[go: up one dir, main page]

JPS63169331A - Production of chromium stainless steel strip of high strength double phase structure having excellent ductility - Google Patents

Production of chromium stainless steel strip of high strength double phase structure having excellent ductility

Info

Publication number
JPS63169331A
JPS63169331A JP62000101A JP10187A JPS63169331A JP S63169331 A JPS63169331 A JP S63169331A JP 62000101 A JP62000101 A JP 62000101A JP 10187 A JP10187 A JP 10187A JP S63169331 A JPS63169331 A JP S63169331A
Authority
JP
Japan
Prior art keywords
less
heat treatment
steel strip
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62000101A
Other languages
Japanese (ja)
Other versions
JPH07107178B2 (en
Inventor
Teruo Tanaka
照夫 田中
Katsuhisa Miyakusu
宮楠 克久
Hiroshi Fujimoto
廣 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP10187A priority Critical patent/JPH07107178B2/en
Priority to DE3787961T priority patent/DE3787961T2/en
Priority to ES87118422T priority patent/ES2044905T3/en
Priority to EP87118422A priority patent/EP0273279B1/en
Priority to US07134873 priority patent/US4824491B1/en
Priority to CA000555161A priority patent/CA1308997C/en
Priority to BR8707115A priority patent/BR8707115A/en
Priority to CN87105997A priority patent/CN1011987B/en
Priority to KR1019870015473A priority patent/KR950013188B1/en
Publication of JPS63169331A publication Critical patent/JPS63169331A/en
Publication of JPH07107178B2 publication Critical patent/JPH07107178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain a stainless steel strip of double phase structure having high ductility and high strength by hot rolling a steel slab which consists essentially of Cr and is controlled in the relation with the essential component then subjecting the slab to one pass of cold rolling to a product sheet thickness, holding the steel in a specific temp. region in a continuous heat treatment furnace then subjecting the sheet to controlled cooling. CONSTITUTION:The slab of the steel consisting of <=0.15wt.% C, <=2.0% Si, <=4.0% Mn, <=0.040% P, <=0.030% S, <=0.60% Ni, >=10.0% and <=20.0% Cr, <=0.12% N, <=0.02% O, <=4.0% Cu, and the balance Fe and unavoidable impurities and satisfying the relations expressed by the formulas I, II is produced. Said slab is then subjected to hot rolling and one pass of cold rolling without including intermediate annealing to the product sheet thickness. The rolled sheet is passed through the continuous heat treatment furnace where the sheet is held at the two-phase region temp. of ferrite + austenite of Ac1 point or above and <=1,100 deg.C within 10min and is then cooled at 1-500 deg.C/sec average cooling rate from the max. heating temp. down to 100 deg.C. The chromium stainless steel strip of high-strength double phase structure having >=200 hardness HV and excellent ductility is obtd. by the above-mentioned finishing heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、延性に優れ強度および延性の面内異方性の小
さい高強度複相m織りロムステンレス鋼帯の新規な工業
的製造法に関し、高強度が必要とされ且つプレス成形な
どの加工が施される成形用素材としての高強度高延性ス
テンレス鋼帯の製造法を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a new industrial manufacturing method for a high-strength, multi-phase m-weave ROM stainless steel strip that has excellent ductility and small in-plane anisotropy of strength and ductility. The present invention provides a method for manufacturing a high-strength, high-ductility stainless steel strip that is required to have high strength and is used as a forming material that is subjected to processing such as press forming.

〔この分野の背景〕[Background of this field]

クロムを主合金成分として含有するクロムステンレス鋼
にはマルテンサイト系ステンレス鋼とフェライト系ステ
ンレス鋼とがある。いずれも、クロムおよびニッケルを
主合金成分として含有するオーステナイト系ステンレス
鋼に比べて安価であり、そして強磁性を有し熱膨張係数
が小さいなどの物性面でオーステナイト系ステンレス鋼
には見られない特徴を有するので、単に経済的な理由の
みならず特性面からクロムステンレス鋼に限定される用
途も多い。特に近年の電子機器や精密機械部品などの分
野では、その需要拡大にともなってクロムステンレス鋼
板を使用する用途において加工成品の高機能化、小型化
、一体化、高精度化並びに加工工程の簡略化に対する要
求が益々厳しくなってきている。このために、ステンレ
ス鋼本来の耐食性や上述のクロムステンレス鋼の特質に
加えて、クロムステンレス鋼板の素材面では、一層の強
度、加工性や精度が必要とされる。したがって、高強度
と高延性という相反する特性を兼備したもの、素材鋼板
時点での形状や板厚精度に優れたもの、加工後の形状精
度に優れるといった緒特性を合わせもつクロムステンレ
ス鋼板素材の出現が待たれている。
Chromium stainless steel containing chromium as a main alloy component includes martensitic stainless steel and ferritic stainless steel. Both are cheaper than austenitic stainless steels, which contain chromium and nickel as the main alloy components, and have physical properties that are not found in austenitic stainless steels, such as ferromagnetism and a small coefficient of thermal expansion. Therefore, there are many uses that are limited to chromium stainless steel not only for economic reasons but also for characteristics. Particularly in the fields of electronic equipment and precision mechanical parts in recent years, demand for chrome stainless steel sheets has increased, resulting in higher functionality, miniaturization, integration, higher precision, and simplification of processing processes for processed products in applications that use chrome stainless steel sheets. requirements are becoming increasingly strict. For this reason, in addition to the inherent corrosion resistance of stainless steel and the above-mentioned characteristics of chromium stainless steel, the material of the chrome stainless steel plate needs to have even greater strength, workability, and precision. Therefore, the emergence of chromium stainless steel sheet materials that have the contradictory properties of high strength and high ductility, excellent shape and thickness accuracy at the time of raw steel sheet, and excellent shape accuracy after processing. is awaited.

〔従来の技術〕[Conventional technology]

従来のクロムステンレス鋼板素材について2強度の観点
から見ると、先ずマルテンサイト系ステンレス鋼が高強
度を有するクロムステンレス鋼として良く知られている
。例えばJIS G 4305の冷間圧延ステンレス鋼
板にはマルテンサイト系ステンレス鋼として7種の鋼が
規定されている。これらのマルテンサイト系ステンレス
鋼は、Cが0.08%以下(SUS410S)から0.
60〜0.75%(SUS440A)であり、フェライ
ト系ステンレス鋼に比べて同−Cr量レベルで見ると、
高いCを含有し、焼入れ処理または焼入れ焼もどし処理
により高強度を付与することができる。例えば、このJ
IS G 4305において、 0.26〜0.40%
のCおよび 12.00〜14.00%のCrを含有す
る5US420J2では、 980〜1040℃からの
急冷による焼入れ後、150〜400℃空冷の焼もどし
によりHRC40以上の硬さが得られることが、そして
、 0.60〜0.75%のCおよび16.00〜18
.00%のCrを含有する5US440Aでは、 10
10〜1070℃からの急冷による焼入れ後、150〜
400℃空冷の焼もどしにより、同じ(HRC40以上
の硬さが得られることが示されている。
When looking at conventional chrome stainless steel sheet materials from the viewpoint of two strengths, firstly, martensitic stainless steel is well known as a chrome stainless steel having high strength. For example, JIS G 4305 stipulates seven types of steel as martensitic stainless steel for cold rolled stainless steel sheets. These martensitic stainless steels have C content ranging from 0.08% or less (SUS410S) to 0.08% or less (SUS410S).
60 to 0.75% (SUS440A), compared to ferritic stainless steel at the same -Cr content level.
It contains high C and can be given high strength by hardening treatment or hardening and tempering treatment. For example, this J
In IS G 4305, 0.26-0.40%
In 5US420J2, which contains C and 12.00 to 14.00% Cr, hardness of HRC40 or higher can be obtained by quenching by rapid cooling from 980 to 1040°C and then tempering by air cooling at 150 to 400°C. and 0.60-0.75% C and 16.00-18
.. For 5US440A containing 00% Cr, 10
After quenching by rapid cooling from 10 to 1070℃, 150 to
It has been shown that the same hardness (HRC 40 or higher) can be obtained by air-cooling tempering at 400°C.

一方、クロムステンレス鋼であるフェライト系ステンレ
ス鋼板では熱処理による硬化があまり期待できないので
2強度を上昇させる方法としては焼なまし後、さらに冷
間で調質圧延を行って加工硬化による強度上昇を図るこ
とが行われている。
On the other hand, ferritic stainless steel sheets, which are chromium stainless steels, cannot be expected to be hardened very much by heat treatment, so two ways to increase their strength are to perform cold temper rolling after annealing to increase strength through work hardening. things are being done.

しかし、フェライト系ステンレス鋼は元来が高強度を必
要とする用途にはあまり供されてはいないのが実状であ
る。
However, the reality is that ferritic stainless steels are not often used in applications that inherently require high strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

マルテンサイト系ステンレス鋼板では、焼入れまたは焼
入れ一焼もどし処理後のm織はその名称のごとく基本的
にはマルテンサイトMi織であり。
In martensitic stainless steel sheets, the M weave after quenching or quenching and tempering is basically martensitic Mi weave, as its name suggests.

