼鈍を実施することによる工数の増加と熱エネルギー消
費による製造コスト増は避けられない。したがって中間
焼鈍を行わない本発明法によると経済的有利に複相組織
鋼帯を製造することができる。このような理由から1本
発明では熱延鋼帯を1バスで製品板厚まで圧下するか、
中間焼鈍を行わないで多パスで製品板厚まで圧下する一
回冷延を採用して冷延鋼帯を製造する。そのさいの圧下
率は30%以上95%以下であるのが好ましい。In the production of cold-rolled steel strip according to the present invention, even if the thickness is reduced to the product thickness without performing intermediate annealing, the final multi-phase m weave will result in a steel strip with small in-plane anisotropy of strength and elongation. can do. However, it has been found that the in-plane anisotropy of the multi-phase U-woven steel strip, especially in elongation, becomes even smaller when intermediate annealing is performed and cold rolling is performed multiple times. This inevitably increases manufacturing costs due to increased man-hours and thermal energy consumption. Therefore, according to the method of the present invention that does not involve intermediate annealing, a steel strip with a multiphase structure can be economically advantageously produced. For these reasons, in the present invention, the hot-rolled steel strip is rolled down to the product thickness in one bath, or
A cold-rolled steel strip is manufactured by employing a single cold rolling process in which the steel strip is rolled down to the product thickness in multiple passes without performing intermediate annealing. The rolling reduction ratio at this time is preferably 30% or more and 95% or less.
以下に、この中間焼鈍なしの冷間圧延によっても面内異
方性の小さい複相組織鋼帯が得られることを代表的な試
験結果に基づいて説明する。Below, it will be explained based on typical test results that a multiphase steel strip with small in-plane anisotropy can be obtained even by cold rolling without intermediate annealing.
第1表に示す化学成分を有する鋼A、BおよびCの鋼を
溶製し、1i11常の条件の熱間圧延にて板厚3.6m
m0熱延板とし、780℃×6時間加熱、炉冷の焼鈍を
施したあと酸洗を行なった。この熱延板を中間焼鈍を行
なうことなく冷間圧延し、ついで仕上熱処理条件を変え
て試験を行った(第1図および第2図のデータもこの試
験結果を示したものであるが、その内容については後述
する)。Steels A, B, and C having the chemical composition shown in Table 1 were melted and hot-rolled to a thickness of 3.6 m under normal conditions.
An m0 hot rolled sheet was prepared, annealed by heating at 780° C. for 6 hours and cooling in a furnace, and then pickled. This hot-rolled sheet was cold rolled without intermediate annealing, and then a test was conducted by changing the final heat treatment conditions (the data in Figures 1 and 2 also show the results of this test; (The contents will be explained later).
下記の第2表は、第1表の鋼Bの熱延板(熱延焼鈍およ
び酸洗後の熱延板)を用いて。Table 2 below uses the hot rolled sheet of Steel B in Table 1 (hot rolled sheet after hot rolling annealing and pickling).
(al、 0.7mmJ!J−まで中間焼鈍を行なう
ことなく冷間圧延しく冷間圧延率80.6%)、 この
冷間圧延板を970℃に1分間均熱したあと、この温度
から100℃までを平均冷却速度20℃/secで仕上
熱処理した複相&lI織材。(al, cold rolled to 0.7 mmJ!J- without intermediate annealing, cold rolling rate 80.6%), After soaking this cold rolled plate at 970°C for 1 minute, from this temperature to 100°C. A multi-phase &lI woven material that has been heat treated for finishing at an average cooling rate of 20°C/sec.
lb) 、前記のfa)の複相組織材と同等の強度を冷
間圧延によって板厚0.7+mmの状態で付与した調質
圧延材。lb), a temper-rolled material with a strength equivalent to that of the multi-phase structure material of fa), which is cold-rolled to a plate thickness of 0.7+mm.
の各板の引張強さくkgf/+w■t)および伸び(χ
)を圧延方向の値(し)、圧延方向に対して45°方向
の値(D)および圧延方向に対し90°方向の値(T)
を示したものである。The tensile strength (kgf/+wt) and elongation (χ
) is the value in the rolling direction (shi), the value in the 45° direction to the rolling direction (D), and the value in the 90° direction to the rolling direction (T)
This is what is shown.
第1表
第2表
第2表から明らかなように、複相m織材の伸びは、同等
の硬さおよび強度レベルのiJi’ff圧延材に比べて
著しく優れており1強度−伸びバランスに優れているこ
とがわかる。また1面内異方性について見ると、引張強
さでは複相組織材は方向による引張強さの差、つまり面
内異方性が小さいのに対し、i延圧延材は引張強さの最
も低いし方向と最も高いT方向の引張強さの差は17k
gf/mm”以上もあり面内異方性が大きい、また、伸
びについては、伸びが高い複相組織材は伸びが低いiI
!質圧延圧延材も面内異方性も比較的小さいことがわか
る。As is clear from Table 1 and Table 2, the elongation of the multi-phase m-woven material is significantly superior to that of the iJi'ff rolled material with the same hardness and strength level, and the strength-elongation balance is It turns out that it is excellent. Regarding the in-plane anisotropy, the multi-phase structure material has a small difference in tensile strength depending on the direction, that is, the in-plane anisotropy, whereas the i-rolled material has the highest tensile strength. The difference in tensile strength between the lowest direction and the highest T direction is 17k.
gf/mm" and has large in-plane anisotropy. Also, regarding elongation, multiphase materials with high elongation have low elongation iI
! It can be seen that both the quality rolled material and the in-plane anisotropy are relatively small.