非常に高い強度および硬さが得られる反面、伸びは非常
に低い。そのため、焼入れまたは焼入れ焼もどし処理を
施したのではその後の加工が困難となる。特にプレス成
形などの加工は焼入れまたは焼入れ焼もどし後では不可
能である。したがって加工が施される場合には焼入れま
たは焼入れ焼もどし前に施される。すなわち、素材メー
カーからは焼なました状態、つまり、 JIS G 4
305の表16にも示されるように強度および硬さの低
い軟質な状態で出荷され、加工メーカーにおいて最終成
品にほぼ近い形状に加工された後、焼入れまたは焼入れ
焼もどし処理を施すのが通常である。この焼入れまたは
焼入れ焼もどし処理を施すことにより生成する表面の酸
化皮膜(スケール)は表面の美麗さが重要視されるステ
ンレス鋼では好ましくない場合が多く、その対策として
真空もしくは不活性ガス雰囲気による熱処理を施したり
、熱処理後に研磨などによりスケールを除去するなどの
工程が必要となる。いずれにしても、マルテンサイト系
ステンレス鋼板では高強度を得るためには加工メーカー
での熱処理工程が不可欠であるという加工メーカー側で
の負担増があり、またこのために最終製品のコストアン
プは避けられないという問題があった。
Although very high strength and hardness are obtained, elongation is very low. Therefore, if quenching or quenching and tempering treatment is performed, subsequent processing becomes difficult. In particular, processing such as press forming is not possible after quenching or quench-tempering. Therefore, when processing is performed, it is performed before quenching or quenching and tempering. In other words, the material manufacturer says that it is in an annealed state, that is, JIS G 4.
As shown in Table 16 of 305, it is usually shipped in a soft state with low strength and hardness, and after being processed into a shape almost similar to the final product at a processing manufacturer, it is quenched or quenched and tempered. be. The surface oxide film (scale) produced by this quenching or quenching and tempering treatment is often undesirable for stainless steel, where surface beauty is important, and as a countermeasure, heat treatment in a vacuum or inert gas atmosphere is recommended. This requires steps such as applying heat treatment and removing scale by polishing or the like after heat treatment. In any case, in order to obtain high strength with martensitic stainless steel sheets, a heat treatment process at the processing manufacturer is essential, which increases the burden on the processing manufacturer, and this increases the cost of the final product. The problem was that I couldn't do it.

一方、フェライト系ステンレス鋼板をffl!圧延によ
り強度を上昇させた場合には、伸びの低下が著しくなっ
て強度−延性バランスが悪くなる結果。
On the other hand, ferritic stainless steel plate ffl! When the strength is increased by rolling, the elongation decreases significantly and the strength-ductility balance worsens.

加工性に劣ることになる。そして iil質圧延による
強度上昇の程度は引張強さよりも耐力の方が著しく高い
。このために高圧延率になると耐力と引張強さの差が小
さくなり、降伏比(=耐力/引張強さ)が1に近くなっ
て材料の塑性加工域が非常に狭くなると共に3耐力が高
いとスプリングバックが大きくなってプレス加工などの
後の形状性が悪くなる。さらに調質圧延材は強度および
伸びの面内異方性が非常に大きく、軽度のプレス加工な
どでも加工後の形状が悪くなる。また、圧延による加工
歪みは板の表面に近いほど大きいという特徴があるため
、ili質圧延圧延材板厚方向のひずみ分布が不均一に
なることが避けられない。これは残留応力の板厚方向の
不均一分布をもたらし、特に極TR’14 +Hでは打
抜き加工やフォトエツチング処理による穴あけ加工後に
板の反りなどの形状変化を生ずる場合があり、電子部品
などの高精度が必要とされる用途では大きな問題となる
。以上の材質特性面での問題のみならず、調質圧延材は
その製造性においても多くの問題を抱えている。先ず強
度の制御について見ると、調質圧延は冷間圧延による加
工硬化を利用しているため圧延率が強度を決定する最も
重要な因子である。したがって。
This results in poor workability. The degree of increase in strength due to III-quality rolling is significantly higher in yield strength than in tensile strength. For this reason, when the rolling rate becomes high, the difference between proof stress and tensile strength becomes smaller, and the yield ratio (= proof stress / tensile strength) becomes close to 1, the plastic working area of the material becomes very narrow, and the yield strength becomes high. This increases the springback and deteriorates the shapeability after press working. Furthermore, the temper-rolled material has very large in-plane anisotropy in strength and elongation, and even light press processing results in poor shape after processing. Furthermore, since the processing strain due to rolling is larger closer to the surface of the plate, it is inevitable that the strain distribution in the thickness direction of the illi-quality rolled material becomes non-uniform. This results in non-uniform distribution of residual stress in the thickness direction of the plate, which may cause changes in shape such as warping of the plate after punching or photo-etching, especially in the case of ultra-TR'14 +H. This is a big problem in applications that require precision. In addition to the above-mentioned problems in terms of material properties, skin-pass rolled materials also have many problems in their manufacturability. First, regarding the control of strength, since temper rolling utilizes work hardening due to cold rolling, the rolling rate is the most important factor determining strength. therefore.

成品として板厚精度に優れ且つ目標の強度レベルを精度
よく安定して得るためには、圧延率の厳密な制御、具体
的には調質圧延前の初期板厚の厳密な管理が非常に重要
であることに加えてl1ll質圧延前の素材の強度レベ
ルの管理が必要となる。また形状制御の面では、いわゆ
るスキンパス圧延やテンパーローリングと呼ばれる形状
修正を目的とした高々2〜3%の軽圧延率のiPl質圧
延とは異なり、高強度化を目的とする調質圧延では圧延
率が数十パーセントにもおよぶ実質的な冷間圧延である
ため、冷延ままで形状性に優れた銅帯を得ることは困難
である。このため、形状修正を目的として材料の回復・
再結晶温度域よりも低く軟化しない温度域に加熱し、応
力除去処理を必要とする場合がある。このように調質圧
延材は製造性においても数々の問題がある。
In order to achieve excellent plate thickness accuracy as a finished product and to achieve the target strength level accurately and stably, strict control of the rolling rate, specifically strict control of the initial plate thickness before temper rolling, is extremely important. In addition to this, it is necessary to control the strength level of the material before rolling. In addition, in terms of shape control, unlike so-called skin pass rolling and temper rolling, which have a light rolling ratio of at most 2 to 3% for the purpose of shape correction, temper rolling, which aims to increase strength, requires rolling. Since this is essentially cold rolling with a rolling rate of several tens of percent, it is difficult to obtain a copper strip with excellent shape properties as it is cold rolled. For this reason, material recovery and
It may be necessary to heat the material to a temperature range below the recrystallization temperature range at which it does not soften, and to perform stress relief treatment. As described above, temper-rolled materials have many problems in terms of manufacturability.

以上の調質圧延に起因する問題のみならず、フェライト
系ステンレス鋼板では本質的な欠点とも言えるリジング
の問題がある。リジングは通常。
In addition to the problems caused by the above-mentioned temper rolling, ferritic stainless steel sheets also have the problem of ridging, which can be said to be an essential drawback. Rigging is normal.

フェライト系ステンレス鋼の冷延焼鈍板にプレス成形な
どの加工を施した際に生ずる表面欠陥の一種であるが、
冷間圧延後においても一般に冷延リジングと呼ばれるリ
ジングを発生する場合があり。
It is a type of surface defect that occurs when a cold rolled annealed ferritic stainless steel plate is subjected to processing such as press forming.
Even after cold rolling, ridging, generally called cold rolling ridging, may occur.

表面の粗度が重視される用途ではやはり大きな問題とな
る。
This is still a big problem in applications where surface roughness is important.

〔問題点を解決する手段〕[Means to solve problems]

前述のような問題は、適度な高強度を有し且つ所望の形
状に加工し得る良好な延性および加工性を具備し、異方
性が小さくリジング発生のないクロムステンレス鋼材料
が素材メーカー側で鋼板または銅帯の形で提供できれば
解決し得る。そこで本発明者らはこの解決を目的として
化学成分並びに製造条件の両面からクロムステンレス鋼
について広範な研究を続けて来た。その結果、鋼成分を
適正に制御し、さらに製造条件として、熱間圧延のあと
、更に必要に応じての熱延板焼鈍を行ったあと、冷間圧
延を行って製品板厚の冷延鋼帯を製造し、この冷延鋼帯
を、従来のフェライト単相域温度での仕上焼鈍つまり鋼
板または鋼帯成品に施す焼なまし処理ではなく、適正な
フェライト十オーステナイトニ相域への加熱とその後の
急冷処理からなる特定条件下での連続仕上熱処理を施す
ならば、実質的に軟質なフェライト相と硬質なマルテン
サイト相が均一に混在した複相組織とすることができ、
前記の問題点の実質上すべてが解決できるという素晴ら
しい成果を得ることができた。
To solve the above-mentioned problems, material manufacturers are trying to find a chromium stainless steel material that has moderately high strength, good ductility and workability that can be processed into the desired shape, has small anisotropy, and does not cause ridging. This could be solved if it could be provided in the form of a steel plate or copper strip. In order to solve this problem, the present inventors have continued extensive research on chromium stainless steel from both the chemical composition and manufacturing conditions. As a result, the steel composition is appropriately controlled, and the manufacturing conditions include hot rolling, hot rolling annealing as necessary, and cold rolling to achieve the product thickness. The cold-rolled steel strip is heated to the proper ferritic ten-austenite two-phase region, rather than the conventional finish annealing at a temperature in the ferrite single-phase region, that is, the annealing treatment applied to a steel plate or steel strip product. If a continuous finishing heat treatment is performed under specific conditions consisting of a subsequent rapid cooling treatment, it is possible to obtain a multi-phase structure in which a substantially soft ferrite phase and a hard martensitic phase are evenly mixed.
We have achieved great results in that virtually all of the problems mentioned above can be solved.

かくして本発明は。Thus, the present invention.

重量%において。In weight%.

c:o、to%以下。c: o, to% or less.

S i : 2.0%以下。Si: 2.0% or less.

Mn : 4.0%以下。Mn: 4.0% or less.

p:o、o4o%以下。p: o, o4o% or less.

S : 0.030%以下。S: 0.030% or less.

Ni:4.0%以下。Ni: 4.0% or less.

Cr : 10.0%以上で20.0%以下。Cr: 10.0% or more and 20.0% or less.

N:0.12%以下。N: 0.12% or less.

o:o、o2%以下。o: o, o2% or less.

cu:4.o%以下。cu:4. o% or less.

を含有し、場合によっては、さらに0.20%以下のA
 l 、 0.0050%以下のB、1.0%以下のM
o、 0.109A以下のREV、0.20%以下のY
の一種または二種以上を含有し、残部がFeおよび不可
避的不純物からなる鋼であって、且つ 0.01%≦C+N≦0.20% 0.5%≦Ni+  (Mn+Cu)/3≦5.0%の
関係を満足する鋼のスラブを製造し、これを熱間圧延し
て熱延鋼帯を製造する工程。
and, in some cases, further contain 0.20% or less of A.
l, B of 0.0050% or less, M of 1.0% or less
o, REV of 0.109A or less, Y of 0.20% or less
0.01%≦C+N≦0.20% 0.5%≦Ni+ (Mn+Cu)/3≦5. A process of producing a steel slab that satisfies the 0% relationship and hot rolling it to produce a hot rolled steel strip.

中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程。
A cold rolling process in which a cold-rolled steel strip is manufactured by cold-rolling to the product thickness by one-time cold rolling without intermediate annealing.

そして。and.

得られた冷延鋼帯を連続熱処理炉に通板して1Ac+点
以上1100℃以下のフェライト十オーステナイトの二
相域温度に10分以内の保持のあと、最高加熱温度から
100℃までを平均冷却速度1℃/see以上500℃
/sec以下で冷却する仕上熱処理を施す連続仕上熱処
理工程。
The obtained cold-rolled steel strip is passed through a continuous heat treatment furnace and maintained at a temperature in the ferrite decaustenite two-phase region of 1 Ac+ point or more and 1100°C or less for less than 10 minutes, and then averagely cooled from the maximum heating temperature to 100°C. Speed 1℃/see or higher 500℃
Continuous finishing heat treatment process in which finishing heat treatment is performed by cooling at a speed of /sec or less.

からなる、 HV 200以上の硬さを有し且つ延性に
優れた高強度複相組織クロムステンレス鋼帯の製造法を
提供するものである。
The present invention provides a method for producing a high-strength multi-phase chromium stainless steel strip having a hardness of HV 200 or more and excellent ductility.

本発明法によれば前述の問題点の実質上すべてが解決さ
れるのみならず、鋼組成または仕上熱処理時の加熱温度
並びに冷却速度を制御することにより強度を自在に且つ
簡単に調整できるという点でクロムステンレス鋼板また
は調帯素材の工業的製造にあたっての有利且つ新しい製
造技術を提供するものであり、従来より市場に出荷され
ているマルテンサイト系ステンレス鋼板または鋼帯やフ
ェライト系ステンレス鋼板または調帯では有しない延性
と強度の両特性を兼備し且つ延性と強度の面内異方性の
少ない新規クロムステンレス鋼材料を市場に提供するも
のである。なお1本発明法によれば、最終の連続仕上熱
処理工程を経た成品は調帯の形態で工業的に製造される
ものであり、これが市場に出荷される場合には調帯のま
ま(コイル)か或いは鋼板に整形された状態となる。
According to the method of the present invention, not only virtually all of the above-mentioned problems are solved, but also the strength can be freely and easily adjusted by controlling the steel composition or the heating temperature and cooling rate during finishing heat treatment. It provides an advantageous and new manufacturing technology for the industrial production of chromium stainless steel sheets or strip materials, and it can be applied to martensitic stainless steel sheets or strips and ferritic stainless steel sheets or strips that have been shipped to the market in the past. The purpose of the present invention is to provide the market with a new chromium stainless steel material that has both ductility and strength characteristics that are not available in other materials, and has less in-plane anisotropy in ductility and strength. According to the method of the present invention, the finished product that has undergone the final continuous finishing heat treatment process is industrially manufactured in the form of a coiled belt, and when it is shipped to the market, it remains as a coiled belt (coil). Or it will be shaped into a steel plate.

従来より8例えばフェライト系ステンレス鋼の代表鋼種
である5tlS430においても二相域温度に加熱すれ
ばオーステナイトが生成し、このオーステナイトは急冷
によってマルテンサイトに変態してフェライト中マルテ
ンサイトの二相m織になること自体は知られていた。し
かしながら、高温でオーステナイトを生成するフェライ
ト系ステンレス鋼帯の製造においては、冷延後の熱処理
はあくまでもフェライト単相域温度での焼なまし処理で
あり、マルテンサイトを生成するような高温の熱処理は
延性の低下などの材質上の劣下をもたらすものとして回
避することが常識であり、工業的な鋼帯の実際の製造面
では全く顧みられなかった。
Conventionally, 8 For example, even in 5TLS430, which is a representative steel type of ferritic stainless steel, austenite is generated when heated to a temperature in the two-phase region, and this austenite is transformed into martensite by rapid cooling, resulting in a two-phase m weave of martensite in ferrite. It was known that it would happen. However, in the production of ferritic stainless steel strips that produce austenite at high temperatures, the heat treatment after cold rolling is only annealing at a temperature in the ferrite single phase region, and high-temperature heat treatment that produces martensite is not recommended. It is common sense to avoid this because it causes deterioration in material quality such as a decrease in ductility, and it has not been considered at all in the actual manufacturing of industrial steel strips.

したがって、クロムステンレス鋼の冷延工程後に本発明
のような連続熱処理を想定し且つフェライト+オーステ
ナイトニ相域に加熱する仕上熱処理を施した場合の加熱
温度と強度および延性の関係や延性および強度の異方性
などについて詳細に研究がなされた例もない。本発明は
、高強度クロムステンレス鋼帯の工業的製造法として従
来顧みられることのなかった全く新しい製造方法を提供
するものであり、その結果として従来のクロムステンレ
ス鋼板または銅帯では有しなかった優れた特性をもつ新
規なりロムステンレス鋼板材料を提供するものである。
Therefore, assuming continuous heat treatment as in the present invention after the cold rolling process of chrome stainless steel, and performing finishing heat treatment to heat to the ferrite + austenite dual phase region, the relationship between heating temperature, strength and ductility, and the relationship between ductility and strength. There are no examples of detailed research on anisotropy, etc. The present invention provides a completely new method of manufacturing high-strength chromium stainless steel strips that has not been previously considered as an industrial manufacturing method, and as a result, it provides a completely new method of manufacturing high-strength chromium stainless steel strips, and as a result, conventional chrome stainless steel strips or copper strips do not have The present invention provides a new ROM stainless steel sheet material with excellent properties.

〔発明の詳述〕[Details of the invention]

以下に1本発明で規制する綱の化学成分値の範囲限定の
理由並びに本発明法で採用する各製造工程の内容を具体
的に詳述する。
Below, the reasons for limiting the range of chemical component values of the classes regulated by the present invention and the content of each manufacturing process employed in the method of the present invention will be specifically explained in detail.

まず2本発明法を適用するクロムステンレス鋼の成分の
含有量範囲(重量%)の限定理由は次のとおりである。
First, the reasons for limiting the content range (wt%) of the components of the chromium stainless steel to which the method of the present invention is applied are as follows.

CおよびNは、Ni、Mn、Cuなどに比べて強力且つ
安価なオーステナイト生成元素であると共にマルテンサ
イト強化能の大きい元素であるから。
This is because C and N are stronger and cheaper austenite-forming elements than Ni, Mn, Cu, etc., and are also elements with a greater ability to strengthen martensite.

連続仕上熱処理後の強度の制御並びに高強度化に有効な
元素である。したがって、連続仕上熱処理工程後に10
%以上のマルテンサイトを含む複相組織としHv200
以上の十分な強度を得るには、  Ni。
It is an effective element for controlling strength and increasing strength after continuous finishing heat treatment. Therefore, after the continuous finishing heat treatment process, 10
Multi-phase structure containing % or more of martensite Hv200
To obtain sufficient strength, use Ni.