すなわち、冷間圧延を中間焼鈍なしで行っても複相Mi
織化することで延性に優れ強度および延性の面内異方性
の小さい高強度クロムステンレス鋼板が得られることが
明らかである。In other words, even if cold rolling is performed without intermediate annealing, the multiphase Mi
It is clear that by weaving, a high-strength chromium stainless steel sheet with excellent ductility and small in-plane anisotropy of strength and ductility can be obtained.
「連続仕上熱処理工程」
冷間圧延工程で得られた製品板厚の冷延鋼帯を次に連続
熱処理炉に通板して+ A c r意思上で1100
℃以下のフェライト中オーステナイトの二相域温度に1
0分以内の保持のあと、最高加熱温度から100℃まで
を平均冷却速度1℃/sec以上2500℃/sec以
下で冷却する連続仕上熱処理を施すのであるが。"Continuous finishing heat treatment process" The cold-rolled steel strip with the product thickness obtained in the cold rolling process is then passed through a continuous heat treatment furnace to +Acr=1100
1 for the two-phase region temperature of austenite in ferrite below ℃
After holding for less than 0 minutes, a continuous finishing heat treatment is performed in which the material is cooled from the maximum heating temperature to 100°C at an average cooling rate of 1°C/sec to 2500°C/sec.
この連続仕上熱処理工程は本発明法の最も特徴とする工
程であり、この連続仕上熱処理条件は後記の実施例でも
示すとおり本発明において重要な意義を有している。こ
の連続仕上熱処理工程での加熱条件と冷却条件を規制し
た理由の概要を説明すると次のとおりである。This continuous finishing heat treatment step is the most characteristic step of the method of the present invention, and the conditions for this continuous finishing heat treatment have an important meaning in the present invention, as will be shown in Examples below. An overview of the reasons for regulating the heating conditions and cooling conditions in this continuous finishing heat treatment step is as follows.
連続仕上熱処理時の加熱温度はフェライト+オーステナ
イトニ相域温度であることが絶対条件である8本発明法
の実施において、連続熱処理炉で調帯を低温から加熱し
た場合にオーステナイトが生成し始める温度(つまりA
c、点の温度)の近傍では温度変化に対するオーステナ
イト量の変動が大きく、急冷後に安定した硬さが得られ
ない場合がある。しかし9本発明が対象とする鋼成分範
囲においては、 Ac+点より100℃以上の高温域に
加熱した場合にはこのような硬さの変動が実質上止じな
いことがわかった。したがって、連続仕上熱処理時の加
熱温度はAc+点+100℃以上とするのがよい、より
具体的には900℃以上、さらに好ましくは950℃以
上とするのがよい、一方、加熱温度の上限については、
あまり高温では強度上昇が飽和するのみならず、場合に
よっては低下することもあり、また製造コストの面でも
不利となるので1100℃を上限とするのがよい。It is an absolute condition that the heating temperature during continuous finishing heat treatment is the temperature in the ferrite + austenite two-phase region.8 In carrying out the method of the present invention, the temperature at which austenite begins to form when the toning zone is heated from a low temperature in a continuous heat treatment furnace. (That is, A
In the vicinity of point c), the amount of austenite fluctuates greatly with respect to temperature changes, and stable hardness may not be obtained after rapid cooling. However, in the steel composition range targeted by the present invention, it has been found that such fluctuations in hardness do not substantially stop when heated to a high temperature range of 100° C. or more above the Ac+ point. Therefore, the heating temperature during continuous finishing heat treatment is preferably set to Ac+ point +100°C or higher, more specifically 900°C or higher, and even more preferably 950°C or higher.On the other hand, the upper limit of the heating temperature is ,
If the temperature is too high, the increase in strength not only becomes saturated, but also decreases in some cases, and is also disadvantageous in terms of manufacturing costs, so it is preferable to set the upper limit to 1100°C.
本発明法における連続仕上熱処理時のフェライト+オー
ステナイトニ相域加熱の冶金的意義として、■CrCr
炭化物化窒化物溶、■オーステナイト相の生成、■生成
したオーステナイト中へのCおよびNの濃縮の3点を挙
げることができる。The metallurgical significance of heating in the ferrite + austenite two-phase region during continuous finishing heat treatment in the method of the present invention is as follows: ■CrCr
Three points can be mentioned: carbide-nitride dissolution, (1) generation of austenite phase, and (2) concentration of C and N in the generated austenite.
本発明法で対象とするクロムステンレス鋼帯の場合には
、これらの現象はいずれも短時間のうちにほぼ平衡状態
に達するので9本発明における連続仕上熱処理時の上記
二相温度域での加熱時間は短時間、おおむね10分間以
内の加熱でよい、この短時間加熱でよいことは本発明法
の実際操業の点でも生産効率、製造コストの面から非常
に有利である0以上の加熱条件および保持時間によって
以後の冷却によって生成するマルテンサイト量がlO容
量%以上となるに必要なオーステナイトを生成させるこ
とができる。In the case of the chromium stainless steel strip targeted by the method of the present invention, all of these phenomena reach an almost equilibrium state within a short time. The heating time may be short, approximately 10 minutes or less. This short heating time is very advantageous in terms of production efficiency and manufacturing cost in the actual operation of the method of the present invention. Depending on the holding time, it is possible to generate austenite necessary for the amount of martensite generated by subsequent cooling to be 10% by volume or more.