Mn、Cuなどのオーステナイト生成元素が添加されて
いても、  (C+N)量として少なくとも0.01%
以上を必要とする。しかし、CとN量があまり高いと連
続仕上熱処理工程後に生成するマルテンサイト1が多く
なり、場合によっては100%マルテンサイトとなると
共にマルテンサイト相そのものの硬さも非常に高くなる
ので高強度は得られるものの延性は低下する。したがっ
て、(C+N)量として0.20%以下とし、 0.0
1%≦C+N≦0.20%の関係を満足させることが必
要である。
Even if austenite-forming elements such as Mn and Cu are added, the amount of (C+N) must be at least 0.01%.
or more is required. However, if the amounts of C and N are too high, a large amount of martensite 1 will be generated after the continuous finishing heat treatment process, and in some cases it will become 100% martensite, and the hardness of the martensite phase itself will become very high, so high strength will not be achieved. However, the ductility decreases. Therefore, the amount of (C+N) should be 0.20% or less, and 0.0
It is necessary to satisfy the relationship 1%≦C+N≦0.20%.

またCを多量に添加すると連続仕上熱処理での冷却時に
Cr炭化物が結晶粒界に析出し、耐食性が劣下する場合
がある。したがって、C量としては0.10%以下とす
る。
Furthermore, if a large amount of C is added, Cr carbides may precipitate at grain boundaries during cooling during continuous finishing heat treatment, resulting in a decrease in corrosion resistance. Therefore, the amount of C is set to 0.10% or less.

また、Nは溶解度の関係から多量に添加することは困難
であると共に、多量の添加は表面欠陥の増加を招くため
0.12%以下とする。
Further, it is difficult to add a large amount of N due to its solubility, and addition of a large amount causes an increase in surface defects, so the amount is set to 0.12% or less.

Siはフェライト生成元素であると共にフェライトおよ
びマルテンサイトの両相に対し強力な固溶強化能を有す
る。したがってマルテンサイ)41の制御および強度レ
ベルの制御に有効な元素である。しかしながら多量の添
加は熱間加工性や冷間加工性の低下を招くために2.0
%を上限とする。
Si is a ferrite-forming element and has a strong solid solution strengthening ability for both ferrite and martensite phases. Therefore, it is an effective element for controlling the 41 (marten rhinoceros) and strength level. However, adding a large amount leads to a decrease in hot workability and cold workability, so
The upper limit is %.

M n + N r + Cuはオーステナイト生成元
素であり。
M n + N r + Cu is an austenite-forming element.

連続仕上熱処理後のマルテンサイト量並びに強度の制御
に有効な元素である。またMn、Ni+’Cuの添加に
よりCの添加量を低減することができ、軟質なマルテン
サイトとして延性を向上させたり粒界へのCr炭化物の
析出を抑制して耐食性の劣下を防止することができる。
It is an effective element for controlling the amount of martensite and strength after continuous finishing heat treatment. In addition, the amount of C added can be reduced by adding Mn, Ni+'Cu, which improves ductility as soft martensite and suppresses precipitation of Cr carbides at grain boundaries to prevent deterioration of corrosion resistance. I can do it.

更にMn、Ni、Cuの重要な効果は、後記の試験結果
(例えば第1図の関係)や実施例にも示すが2本発明に
従う連続仕上熱処理工程において、Mn、Ni、Cuの
添加によってより低温側から且つ広い温度範囲にわたっ
て硬さ変動の小さい安定領域が得られることであり。
Furthermore, the important effects of Mn, Ni, and Cu are shown in the test results (for example, the relationship shown in Figure 1) and examples below, but in the continuous finishing heat treatment process according to the present invention, the addition of Mn, Ni, and Cu improves A stable region with small hardness fluctuations can be obtained from the low temperature side over a wide temperature range.

連続仕上熱処理のために必要な高温強度の点でもまた省
エネルギーの点でも実操業において多大のメリントカく
もたらされることである。したがってMn、Ni、Cu
の添加は、安定した強度特性を有する複相Mi織鋼帯の
製造に寄与するのみならず、高温強度のより高い低温で
の熱処理が可能になることによって連続仕上熱処理によ
る炉内のコイル破断などの高温強度低下にもとづくトラ
ブルの発生を回避できるとともに、省エネルギーの観点
からも多大の効果をもたらす。このような効果を得るに
はMn、Ni、CuはそのL’ !で少なくとも0.5
%以上を必要とするが、連続仕上熱処理後の複相組織材
の硬さ上昇に対してはNiの影響が最も大きく、Mnと
CuはおおむねNiの3分の工程度である。したがって
、Mn+Ni+Cuの添加量を定めるにあたっては、N
i+  (Mn +Cu)/3の関係式を用いて規制し
、Ni+  (Mn +Cu)/3として少なくとも0
.5%以上添加する。しかし、多量に添加すると製品が
高価となり5本発明鋼帯の特徴の一つである経済性に影
響を与える。したがってMn、Ni、Cuの各々単独で
はそれぞれ4.0%以下とし、Ni+(Mn  +Cu
)/3として5.0%以下とする。
This provides great benefits in actual operation, both in terms of high-temperature strength required for continuous finishing heat treatment and in terms of energy savings. Therefore, Mn, Ni, Cu
The addition of is not only contributing to the production of multi-phase Mi woven steel strips with stable strength properties, but also making it possible to perform heat treatment at low temperatures with higher high-temperature strength, thereby preventing coil breakage in the furnace due to continuous finishing heat treatment. It is possible to avoid problems caused by a decrease in high-temperature strength, and it also has a great effect from the perspective of energy conservation. To obtain such an effect, Mn, Ni, and Cu must be L'! at least 0.5
% or more, but Ni has the greatest influence on the increase in hardness of the multiphase structure material after continuous finishing heat treatment, and the process degree of Mn and Cu is approximately 3 times that of Ni. Therefore, when determining the amount of Mn+Ni+Cu added, N
It is regulated using the relational expression of i+ (Mn +Cu)/3, and Ni+ (Mn +Cu)/3 is at least 0.
.. Add 5% or more. However, if a large amount is added, the product becomes expensive, which affects the economic efficiency, which is one of the characteristics of the steel strip of the present invention. Therefore, each of Mn, Ni, and Cu alone should be 4.0% or less, and Ni+(Mn+Cu
)/3 to be 5.0% or less.

Sは、高すぎると耐食性や熱間加工性に悪影響をおよぼ
すので低いほうが好ましく、0.030%を上限とする
If S is too high, it will adversely affect corrosion resistance and hot workability, so it is preferably lower, and the upper limit is 0.030%.

Pは、固溶強化能の大きい元素であるが、多量の添加は
靭性の低下を招(場合があるため9通常許容されている
程度の0゜040%以下とする。
Although P is an element with a large solid solution strengthening ability, addition of a large amount may lead to a decrease in toughness (9), so it should be kept at 0.040% or less, which is the normally allowed level.

Crは、ステンレス鋼としての耐食性を維持するうえで
少なくとも10.0%は必要最低量として含有させるべ
きであるが、あまりCr1lが高いと。
At least 10.0% of Cr should be contained as the minimum necessary amount in order to maintain the corrosion resistance of stainless steel, but if the Cr content is too high.

マルテンサイト相を生成させて高強度を得るに必要なオ
ーステナイト生成元素の量が多くなると共に製品が高価
となるので、 20.0%を上限とする。
The upper limit is set at 20.0% because the amount of austenite-forming elements required to generate martensitic phase and obtain high strength increases and the product becomes expensive.

Oは、酸化物系の非金属介在物を形成し、!IIの清浄
度を低下させるので低い方が望ましく 、0.02%以
下とする。
O forms oxide-based nonmetallic inclusions! Since it lowers the cleanliness of II, it is preferable that it is lower, and it should be 0.02% or less.

A7!は、脱酸に有効な元素であると共にプレス加工性
に悪影響を及ぼすA2系介在物を著滅せしめる効果があ
る。しかし、 0.20%を超えて含有させてもその効
果が飽和するばかりでなく表面欠陥の増加を招(などの
悪影響をもたらすのでその上限を0.20%とする。
A7! is an effective element for deoxidizing, and has the effect of significantly destroying A2-based inclusions that adversely affect press workability. However, if the content exceeds 0.20%, the effect not only becomes saturated, but also causes an increase in surface defects, resulting in negative effects such as (), so the upper limit is set at 0.20%.

Bは、靭性改善に有効な成分であるが、極く微量でその
効果はもたらされ、 o、ooso%を超えるとその効
果が飽和するのでその上限を0.0050%とする。
B is an effective component for improving toughness, but its effect is brought about in a very small amount, and its effect is saturated when it exceeds 0.00%, so its upper limit is set at 0.0050%.

Moは、耐食性の向上に有効な元素であるが。Mo is an element effective in improving corrosion resistance.

多量に添加すると製品が高価となるために1.0%を上
限とする。
If added in large amounts, the product becomes expensive, so the upper limit is set at 1.0%.