仕上熱処理時の冷却速度についてはマルテンサイト相と
軟質なフェライト相との複相組織を得るうえから1℃/
sec以上の冷却速度とする必要があるが、500℃/
secを超える冷却速度を得るのは実質上困難である。The cooling rate during finishing heat treatment is set at 1°C/1°C in order to obtain a multi-phase structure of martensitic phase and soft ferrite phase.
It is necessary to set the cooling rate to sec or more, but the cooling rate is 500℃/
It is virtually difficult to obtain cooling rates in excess of sec.
したがって2本発明において二相温度域加熱からの冷却
は1〜500 ”C/seeの範囲の冷却速度で実施す
る。この冷却速度は最高加熱温度から100℃までの平
均冷却速度とするが、オーステナイトがマルテンサイト
に変態してしまった後の冷却過程では必ずしもこの冷却
速度を採用する必要はない、この冷却速度と冷却終点温
度は前述の加熱条件によって高温で生成したオーステナ
イトがマルテンサイトに変態するに十分なものである。Therefore, in the present invention, cooling from two-phase temperature range heating is carried out at a cooling rate in the range of 1 to 500" C/see. This cooling rate is the average cooling rate from the highest heating temperature to 100 ° C. It is not necessary to use this cooling rate in the cooling process after the austenite has transformed into martensite. This cooling rate and cooling end point temperature are the same as the austenite formed at high temperature under the heating conditions described above transforms into martensite. It is sufficient.
冷却の方法としては気体および/または液体の冷却媒体
を調帯に吹き付ける強制冷却方式または水冷ロールによ
るロール冷却方式などを適用できる。このような条件で
の連続加熱と冷却はコイル巻戻し機から巻取り機に至る
間に加熱均熱帯域と急冷帯域を有する連続熱処理炉を用
いて実施することができる。As a cooling method, a forced cooling method in which a gas and/or liquid cooling medium is sprayed onto the belt, a roll cooling method using water-cooled rolls, etc. can be applied. Continuous heating and cooling under such conditions can be carried out using a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil unwinding machine and the winding machine.
第1図は、前記第1表の各鋼について、既に説明した方
法で製造した熱延板(熱延板焼鈍および酸洗後の熱延板
)を、中間焼鈍なしの冷間圧延により板厚0.7mmの
冷間圧延板としく冷間圧延率−80,6%)、そして、
この冷間圧延板を800〜1100℃の間の各温度で1
分間均熱したあと、その温度から100℃までを平均冷
却速度20℃/secで冷却する仕上熱処理を施した場
合に得られた仕上熱処理材のマルテンサイト!(容量%
)と硬さくHV)を。Figure 1 shows the thickness of hot rolled sheets (hot rolled sheets after hot rolled sheet annealing and pickling) manufactured by the method already explained for each steel in Table 1 above, by cold rolling without intermediate annealing. 0.7 mm cold rolled plate and cold rolling rate -80.6%), and
This cold-rolled plate was heated at each temperature between 800 and 1100°C.
Martensite is a finished heat-treated material obtained by soaking for a minute and then performing a finish heat treatment of cooling from that temperature to 100°C at an average cooling rate of 20°C/sec! (capacity%
) and hardness HV).
仕上熱処理時の加熱温度の関係で示したものである(図
中のA、B、Cは第1表の各鋼を表す)。This is shown in terms of the heating temperature during finishing heat treatment (A, B, and C in the figure represent each steel in Table 1).
第1図から明らかなように、加熱温度がフェライト+オ
ーステナイトニ相域になると、仕上熱処理後にマルテン
サイトが出現し、加熱温度の上昇とともにマルテンサイ
ト量は増加するが900〜950℃を超えるとその増加
の程度は小さくなって次第に飽和する傾向を示す。硬さ
の挙動もマルテンサイト量の変化に対応して同様の傾向
を示し、またマルテンサイト量が多いほど硬さは高い。As is clear from Figure 1, when the heating temperature reaches the ferrite + austenite dual phase region, martensite appears after the final heat treatment, and the amount of martensite increases as the heating temperature rises, but when the heating temperature exceeds 900-950°C, The degree of increase tends to become smaller and gradually become saturated. The behavior of hardness also shows a similar tendency in response to changes in the amount of martensite, and the larger the amount of martensite, the higher the hardness.
この第1図の結果は仕上熱処理を連続熱処理ラインで行
なう上での重要な意義を有している。すなわち。The results shown in FIG. 1 have important significance when performing finishing heat treatment on a continuous heat treatment line. Namely.
連続熱処理ラインでは成る程度の温度変動はやむを得ず
1特に調帯の長さ方向での変動、および目標温度は同じ
であっても通板チャンスの違いによる熱処理温度の違い
は、実ラインでの操業では目標温度に対して±20℃程
度の変動を見込む必要がある。第1図は、冷却速度をほ
ぼ一定にし且つ硬さ変動の小さい熱処理温度域を採用す
るならば。In a continuous heat treatment line, some degree of temperature fluctuation is unavoidable.1 In particular, fluctuations in the length direction of the strip, and differences in heat treatment temperature due to differences in threading opportunities even if the target temperature is the same, cannot be avoided in actual line operation. It is necessary to allow for fluctuations of about ±20°C with respect to the target temperature. Figure 1 shows the case where the cooling rate is kept almost constant and a heat treatment temperature range with small hardness fluctuations is adopted.
連続熱処理ラインにおいて多少の温度変動があったとし
ても、硬さすなわち強度の変動の小さい鋼帯が製造でき
ることを示している。そして1強度レベルの制御は前記
のような成分制御によって行えば目標とする強度は安定
して得ることができ。This shows that even if there are some temperature fluctuations in the continuous heat treatment line, it is possible to produce steel strips with small fluctuations in hardness, that is, strength. If one intensity level is controlled by component control as described above, the target intensity can be stably obtained.
鋼帯の全長にわたって強度変動の小さい、また鋼帯間で
の強度差の小さい高強度素材が既存の連続熱処理ライン
を用いて容易且つ安価に製造できる。A high-strength material with small strength fluctuations over the entire length of the steel strip and small strength differences between steel strips can be easily and inexpensively produced using an existing continuous heat treatment line.
第2図は2本発明で規制する範囲の鋼成分と製造条件内
でマルテンサイト量の異なる複相m織材を幾つか作りそ
の硬さと伸び(3方向の重のつき平均値)の相関を調べ
、これを調質圧延材の相関と比較して示したものである
。なお、復相組m+オの製造は第1図で説明したのと同
じであり、仕上熱処理の加熱温度は900℃以上である
。また調質圧延材は焼鈍を行ったあと図中の添字で示す
調質圧延率を変えることによって硬さを変えたものであ
る。Figure 2 shows the correlation between hardness and elongation (average value with weight in three directions) of several multi-phase M-woven materials with different amounts of martensite within the range of steel composition and manufacturing conditions regulated by the present invention. The results were investigated and compared with the correlation of temper-rolled materials. Incidentally, the manufacturing of the dephasing combination m+o is the same as that explained in FIG. 1, and the heating temperature in the finishing heat treatment is 900° C. or higher. Furthermore, the hardness of the temper-rolled material is changed by changing the temper rolling rate indicated by the subscript in the figure after annealing.
第2図から明らかなように、調質圧延材は調質圧延率の
上昇に伴う硬さの上昇につれて伸びは急激に低下する。As is clear from FIG. 2, the elongation of the temper-rolled material sharply decreases as the hardness increases as the temper rolling rate increases.
これに対して複相組織材は硬さが上昇しても伸びの低下
は緩やかである。特に、複相um材の伸びが1J1ff
圧延材に比べて優るのは硬さの高い領域、具体的にはH
v 200以上の領域において顕著となる。すな、わち
複相組織材とすることによる高延性化はHv 200以
上の領域で一段と顕著に発揮されるのであり、そのため
には前述の第1図からもわかるように、約10容量%以
上のマルテンサイト量のところである。このように硬さ
がHv200以上での高延性が図れる点に調質圧延材で
は達成できない本発明法による複相組織材の特徴があり
、この強度−伸びバランスが良好なことから本発明法に
よって得られた複相組m鋼帯はプレス成形性などの加工
性についてもUR質圧延では得られない特質をもつこと
になる。On the other hand, even if the hardness of the multiphase structure material increases, the elongation decreases slowly. In particular, the elongation of multi-phase um material is 1J1ff
It is superior to rolled materials in the area of high hardness, specifically H.
It becomes noticeable in the region of v 200 or higher. In other words, the high ductility achieved by forming a multi-phase structure material is even more pronounced in the Hv 200 or higher region, and for this purpose, as can be seen from the above-mentioned Figure 1, approximately 10% by volume is required. The above is the amount of martensite. In this way, the multi-phase structure material produced by the method of the present invention is characterized by the ability to achieve high ductility when the hardness is Hv200 or more, which cannot be achieved with temper-rolled materials. The obtained double-phase M steel strip has properties such as press formability and other workability that cannot be obtained by UR quality rolling.
第3図は、第1表の鋼Bを第2表の+a+の方法で製造
した場合の金属m織写真である。写真中の白く見える領
域がフェライト、黒もしくは灰色に見える領域がマルテ
ンサイトである。この写真かられかるように、この材料
は微細なフェライトおよびマルテンサイトが均一に混在
した複相組織を有している。FIG. 3 is a photograph of metal weave when steel B in Table 1 is manufactured by the method +a+ in Table 2. The white area in the photo is ferrite, and the black or gray area is martensite. As can be seen from this photo, this material has a multi-phase structure in which fine ferrite and martensite are evenly mixed.
以上に説明したように1強度並びに延性の異方性の小さ
い高延性高強度の調帯材料が得られたのは、熱間圧延、
熱延板焼鈍、冷間圧延のあとにフェライト+オーステナ
イトの二相域に加熱し急冷する仕上熱処理によって、微
細なフェライトと急冷によってオーステナイトから変態
して生成したマルテンサイトとが均一に混在した複相m
織としたことで達成し得たものである。すなわち、硬質
なマルテンサイトによる強度(硬さ)を得、軟質なフェ
ライトにより延性を得たものであり1両相を微細且つ均
一に混在させたことにより強度と延性の面内異方性を小
さくし得たものである。なお仕上熱処理後のMi織はX
線的な調査では微量の残留オーステナイトが検出される
場合がある。As explained above, the high ductility and high strength belt material with low strength and ductility anisotropy was obtained by hot rolling.