REVおよびYは、熱間加工性の向上に有効な元素であ
る。また、耐酸化性の向上にも有効な元素である。高温
での連続仕上熱処理を施す本発明法においては酸化スケ
ールの発生を抑制してデスケール後に良好な表面肌を得
るのに有効に作用する。しかし、これらの効果は、RE
Mでは0.10%を超えると、またYでは0.20%を
超えると飽和するので、上限をREMは0.10%、Y
は0.20%とする。
REV and Y are elements effective in improving hot workability. It is also an effective element for improving oxidation resistance. The method of the present invention, which performs continuous finishing heat treatment at high temperatures, is effective in suppressing the generation of oxidized scale and obtaining a good surface texture after descaling. However, these effects
M saturates when it exceeds 0.10% and Y exceeds 0.20%, so the upper limit is 0.10% for REM and 0.10% for Y.
is 0.20%.

次に9本発明による複相組織鋼帯の各製造工程の内容に
ついて説明する。
Next, the contents of each manufacturing process of the multi-phase steel strip according to the present invention will be explained.

本発明法においては1以上の鋼成分範囲に調整したクロ
ムステンレス鋼のスラブを通常の製鋼鋳造技術によって
製造し、このスラブを通常の熱間圧延によって熱延鋼帯
を製造する。熱間圧延後は熱延板焼鈍とデスケールを行
なうのがよい。熱延板焼鈍は必ずしも実施する必要はな
いが、この焼鈍によって熱延鋼帯を軟質化させて冷延性
の向上を図ったり、熱延鋼帯に残存する変態相(高温で
オーステナイト相であった部分)をフェライト+炭化物
に変態・分解させることができるので、冷間圧延・連続
仕上熱処理後に均一な複相組織をもつ鋼帯とするうえで
望ましい。この熱延板焼鈍は連続焼鈍または箱焼鈍のい
ずれでもよい。またデスケール工程は通常の酸洗を行な
えばよい。ここまでのスラブ製造工程、熱間圧延工程、
熱延板焼鈍工程および脱スケール工程は従来のクロムス
テンレス鋼帯の製造技術をそのまま本発明法に適用する
ことができる。
In the method of the present invention, a slab of chromium stainless steel adjusted to one or more steel composition ranges is produced by conventional steel casting techniques, and this slab is produced by conventional hot rolling to produce a hot-rolled steel strip. After hot rolling, it is preferable to perform hot rolled sheet annealing and descaling. Although it is not necessary to carry out hot-rolled sheet annealing, this annealing softens the hot-rolled steel strip and improves its cold-rollability, and also removes the transformed phase remaining in the hot-rolled steel strip (austenitic phase at high temperatures). This is desirable for producing a steel strip with a uniform multi-phase structure after cold rolling and continuous finishing heat treatment. This hot rolled sheet annealing may be either continuous annealing or box annealing. Further, the descaling step may be carried out by ordinary pickling. The slab manufacturing process so far, hot rolling process,
For the hot-rolled sheet annealing process and the descaling process, conventional chrome stainless steel strip manufacturing techniques can be applied to the method of the present invention as they are.

次いで冷間圧延工程と連続仕上熱処理工程を経て複相組
織鋼帯を製造するのであるが、これらの工程は本発明法
において特徴的な工程であるので詳しく説明する。
Next, a dual-phase steel strip is manufactured through a cold rolling process and a continuous finishing heat treatment process, and these processes are characteristic of the method of the present invention and will be explained in detail.

「冷間圧延工程」 冷間圧延工程では、熱延鋼帯(熱延板焼鈍後の熱延鋼帯
)を中間焼鈍無しの一回冷延によって製品板厚まで冷間
圧延して冷延鋼帯を製造する。ここで、“中間焼鈍無し
の一回冷延”とは、中間焼鈍を挟んだ二回以上の冷延で
はないという意味である。より具体的には、冷間圧延を
1バス冷延または中間焼S@無しの多バス冷延によって
実施することにより、製品板厚にまで冷間圧延して冷延
鋼帯を製造することを意味し、したがって、熱延鋼帯の
板厚から冷延鋼帯の製品板厚にまで圧延ロールへの通板
回数は問わず中間焼鈍無しに板I¥減少を冷間で行なう
ことである。
"Cold rolling process" In the cold rolling process, hot rolled steel strip (hot rolled steel strip after hot rolled plate annealing) is cold rolled to product plate thickness by one cold rolling without intermediate annealing to produce cold rolled steel. Manufacture obi. Here, "single cold rolling without intermediate annealing" means that cold rolling is not performed two or more times with intermediate annealing in between. More specifically, by carrying out cold rolling by one-bath cold rolling or multi-bath cold rolling without intermediate sintering, it is possible to produce a cold rolled steel strip by cold rolling to the product thickness. Therefore, regardless of the number of passes through the rolling rolls, from the thickness of the hot-rolled steel strip to the product thickness of the cold-rolled steel strip, the reduction of sheet I is performed cold without intermediate annealing.

本発明法の場合には、冷間圧延工程のあとに後述の連続
仕上熱処理工程を有するので、冷延鋼帯に生じている方
向性をもった圧延組織に由来する強度や伸びに関する面
内異方性の履歴が後続の連続仕上熱処理によって得られ
た複相組織鋼帯では実質上消去されることがわかった。
In the case of the method of the present invention, since the continuous finishing heat treatment step described below is performed after the cold rolling step, there are in-plane differences in strength and elongation resulting from the directional rolling structure that occurs in the cold rolled steel strip. It has been found that the orthotropic history is virtually eliminated in the dual-phase steel strip obtained by subsequent successive finishing heat treatments.

したがって。therefore.

本発明による冷延鋼帯の製造は中間焼鈍を行なうことな
(製品板厚まで板厚減少を行っても最終的な複相組織で
は強度および伸びの面内異方性が小さい鋼帯とすること
ができる。もっとも、中間焼鈍を行って複数回冷延を行
なった場合には複相組織鋼帯の特に伸びの面内異方性が
一層小さくなることが判明したが、この場合には中間焼
鈍を実施することによる工数の増加と熱エネルギー消費
による製造コスト増は避けられない、したがって。
The production of cold rolled steel strip according to the present invention does not require intermediate annealing (even if the thickness is reduced to the product thickness, the final multiphase structure will result in a steel strip with small in-plane anisotropy of strength and elongation). However, it has been found that the in-plane anisotropy, especially in elongation, of the multiphase steel strip becomes even smaller when intermediate annealing is performed and cold rolling is performed multiple times. An increase in manufacturing costs due to the increase in man-hours and thermal energy consumption due to carrying out annealing is therefore unavoidable.

中間焼鈍を行わない本発明法によると経済的有利に複相
&ll織調帯を製造することができる。このような理由
から1本発明では熱延鋼帯を1パスで製品板厚まで圧下
するか、中間焼鈍を行わないで多パスで製品板厚まで圧
下する一回冷延を採用して冷延鋼帯を製造する。そのさ
いの圧下率は30%以上95%以下であるのが好ましい
According to the method of the present invention, which does not involve intermediate annealing, it is possible to economically advantageously produce a multi-phase &ll textured band. For these reasons, in the present invention, the hot-rolled steel strip is rolled down to the product thickness in one pass, or one-time cold rolling is adopted in which the hot-rolled steel strip is rolled down to the product thickness in multiple passes without intermediate annealing. Manufactures steel strips. The rolling reduction ratio at this time is preferably 30% or more and 95% or less.

以下に、この中間焼鈍なしの冷間圧延によっても面内異
方性の小さい複相組織鋼帯が得られることを代表的な試
験結果に基づいて説明する。
Below, it will be explained based on typical test results that a multiphase steel strip with small in-plane anisotropy can be obtained even by cold rolling without intermediate annealing.

第1表に示す化学成分を有する鋼A、BおよびCの鋼を
溶製し0通常の条件の熱間圧延にて板厚3.611II
mの熱延板とし、780℃×6時間加熱、炉冷の焼鈍を
施したあと酸洗を行なった。この熱延板を中間焼鈍を行
なうことなく冷間圧延し、ついで仕上熱処理条件を変え
て試験を行った(第1図および第2図のデータもこの試
験結果を示したものであるが、その内容については後述
する)。
Steels A, B, and C having the chemical composition shown in Table 1 were melted and hot-rolled under normal conditions to a plate thickness of 3.611II.
A hot-rolled sheet having a diameter of 1.5 m was prepared, annealed by heating at 780° C. for 6 hours and cooling in a furnace, and then pickled. This hot-rolled sheet was cold rolled without intermediate annealing, and then a test was conducted by changing the final heat treatment conditions (the data in Figures 1 and 2 also show the results of this test; (The contents will be explained later).

下記の第2表は、第1表のw4Bの熱延板(熱延焼鈍お
よび酸洗後の熱延板)を用いて。
Table 2 below uses the w4B hot rolled sheet (hot rolled sheet after hot rolling annealing and pickling) shown in Table 1.

(at、 0.7mm厚まで中間焼鈍を行なうことなく
冷間圧延しく冷間圧延率80.6%)、 この冷間圧延
板を1000℃に1分間均熱したあと、この温度から1
00℃までを平均冷却速度20℃/secで仕上熱処理
した複相組織材。
(at, cold rolled without intermediate annealing to a thickness of 0.7 mm, cold rolling rate 80.6%), After soaking this cold rolled plate for 1 minute at 1000°C, from this temperature 1
A multi-phase structure material that has been finish heat treated to 00°C at an average cooling rate of 20°C/sec.