After hot-rolled sheet annealing and cold rolling, finishing heat treatment involves heating to a two-phase region of ferrite + austenite and then rapidly cooling, resulting in a double phase in which fine ferrite and martensite, which is transformed from austenite by rapid cooling, are evenly mixed. m
This was achieved through the use of textiles. In other words, the hard martensite provides strength (hardness) and the soft ferrite provides ductility.By finely and uniformly mixing both phases, the in-plane anisotropy of strength and ductility is reduced. It could have been done. The Mi weave after finishing heat treatment is
Trace amounts of retained austenite may be detected in linear surveys.
以下に9本発明法を実施した実施例を挙げて。Below are nine examples in which the method of the present invention was implemented.
本発明法で得られた複相U織網帯の特性を比較例と対比
しながら具体的に示す。The characteristics of the multi-phase U-woven net belt obtained by the method of the present invention will be specifically shown in comparison with a comparative example.
実施例
第3表に示す化学成分を有する鋼を溶製してスラブを製
造した。そしていずれも板厚3.6mmに熱間圧延後、
780℃×6時間加熱・炉冷の熱延板焼鈍を行い、酸洗
のあと、中間焼鈍を施すことなく冷間圧延して板厚0
、7mmの冷延鋼帯とし (冷間圧延率80.6%)、
第4表に示した仕上熱処理条件のもとて連続熱処理炉に
て連続仕上熱処理(ただし比較例寛4は箱型炉によるバ
ッチ焼鈍処理)を施した。得られた鋼帯材料の特性を第
4表に併記した。Example Slabs were manufactured by melting steel having the chemical components shown in Table 3. After hot rolling to a plate thickness of 3.6 mm,
Hot-rolled plate annealed by heating and furnace cooling at 780°C for 6 hours, and after pickling, cold rolling was performed without intermediate annealing to obtain a plate with a thickness of 0.
, 7mm cold rolled steel strip (cold rolling ratio 80.6%),
Continuous finish heat treatment was performed in a continuous heat treatment furnace under the finish heat treatment conditions shown in Table 4 (However, Comparative Example Kan 4 was subjected to batch annealing treatment in a box furnace). The properties of the obtained steel strip material are also listed in Table 4.
第4表から明らかなように2本発明法によればいずれも
高い引張強さと硬さおよび良好な伸びを有した複相組織
鋼帯が得られたことがわかる。また1本発明法による鋼
帯は、0.2%耐力、引張強さおよび伸びの異方性が小
さいことが明らかであり、また破断後の引張試験片にも
リジングの発生が見られない。As is clear from Table 4, by the two methods of the present invention, dual-phase steel strips having high tensile strength, hardness, and good elongation were obtained. Furthermore, it is clear that the steel strip produced by the method of the present invention has small anisotropy in 0.2% proof stress, tensile strength, and elongation, and no ridging is observed in the tensile test specimen after fracture.
これに対し比較例患1−では製造条件は本発明で規定す
る範囲であるが、鋼のC,N量が本発明鋼の条件である
(C+N)≧0.02%より低い、(C++ N)
−0,012%の鋼(第3表の患8の鋼)の鋼であるた
め、連続仕上熱処理後にマルテンサイトが生成しておら
ず、硬さが低い。On the other hand, in Comparative Example Case 1-, the manufacturing conditions are within the range specified by the present invention, but the C and N contents of the steel are lower than the conditions for the present invention steel (C+N)≧0.02%, (C++N )
-0,012% steel (steel No. 8 in Table 3), no martensite is generated after continuous finishing heat treatment, and the hardness is low.
比較例隘2では、やはり製造条件は本発明の範囲内にあ
るが、鋼のC量が本発明で規定するcl(C50,15
%)よりも高いC=0.155%の鋼(第3表のNci
9のj14)であり、また(C+N)量も本発明で規定
する0、20%を超えているので、連続仕上熱処理後の
マルテンサイト量が100%となり。In Comparative Example No. 2, the manufacturing conditions are still within the scope of the present invention, but the C content of the steel is lower than the cl (C50,15
%) higher than C = 0.155% steel (Nci in Table 3)
9, j14), and the amount of (C+N) also exceeds 0.20% specified in the present invention, so the amount of martensite after continuous finishing heat treatment is 100%.
強度は高いものの、伸びが非常に低い。Although the strength is high, the elongation is very low.
比較例隘3では連続仕上熱処理での加熱温度が750℃
と低く、この加熱温度では鋼患1の鋼はフェライト+オ
ーステナイトニ相域にならず、したがって仕上熱処理後
の金属&IImはマルテンサイトの存在しないフェライ
ト単相組織であり、伸びは高いものの強度および硬さが
低い。In comparative example No. 3, the heating temperature in continuous finishing heat treatment was 750°C.
At this heating temperature, the steel of Steel No. 1 does not enter the ferrite + austenite dual phase region. Therefore, after finishing heat treatment, the metal &IIm has a ferrite single phase structure without martensite, and although the elongation is high, the strength and hardness are low. is low.
比較例1!14は、仕上熱処理を箱型炉で行ない。In Comparative Examples 1 and 14, the final heat treatment was performed in a box furnace.
その冷却も炉冷によるため冷却速度が0.03℃/se
cと非常に低いので熱処理後にマルテンサイトが生成し
ておらず、比較例阻3と同様に伸びは高いものの5強度
および硬さが低い。Since the cooling is also by furnace cooling, the cooling rate is 0.03℃/se
Since the c was very low, no martensite was formed after the heat treatment, and like Comparative Example No. 3, the elongation was high, but the strength and hardness were low.
比較例患5は、調質圧延材であり1本発明のものに比較
して伸びが著しく低い。また引張強さに対する0、2%
耐力の比、すなわち降伏比が高いと共に、0.2%耐力
、引張強さ、伸びの異方性が大きい。したがって本発明
法によって得られた鋼帯に比べて加工性並びに加工後の
形状性に劣ることが明らかである。Comparative Example No. 5 is a temper-rolled material and has significantly lower elongation than No. 1 of the present invention. Also 0.2% of tensile strength
It has a high yield strength ratio, that is, a high yield ratio, and has large anisotropy in 0.2% yield strength, tensile strength, and elongation. Therefore, it is clear that the workability and shape properties after working are inferior to the steel strip obtained by the method of the present invention.
なお、比較例隘1.3.4および5の鋼帯については、
破断後の引張試験片でいずれもリジングの発生が見られ
たの対し1本発明例の複相組織鋼帯はりジングの発生が
見られず、プレス成形などの加工が良好に行えることが
わかる。In addition, regarding the steel strips of Comparative Examples 1.3.4 and 5,
While the occurrence of ridging was observed in all of the tensile test pieces after fracture, the occurrence of ridging was not observed in the multi-phase steel strip of Example 1 of the present invention, indicating that processing such as press forming can be performed satisfactorily.
以上のように2本発明法によれば、高延性と高強度を兼
備し1強度と延性の面内異方性が小さく且つ低耐力、低
降伏比の複相組織鋼帯が提供される。クロムステンレス
鋼板の分野において、従来かような良好な加工性を兼備
したHv 200以上の高強度素材が鋼板または鋼帯の
形で市場に出荷された例は見ない。したがって1本発明
は従来のクロムステンレス鋼板分野に新規素材鋼板また
は鋼帯を提供するものである。本発明に従う材料は電子
部品、精密機械部品などへの加工性が要求される高強度
材として特に有用であり、この分野において多大の成果
が発揮され得る。As described above, according to the two methods of the present invention, a multiphase steel strip having both high ductility and high strength, small in-plane anisotropy of strength and ductility, low yield strength, and low yield ratio is provided. In the field of chrome stainless steel sheets, there has never been an example of such a high strength material with Hv 200 or more combined with good workability being shipped to the market in the form of a steel plate or steel strip. Therefore, the present invention provides a new material steel plate or steel strip in the field of conventional chrome stainless steel plates. The material according to the present invention is particularly useful as a high-strength material that requires processability into electronic parts, precision mechanical parts, etc., and can achieve great results in this field.
第1図は2本発明に従う仕上熱処理の加熱温度とマルテ
ンサイト量および硬さとの関係を示した図。
第2図は本発明に従う仕上熱処理材と調質圧延材につい
て硬さ−伸びの相関関係を示した図。
第3図は本発明に従う連続仕上熱処理を施したクロムス
テンレス鋼帯の金属組織を示した顕微鏡写真である。FIG. 1 is a diagram showing the relationship between the heating temperature of the finishing heat treatment, the amount of martensite, and the hardness according to the present invention. FIG. 2 is a diagram showing the correlation between hardness and elongation for finish heat-treated materials and temper-rolled materials according to the present invention. FIG. 3 is a micrograph showing the metallographic structure of a chromium stainless steel strip subjected to continuous finishing heat treatment according to the present invention.
Claims (8)
であって、且つ 0.02%≦C+N≦0.20% の関係を満足する鋼のスラブを製造し、これを熱間圧延
して熱延鋼帯を製造する工程、 中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程、そして、 得られた冷延鋼帯を連続熱処理炉に通板して、Ac_1
点以上1100℃以下のフェライト+オーステナイトの
二相域温度に10分以内の保持のあと、最高加熱温度か
ら100℃までを平均冷却速度1℃/sec以上500
℃/sec以下で冷却する仕上熱処理を施す連続仕上熱
処理工程、 からなる、HV200以上の硬さを有し且つ延性に優れ
た高強度複相組織クロムステンレス鋼帯の製造法。(1) In weight%, C: 0.15% or less, Si: 2.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 0 .60% or less, Cr: 10.0% or more and 20.0% or less, N: 0.12% or less, O: 0.02% or less, and the balance is Fe and inevitable impurities. A process of manufacturing a steel slab that satisfies the relationship of 0.02%≦C+N≦0.20%, and hot rolling it to produce a hot rolled steel strip, one-time cooling without intermediate annealing. A cold rolling process in which a cold rolled steel strip is produced by cold rolling to a product thickness, and the obtained cold rolled steel strip is passed through a continuous heat treatment furnace to produce Ac_1.
After maintaining the ferrite + austenite two-phase region temperature of 1100°C or higher for less than 10 minutes, the average cooling rate from the maximum heating temperature to 100°C is 1°C/sec or more and 500°C.
A method for producing a high-strength multi-phase chromium stainless steel strip having a hardness of HV200 or more and excellent ductility, comprising: a continuous finishing heat treatment step of performing a finishing heat treatment with cooling at a temperature of ℃/sec or less.