(b)、前記のfalの複相組織材と同等の強度を冷間
圧延によって板厚0.7mmの状態で付与した調質圧延
材。
(b), a temper-rolled material that has been cold-rolled to a plate thickness of 0.7 mm and has the same strength as the fal multiphase structure material.

の各板の引張強さくkgf/mm”)および伸び(ズ)
を圧延方向の値(し)、圧延方向に対して45°方向の
値(D)および圧延方向に対し90°方向の値(T)を
示したものである。
Tensile strength (kgf/mm”) and elongation (z) of each plate of
The value in the rolling direction (shi), the value in the 45° direction (D) with respect to the rolling direction, and the value in the 90° direction with respect to the rolling direction (T) are shown.

第1表 第2表 第2表から明らかなように、複相U織材の伸びは、同等
の硬さおよび強度レベルの!11質圧延材に比べて著し
く優れており1強度−伸びバランスに優れていることが
わかる。また1面内異方性について見ると、引張強さで
は複相&l織材は方向による引張強さの差、つまり面内
異方性が小さいのに対し、iI!質圧延圧延材張強さの
最も低いし方向と最も高いT方向の引張強さの差は14
kgf/m+*”以上もあり面内異方性が大きい。また
、伸びについては、伸びが高い複相組織材は伸びが低い
調質圧延材よりも面内異方性も比較的小さいことがわか
る。
As is clear from Table 1, Table 2, and Table 2, the elongation of the multi-phase U woven material is the same as that of the same hardness and strength level! It can be seen that it is significantly superior to the rolled material of quality 11 and has an excellent balance of strength and elongation. Also, looking at in-plane anisotropy, in terms of tensile strength, the multi-phase &l woven material has a small difference in tensile strength depending on the direction, that is, in-plane anisotropy, whereas iI! The difference in tensile strength between the lowest tensile strength direction and the highest tensile strength T direction is 14
kgf/m+*", which means that the in-plane anisotropy is large. Also, regarding elongation, multi-phase structure materials with high elongation have relatively smaller in-plane anisotropy than temper-rolled materials with low elongation. Recognize.

すなわち、冷間圧延を中間焼鈍なしで行っても複相組織
化することで延性に優れ強度および延性の面内異方性の
小さい高強度クロムステンレス鋼板が得られることが明
らかである。
That is, it is clear that even if cold rolling is performed without intermediate annealing, a high-strength chromium stainless steel sheet with excellent ductility and small in-plane anisotropy of strength and ductility can be obtained by forming a multi-phase structure.

「連続仕上熱処理工程」 冷間圧延工程で得られた製品板厚の冷延鋼帯を次に連続
熱処理炉に通板して、 Ac、意思上で1100℃以下
のフェライト十オーステナイトの二相域温度に10分以
内の保持のあと、最高加熱温度から100℃までを平均
冷却速度1℃/see以上、500℃/sec以下で冷
却する連続仕上熱処理を施すのであるが。
"Continuous finishing heat treatment process" The cold-rolled steel strip with the product thickness obtained in the cold rolling process is then passed through a continuous heat treatment furnace to produce a two-phase region of Ac and ferrite decaustenite below 1100℃. After maintaining the temperature for 10 minutes or less, a continuous finishing heat treatment is performed in which the material is cooled from the maximum heating temperature to 100°C at an average cooling rate of 1°C/see or more and 500°C/sec or less.

この連続仕上熱処理工程は本発明法の最も特徴とする工
程であり、この連続仕上熱処理条件は後記の実施例でも
示すとおり本発明において重要な意義を有している。こ
の連続仕上熱処理工程での加熱条件と冷却条件を規制し
た理由の概要を説明すると次のとおりである。
This continuous finishing heat treatment step is the most characteristic step of the method of the present invention, and the conditions for this continuous finishing heat treatment have an important meaning in the present invention, as will be shown in Examples below. An overview of the reasons for regulating the heating conditions and cooling conditions in this continuous finishing heat treatment step is as follows.

連続仕上熱処理時の加熱温度はフェライト+オーステナ
イトニ相域温度であることが絶対条件である。本発明法
の実施にさいし、連続仕上熱処理時で調帯を低温から加
熱した場合にオーステナイトが生成し始める温度(つま
りAc+点の温度)の近傍では温度変化に対するオース
テナイ1−itの変動が大きく、急冷後に安定した硬さ
が得られない場合がある。しかし2本発明が対象とする
鋼成分範囲においては、  Ac、点より100℃以上
の高温域に加熱した場合にはこのような硬さの変動が実
質上止じないことがわかった。したがって、連続仕上熱
処理時の加熱温度はAct点+100℃以上とするのが
よい、より具体的には850℃以上、さらに好ましくは
900℃以上とするのがよい、一方、加熱温度の上限に
ついては、あまり高温では強度上昇が飽和するのみなら
ず、場合によっては低下することもあり、また製造コス
トの面でも不利となるので1100℃を上限とするのが
よい。
It is an absolute condition that the heating temperature during the continuous finishing heat treatment is in the ferrite + austenite dual phase region temperature. When carrying out the method of the present invention, when the toning zone is heated from a low temperature during continuous finishing heat treatment, austenite 1-it fluctuates greatly with respect to temperature changes near the temperature at which austenite begins to form (that is, the temperature at the Ac+ point). Stable hardness may not be obtained after rapid cooling. However, in the steel composition range targeted by the present invention, it has been found that such fluctuations in hardness do not substantially stop when heated to a high temperature range of 100° C. or more above the Ac point. Therefore, the heating temperature during continuous finishing heat treatment is preferably set to Act point +100°C or higher, more specifically 850°C or higher, and even more preferably 900°C or higher.On the other hand, the upper limit of the heating temperature is If the temperature is too high, the increase in strength not only becomes saturated, but also decreases in some cases, and is also disadvantageous in terms of manufacturing costs, so it is preferable to set the upper limit to 1100°C.

本発明法における連続仕上熱処理時のフェライト+オー
ステナイトニ相域加熱の冶金的意義として、■CrCr
炭化物化窒化物溶、■オーステナイト相の生成、■生成
したオーステナイト中へのCおよびNの?!縮の3点を
挙げることができる。
The metallurgical significance of heating in the ferrite + austenite two-phase region during continuous finishing heat treatment in the method of the present invention is as follows: ■CrCr
Carbide-nitride solution, ■Generation of austenite phase, ■C and N into the generated austenite? ! There are three points that can be mentioned.

本発明法で対象とするクロムステンレス鋼帯の場合には
、これらの現象はいずれも短時間のうちにほぼ平衡状態
に達するので1本発明における連続仕上熱処理時の上記
二相温度域での加熱時間は短時間、おおむね10分間以
内の加熱でよい。この短時間加熱でよいことは本発明法
の実際操業の点でも往産効率、製造コストの面から非常
に存利である。以上の加熱条件および保持時間によりて
以後の冷却によって生成するマルテンサイト量が10容
量%以上となるに必要なオーステナイトを生成させるこ
とができる。
In the case of the chromium stainless steel strip targeted by the method of the present invention, all of these phenomena reach an almost equilibrium state within a short time. The heating time may be short, approximately 10 minutes or less. The fact that this short heating time is sufficient is very advantageous in terms of actual operation of the method of the present invention as well as in terms of production efficiency and manufacturing cost. Under the above heating conditions and holding time, it is possible to generate austenite necessary for the amount of martensite generated by subsequent cooling to be 10% by volume or more.

仕上熱処理時の冷却速度についてはマルテンサイト相と
軟質なフェライト相との複相&IIVaを得るうえから
1℃/sec以上の冷却速度とする必要があるが、50
0℃/secを超える冷却速度を得るのは実質上困難で
ある。したがって9本発明において二相温度域加熱から
の冷却は1〜b の冷却速度で実施する。この冷却速度は最高加熱温度か
ら100℃までの平均冷却速度とするが、オーステナイ
トがマルテンサイトに変態してしまった後の冷却過程で
は必ずしもこの冷却速度を採用する必要はない、この冷
却速度と冷却終点温度は前述の加熱条件によって高温で
生成したオーステナイトがマルテンサイトに変態するに
十分なものである。冷却の方法としては気体および/ま
たは液体の冷却媒体を鋼帯に吹き付ける強制冷却方式ま
たは水冷ロールによるロール冷却方式などを適用できる
。このような条件での連続加熱と冷却はコイル巻戻し機
から巻取り機に至る間に加熱均熱帯域と急冷帯域を有す
る連続熱処理炉を用いて実施することができる。
Regarding the cooling rate during finishing heat treatment, it is necessary to set the cooling rate to 1°C/sec or more in order to obtain a multi-phase &IIVa of martensitic phase and soft ferrite phase.
It is virtually difficult to obtain cooling rates in excess of 0°C/sec. Therefore, in the present invention, cooling from two-phase temperature range heating is performed at a cooling rate of 1 to b. This cooling rate is the average cooling rate from the maximum heating temperature to 100℃, but it is not necessary to use this cooling rate in the cooling process after austenite has transformed into martensite. The end point temperature is sufficient for the austenite produced at high temperature under the above-mentioned heating conditions to transform into martensite. As a cooling method, a forced cooling method in which a gas and/or liquid cooling medium is sprayed onto the steel strip, a roll cooling method using water-cooled rolls, etc. can be applied. Continuous heating and cooling under such conditions can be carried out using a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil unwinding machine and the winding machine.