点+100℃以上で1100℃以下である特許請求の範
囲第1項記載の製造法。(2) The heating temperature in the continuous finishing heat treatment process is Ac_1
The manufacturing method according to claim 1, wherein the temperature is +100°C or higher and 1100°C or lower.
以上1100℃以下である特許請求の範囲第1項記載の
製造法。(3) The heating temperature in the continuous finishing heat treatment process is 900℃
The manufacturing method according to claim 1, wherein the temperature is above 1100°C.
以下である特許請求の範囲第1項、第2項または第3項
記載の製造法。(4) The cold rolling rate in the cold rolling process is 30% or more and 95%.
The manufacturing method according to claim 1, 2, or 3 below.
B、1.0%以下のMo、0.10%以下のREM、0
.20%以下のYの一種または二種以上を含有し、残部
がFeおよび不可避的不純物からなる鋼であって、且つ
0.02%≦C+N≦0.20% の関係を満足する鋼のスラブを製造し、これを熱間圧延
して熱延鋼帯を製造する工程、 中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程、そして、 得られた冷延鋼帯を連続熱処理炉に通板して、Ac_1
点以上1100℃以下のフェライト+オーステナイトの
二相域温度に10分以内の保持のあと、最高加熱温度か
ら100℃までを平均冷却速度1℃/sec以上500
℃/sec以下で冷却する仕上熱処理を施す連続仕上熱
処理工程、 からなる、HV200以上の硬さを有し且つ延性に優れ
た高強度複相組織クロムステンレス鋼帯の製造法。(5) In weight%, C: 0.15% or less, Si: 2.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 0 .60% or less, Cr: 10.0% or more and 20.0% or less, N: 0.12% or less, O: 0.02% or less, and Al of 0.20% or less, 0.0050% or less B, 1.0% or less Mo, 0.10% or less REM, 0
.. A steel slab containing 20% or less of one or more types of Y, with the remainder consisting of Fe and unavoidable impurities, and which satisfies the relationship 0.02%≦C+N≦0.20%. A cold rolling process of producing a cold rolled steel strip by cold rolling it to a product thickness by one cold rolling without intermediate annealing, and producing a cold rolled steel strip by hot rolling it. Then, the obtained cold rolled steel strip was passed through a continuous heat treatment furnace to obtain Ac_1
After maintaining the ferrite + austenite two-phase region temperature of 1100°C or higher for less than 10 minutes, the average cooling rate from the maximum heating temperature to 100°C is 1°C/sec or more and 500°C.
A method for producing a high-strength multi-phase chromium stainless steel strip having a hardness of HV200 or more and excellent ductility, comprising: a continuous finishing heat treatment step of performing a finishing heat treatment with cooling at a temperature of ℃/sec or less.
点+100℃以上で1100℃以下である特許請求の範
囲第5項記載の製造法。(6) The heating temperature in the continuous finishing heat treatment process is Ac_1
The manufacturing method according to claim 5, wherein the temperature is +100°C or higher and 1100°C or lower.
以上1100℃以下である特許請求の範囲第5項記載の
製造法。(7) The heating temperature in the continuous finishing heat treatment process is 900℃
The manufacturing method according to claim 5, wherein the temperature is above 1100°C.
以下である特許請求の範囲第5項、第6項または第7項
記載の製造法。(8) The cold rolling rate in the cold rolling process is 30% or more and 95%.
The manufacturing method according to claim 5, 6 or 7 as follows.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10087A JPH07100824B2 (en) | 1987-01-03 | 1987-01-03 | Method for producing high strength dual phase chromium stainless steel strip with excellent ductility |
CA000553958A CA1305911C (en) | 1986-12-30 | 1987-12-10 | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy |
EP87118421A EP0273278B1 (en) | 1986-12-30 | 1987-12-11 | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy |
DE87118421T DE3787633T2 (en) | 1986-12-30 | 1987-12-11 | Process for producing stainless steel strips with duplex structure, high strength and elongation and reduced even anisotropy. |
ES87118421T ES2043637T3 (en) | 1986-12-30 | 1987-12-11 | A PROCEDURE FOR THE PRODUCTION OF A STAINLESS STEEL STRAP TO DOUBLE STRUCTURE CHROME, UNDERSTANDING SUBSTANTIALLY FERRITE AND MARTENSITE HAVING HIGH STRENGTH AND ELONGATION, AS WELL AS FLAT ANISTROPY REGARDING STRENGTH AND STRENGTH. |
US07134874 US4812176B1 (en) | 1986-12-30 | 1987-12-18 | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane antisotrophy |
CN87105993A CN1010856B (en) | 1986-12-30 | 1987-12-29 | Process for production of double structure stainless cr-steel band having high strength, high ductility and low degree aeolotropy |
BR8707111A BR8707111A (en) | 1986-12-30 | 1987-12-29 | PROCESSES FOR THE PRODUCTION OF A CHROME STAINLESS STEEL |
KR1019870015472A KR950013187B1 (en) | 1986-12-30 | 1987-12-30 | Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10087A JPH07100824B2 (en) | 1987-01-03 | 1987-01-03 | Method for producing high strength dual phase chromium stainless steel strip with excellent ductility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63169330A true JPS63169330A (en) | 1988-07-13 |
JPH07100824B2 JPH07100824B2 (en) | 1995-11-01 |
Family
ID=11464679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10087A Expired - Fee Related JPH07100824B2 (en) | 1986-12-30 | 1987-01-03 | Method for producing high strength dual phase chromium stainless steel strip with excellent ductility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07100824B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991001385A1 (en) * | 1989-07-22 | 1991-02-07 | Nisshin Steel Co., Ltd. | Method of producing high-strength stainless steel strip having duplex structure and excellent spring characteristics |