第1図は、前記第1表の各鋼について、既に説明した方
法で製造した熱延板(熱延板焼鈍および酸洗後の熱延板
)を、中間焼鈍なしの冷間圧延により板厚0.7mmの
冷間圧延板としく冷間圧延率;80.6%)、そして、
この冷間圧延板を800〜1100℃の間の各温度で1
分間均熱したあと、その温度から100℃までを平均冷
却速度20℃/secで冷却する仕上熱処理を施した場
合に得られた仕上熱処理材のマルテンサイト量(容量%
)と硬さくIIV)を。
Figure 1 shows the thickness of hot rolled sheets (hot rolled sheets after hot rolled sheet annealing and pickling) manufactured by the method already explained for each steel in Table 1 above, by cold rolling without intermediate annealing. A cold rolled plate of 0.7 mm, cold rolling rate: 80.6%), and
This cold-rolled plate was heated at each temperature between 800 and 1100°C.
The amount of martensite (volume %
) and hardness IIV).

仕上熱処理時の加熱温度の関係で示したものである(図
中のA、B、Cは第1表の各綱を表す)。
This is shown in terms of the heating temperature during finishing heat treatment (A, B, and C in the figure represent each steel in Table 1).

第1図から明らかなように、加熱温度がフェライト+オ
ーステナイトニ相域になると、仕上熱処理後にマルテン
サイトが出現し、加熱温度の上昇とともにマルテンサイ
ト量は増加するが、EBおよびCについては850〜9
00℃を超えるとその増加の程度は小さくなって次第に
飽和する傾向を示す。硬さの挙動もマルテンサイ1−f
fiの変化に対応して同様の傾向を示し、またマルテン
サイ)Iが多いほど硬さは高い、これに対し+  M 
n + N i + Cu量が本発明の規定以下である
鋼Aはマルテンサイト量および硬さの飽和する温度域が
高温側にあるとともにその範囲が狭い、この第1図の結
果は仕上熱処理を連続熱処理ラインで行なう上での重要
な意義を有している。すなわち連続熱処理ラインでは成
る程度の温度変動はやむを得ず、特に鋼帯の長さ方向で
の変動8および目標温度は同じであっても通板チャンス
の違いによる熱処理温度の違いは、実ラインでの操業で
は目標温度に対して±20℃程度の変動を見込む必要が
ある。第1図は。
As is clear from Fig. 1, when the heating temperature reaches the ferrite + austenite dual phase region, martensite appears after the final heat treatment, and the amount of martensite increases as the heating temperature increases, but for EB and C, 850 ~ 9
When the temperature exceeds 00°C, the degree of increase decreases and the temperature tends to gradually become saturated. The behavior of hardness is also martensai 1-f.
A similar tendency is shown in response to changes in fi, and the more martensai) I, the higher the hardness; on the other hand, + M
Steel A, in which the amount of n + N i + Cu is less than the specification of the present invention, has a temperature range in which the amount of martensite and hardness saturate is on the high temperature side and is narrow. This has an important significance when performing on a continuous heat treatment line. In other words, a certain degree of temperature fluctuation is unavoidable in a continuous heat treatment line, and in particular fluctuations in the lengthwise direction of the steel strip8 and differences in heat treatment temperature due to differences in threading opportunities even if the target temperature is the same, will occur during actual line operation. Therefore, it is necessary to allow for fluctuations of about ±20°C with respect to the target temperature. Figure 1 is.

冷却速度をほぼ一定にし且つ硬さ変動の小さい、熱処理
温度域を採用するならば、連続熱処理ラインにおいて多
少の温度変動があったとしても、硬さすなわち強度の変
動の小さい銅帯が製造できることを示している。そして
、特にMn、Ni、Cuを適正量添加することにより、
硬さ変動の小さい仕上熱処理温度域が低温側で且つ広範
囲に得られることになるので一層有利となる。そして強
度レベルの制御は前記のような成分制御によって行なう
ことによって目標とする強度は安定して得ることができ
、a帯の全長にわたって強度変動の小さい。
If the cooling rate is kept almost constant and a heat treatment temperature range with small hardness fluctuations is adopted, it is possible to produce copper strips with small fluctuations in hardness, that is, strength, even if there are slight temperature fluctuations in the continuous heat treatment line. It shows. In particular, by adding appropriate amounts of Mn, Ni, and Cu,
This is even more advantageous because a finishing heat treatment temperature range with small hardness fluctuations can be obtained on the low temperature side and over a wide range. By controlling the intensity level by controlling the components as described above, the target intensity can be stably obtained, and the intensity fluctuations are small over the entire length of the a-band.

また銅帯間での強度差の小さい高強度素材が既存の連続
熱処理ラインを用いて容易に且つ安価に製造できる。
Furthermore, a high-strength material with small strength differences between copper strips can be manufactured easily and inexpensively using an existing continuous heat treatment line.

第2図は3本発明で規制する範囲の鋼成分と製造条件内
でマルテンサイト量の異なる複相組織材を幾つか作りそ
の硬さと伸び(3方向の重みつき平均値)の相関を調べ
、これを調質圧延材の相関と比較して示したものである
。なお複相組織材の製造は第1図で説明したのと同じで
あり仕上熱処理の加熱温度は900℃以上である。また
調質圧延材は冷延後に焼鈍を行ったあと図中の添字で示
す調質圧延率を変えることによって硬さを変えたもので
ある。
Figure 2 shows the correlation between hardness and elongation (weighted average value in three directions) of several multiphase materials with different amounts of martensite made within the range of steel composition and manufacturing conditions regulated by the present invention. This is shown in comparison with the correlation of temper-rolled materials. Note that the production of the multi-phase structure material is the same as that explained in FIG. 1, and the heating temperature in the finishing heat treatment is 900° C. or higher. Further, the temper-rolled material is obtained by annealing after cold rolling, and then changing the hardness by changing the temper rolling rate indicated by the subscript in the figure.

第2図から明らかなように、調質圧延材は調質圧延率の
上昇に伴う硬さの上昇につれて伸びは急激に低下する。
As is clear from FIG. 2, the elongation of the temper-rolled material sharply decreases as the hardness increases as the temper rolling rate increases.

これに対して複相Mi織材は硬さが上昇しても伸びの低
下は緩やかである。特に、?3I組紐織材の伸びが調質
圧延材に比べてイzるのは硬さの高い領域、具体的には
Hv 200以上の領域において顕著となる。すなわち
複相組織材とすることによる高延性化はHν200以上
の領域で一段と顕著に発揮されるのであり、そのために
は前述の第1図からもわかるように、約10容量%以上
のマルテンサイト量のところである。このように硬さが
Hν200以上での高延性が図れる点に調質圧延材では
達成できない本発明法による複相組織材の特徴があり、
この強度−伸びバランスが良好なことから本発明法によ
って得られた複相組織鋼帯はプレス成形性などの加工性
についても調質圧延では得られない特質をもつことにな
る。
On the other hand, even if the hardness of the multi-phase Mi woven material increases, the elongation decreases slowly. especially,? The elongation of the 3I braided material is more pronounced than that of the temper-rolled material in the region of high hardness, specifically in the region of Hv 200 or higher. In other words, the increase in ductility achieved by forming a material with a multi-phase structure is even more pronounced in the region of Hν200 or higher, and for this purpose, as can be seen from the above-mentioned Figure 1, it is necessary to increase the martensite content by approximately 10% by volume or more. That's about it. In this way, the multi-phase structure material produced by the method of the present invention is characterized by the ability to achieve high ductility when the hardness is Hν200 or more, which cannot be achieved with temper-rolled material.
Because of this good strength-elongation balance, the dual-phase steel strip obtained by the method of the present invention has properties such as press formability and other workability that cannot be obtained by temper rolling.

第3図は、第1表の鋼Bを第2表の[alの方法で製造
した場合の金属組織写真である。写真中の白(見える領
域がフェライト、黒もしくは灰色に見える領域がマルテ
ンサイトである。この写真かられかるように、この材料
は微細なフェライトおよびマルテンサイトが均一に混在
した複相Mi織を有している。
FIG. 3 is a photograph of the metallographic structure of steel B in Table 1 produced by the method [al] in Table 2. The white (visible area) in the photo is ferrite, and the black or gray area is martensite.As can be seen from this photo, this material has a multi-phase Mi texture in which fine ferrite and martensite are evenly mixed. are doing.

以上に説明したように2強度並びに延性の異方性の小さ
い高延性高強度の鋼帯材料が得られたのは、熱間圧延、
熱延板焼鈍、冷間圧延のあとにフェライト+オーステナ
イトの二相域に加熱し急冷する仕上熱処理によって、微
細なフェライトと急冷によってオーステナイトから変態
して生成したマルテンサイトとが均一に混在した複相組
織としたことで達成し得たものである。すなわち、硬質
なマルテンサイトによる強度(硬さ)を得、軟質なフェ
ライトにより延性を得たものであり2両相を微細且つ均
一に混在させたことにより強度と延性の面内異方性を小
さくし得たものである。なお仕上熱処理後のU織はX線
的な調査では微量の残留オーステナイトが検出される場
合がある。
As explained above, the high ductility and high strength steel strip material with low strength and ductility anisotropy was obtained by hot rolling.
After hot-rolled sheet annealing and cold rolling, finishing heat treatment involves heating to a two-phase region of ferrite + austenite and then rapidly cooling, resulting in a double phase in which fine ferrite and martensite, which is transformed from austenite by rapid cooling, are evenly mixed. This was achieved by working as an organization. In other words, the hard martensite provides strength (hardness) and the soft ferrite provides ductility, and by finely and uniformly mixing both phases, the in-plane anisotropy of strength and ductility is reduced. It could have been done. Note that trace amounts of retained austenite may be detected in X-ray examination of the U weave after finishing heat treatment.

以下に2本発明法を実施した実施例を挙げて。Two examples in which the method of the present invention was implemented are listed below.

本発明法で得られた複相組織鋼帯の特性を比較例と対比
しながら具体的に示す。
The characteristics of a multi-phase steel strip obtained by the method of the present invention will be specifically shown in comparison with a comparative example.

実施例 第3表に示す化学成分を有する鋼を溶製してスラブを製
造した。そしていずれも板厚3.6mmに熱間圧延後、
780℃×6時間加熱・炉冷の熱延板焼鈍を行い、酸洗
のあと、中間焼鈍を施すことなく冷間圧延して板厚0.
7n+11の冷延鋼帯としく冷間圧延率80.6%)2
第4表に示した仕上熱処理条件のもとで連vt熱処理炉
にて連続仕上熱処理(ただし比較例阻4は箱型炉による
バッチ焼鈍処理)を施した。得られた鋼帯材料の特性を
第4表に併記した。
Example Slabs were manufactured by melting steel having the chemical components shown in Table 3. After hot rolling to a plate thickness of 3.6 mm,
The hot-rolled plate was annealed by heating and furnace cooling at 780°C for 6 hours, and after pickling, it was cold rolled without intermediate annealing to a plate thickness of 0.
7n+11 cold rolled steel strip with cold rolling rate 80.6%)2
Continuous finish heat treatment was carried out in a continuous VT heat treatment furnace under the finish heat treatment conditions shown in Table 4 (However, Comparative Example No. 4 was subjected to batch annealing treatment in a box furnace). The properties of the obtained steel strip material are also listed in Table 4.

第4表から明らかなように2本発明法によればいずれも
高い引張強さと硬さおよび良好な伸びを有した複相組織
鋼帯が得られたことがわかる。また5本発明法による鋼
帯は、0.2%耐力、引張強さおよび伸びの異方性が小
さいことが明らかであり、また破断後の引張試験片にも
リジングの発生が見られない。
As is clear from Table 4, by the two methods of the present invention, dual-phase steel strips having high tensile strength, hardness, and good elongation were obtained. Furthermore, it is clear that the steel strip manufactured by the method of the present invention has small anisotropy in 0.2% proof stress, tensile strength, and elongation, and no ridging is observed in the tensile test specimen after fracture.

これに対し比較例11klでは製造条件は本発明で規定
する範囲であるが1鋼のMn、Nj、Cu量が本発明で
規定するNi+(Mn+Cu)/3≧0.5%の要件か
ら外れる0、24%と低い第3表の隅8の鋼であるため
、連続仕上熱処理後にマルテンサイトが生成しておらず
、硬さが低い。
On the other hand, in Comparative Example 11kl, the manufacturing conditions are within the range specified by the present invention, but the Mn, Nj, and Cu contents of one steel deviate from the requirement of Ni+(Mn+Cu)/3≧0.5% specified by the present invention. , 24%, which is the steel in Corner 8 of Table 3, so no martensite is generated after continuous finishing heat treatment and the hardness is low.

比較例患2では、やはり製造条件は本発明の範囲内にあ
るが、鋼のC景およびNilがそれぞれ本発明で規定す
る0、10%以下および4.0%以下よりも高い0.4
05%および5.07%のCおよびNiを含有する鋼患
9であるため、連続仕上熱処理後のマルテンサイト量が
100%となり9強度は高いものの、伸びが低い。
In Comparative Example No. 2, the manufacturing conditions were still within the scope of the present invention, but the C-shape and Nil of the steel were 0.4, higher than the 0, 10% or less, and 4.0% or less stipulated in the present invention, respectively.
Since the steel contains 0.5% and 5.07% of C and Ni, the amount of martensite after continuous finishing heat treatment is 100% and the strength is high, but the elongation is low.

比較例11&13では連続仕上熱処理での加熱温度が7
50℃と低く、この加熱温度では鋼患1の鋼はフェライ
ト+オーステナイトニ相域にならず、したがって仕上熱
処理後の金属Mi織はマルテンサイトの存在しないフェ
ライト単相Mi織であり、伸びは高いものの強度および
硬さが低い。
In Comparative Examples 11 & 13, the heating temperature in continuous finishing heat treatment was 7.
At this heating temperature, which is as low as 50°C, the steel of steel No. 1 does not enter the ferrite + austenite dual phase region. Therefore, the metal Mi weave after finishing heat treatment is a ferrite single phase Mi weave without martensite, and the elongation is high. The strength and hardness of objects are low.

比較例階4は、仕上熱処理を箱型炉で行ない。Comparative Example Floor 4 was subjected to finishing heat treatment in a box furnace.

その冷却も炉冷によるため冷却速度が0.03℃/se
cと非常に低いので熱処理後にマルテンサイトが生成し
ておらず、比較例隘3と同様に伸びは高いものの1強度
および硬さが低い。
Since the cooling is also by furnace cooling, the cooling rate is 0.03℃/se
Since the c was very low, no martensite was formed after the heat treatment, and like Comparative Example No. 3, the elongation was high, but the strength and hardness were low.

比較例隘5は、調質圧延材であり1本発明のものに比較
して伸びが著しく低い。また引張強さに対する0、2%
耐力の比、すなわち降伏比が高いと共に、0.2%耐力
、引張強さ、伸びの異方性が大きい。したがって本発明
法によって得られた鋼帯に比べて加工性並びに加工後の
形状性に劣ることが明らかである。
Comparative Example No. 5 is a temper-rolled material and has significantly lower elongation than the material of the present invention. Also 0.2% of tensile strength
It has a high yield strength ratio, that is, a high yield ratio, and has large anisotropy in 0.2% yield strength, tensile strength, and elongation. Therefore, it is clear that the workability and shape properties after working are inferior to the steel strip obtained by the method of the present invention.

なお、比較例1k1.3.4および5の鋼帯については
、破断後の引張試験片でいずれもリジングの発生が見ら
れたの対し1本発明例の複相組織鋼帯はりジングの発生
が見られず、プレス成形などの加工が良好に行えること
がわかる。
Regarding the steel strips of Comparative Examples 1k1.3.4 and 5, the occurrence of ridging was observed in the tensile test specimens after fracture, whereas the occurrence of ridging was observed in the steel strips of the dual phase structure steel strip of Invention Example 1. It can be seen that processing such as press molding can be performed satisfactorily.

以上のように1本発明法によれば、高延性と高強度を兼
備し1強1度と延性の面内異方性が小さく且つ低耐力、
低降伏比の複相組織鋼帯が提供される。クロムステンレ
ス鋼板の分野において、従来かような良好な加工性を兼
備したllv 200以上の高強度素材が鋼板または調
帯の形で市場に出荷された例は見ない。したがって1本
発明は従来のクロムステンレス鋼板分野に新規素材鋼板
または調帯を稈供するものである。本発明に従う材料は
電子部品、精密機械部品などへの加工性が要求される高
強度材として特に有用であり、この分野において多大の
成果が発揮され得る。
As described above, according to the method of the present invention, it has both high ductility and high strength, has a strength of 1 degree and small in-plane anisotropy of ductility, and has a low yield strength.
A dual phase steel strip with a low yield ratio is provided. In the field of chromium stainless steel sheets, there has never been an example of a high-strength material of LLV 200 or higher with such good workability being shipped to the market in the form of steel sheets or strips. Therefore, one aspect of the present invention is to provide a new material steel plate or strip for the conventional chrome stainless steel plate field. The material according to the present invention is particularly useful as a high-strength material that requires processability into electronic parts, precision mechanical parts, etc., and can achieve great results in this field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明に従う仕上熱処理の加熱温度とマルテ
ンサイト量および硬さとの関係を示した図。 第2図は本発明に従う仕上熱処理材と調質圧延材につい
て硬さ−伸びの相関関係を示した図。 第3図は本発明に従う連続仕上熱処理を施したクロムス
テンレス鋼帯の金属組織を示した顕微鏡写真である。
FIG. 1 is a diagram showing the relationship between heating temperature, amount of martensite, and hardness in finishing heat treatment according to the present invention. FIG. 2 is a diagram showing the correlation between hardness and elongation for finish heat-treated materials and temper-rolled materials according to the present invention. FIG. 3 is a micrograph showing the metallographic structure of a chromium stainless