WO1995013405A1 (en) | 1993-11-12 | 1995-05-18 | Nisshin Steel Co., Ltd. | High-strength high-ductility two-phase stainless steel and process for producing the same |
WO2011122697A1 (en) | 2010-03-29 | 2011-10-06 | 新日鐵住金ステンレス株式会社 | Dual phase structure stainless steel sheet and steel strip, and method for producing the dual phase structure stainless steel sheet and steel strip |
CN106048409A (en) * | 2016-06-27 | 2016-10-26 | 武汉科技大学 | Method for improving mechanical properties of 301LN austenitic stainless steel |
WO2017013850A1 (en) * | 2015-07-17 | 2017-01-26 | Jfeスチール株式会社 | Ferrite-based hot-rolled stainless steel sheet, hot-rolled annealed sheet, and method for manufacturing said sheets |
US10704117B2 (en) | 2015-07-29 | 2020-07-07 | Jfe Steel Corporation | Cold-rolled steel sheet, coated steel sheet, method for manufacturing cold-rolled steel sheet, and method for manufacturing coated steel sheet |
-
1987
- 1987-01-03 JP JP10087A patent/JPH07100824B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991001385A1 (en) * | 1989-07-22 | 1991-02-07 | Nisshin Steel Co., Ltd. | Method of producing high-strength stainless steel strip having duplex structure and excellent spring characteristics |
WO1995013405A1 (en) | 1993-11-12 | 1995-05-18 | Nisshin Steel Co., Ltd. | High-strength high-ductility two-phase stainless steel and process for producing the same |
US5624504A (en) * | 1993-11-12 | 1997-04-29 | Nisshin Steel Co., Ltd. | Duplex structure stainless steel having high strength and elongation and a process for producing the steel |
WO2011122697A1 (en) | 2010-03-29 | 2011-10-06 | 新日鐵住金ステンレス株式会社 | Dual phase structure stainless steel sheet and steel strip, and method for producing the dual phase structure stainless steel sheet and steel strip |
US9074271B2 (en) | 2010-03-29 | 2015-07-07 | Nippon Steel & Sumikin Stainless Steel Corporation | Dual-phase stainless steel sheet and steel strip and method of production |
WO2017013850A1 (en) * | 2015-07-17 | 2017-01-26 | Jfeスチール株式会社 | Ferrite-based hot-rolled stainless steel sheet, hot-rolled annealed sheet, and method for manufacturing said sheets |
JP6112273B1 (en) * | 2015-07-17 | 2017-04-12 | Jfeスチール株式会社 | Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them |
US10704117B2 (en) | 2015-07-29 | 2020-07-07 | Jfe Steel Corporation | Cold-rolled steel sheet, coated steel sheet, method for manufacturing cold-rolled steel sheet, and method for manufacturing coated steel sheet |
CN106048409A (en) * | 2016-06-27 | 2016-10-26 | 武汉科技大学 | Method for improving mechanical properties of 301LN austenitic stainless steel |
Also Published As
Publication number | Publication date |
---|---|
JPH07100824B2 (en) | 1995-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4824491A (en) | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy | |
KR950013187B1 (en) | Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy | |
KR100324892B1 (en) | High-strength, high-strength superstructure tissue stainless steel and its manufacturing method | |
JPH01172524A (en) | Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength | |
US5178693A (en) | Process for producing high strength stainless steel of duplex structure having excellent spring limit value | |
JPH04154921A (en) | Manufacture of high strength stainless steel strip having excellent shape | |
CN115176042A (en) | Steel sheet and method for producing steel sheet | |
JPS5827329B2 (en) | Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent ductility | |
JP2000144258A (en) | Method for producing Ti-containing ferritic stainless steel sheet with excellent ridging resistance | |
US8449699B2 (en) | Cold-rolled steel sheet, method for manufacturing the same, and backlight chassis | |
JPH09111354A (en) | Method for manufacturing ferritic stainless steel sheet | |
JPS63169331A (en) | Production of chromium stainless steel strip of high strength double phase structure having excellent ductility | |
JPS63169330A (en) | Production of chromium stainless steel strip of high-strength double phase structure having excellent ductility | |
JPS63169334A (en) | Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength | |
JP2001207244A (en) | Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same | |
JP3172561B2 (en) | Manufacturing method of composite structure stainless steel spring | |
JPS63169333A (en) | Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength | |
JPS63169335A (en) | Production of chromium stainless steel strip of double phase structure having small ntra-surface anisotropy and high ductility and high strength | |
JPH01172525A (en) | Production of complex phase structure chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength | |
JP2658706B2 (en) | Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance | |
JPS63169332A (en) | Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength | |
JPH0572449B2 (en) | ||
JP3028969B2 (en) | Manufacturing method of raw sheet for surface treated steel sheet | |
JPS6263619A (en) | Manufacture of soft nonaging steel sheet | |
JPS60100630A (en) | Production of high-strength light-gage steel sheet having good ductility and bending workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |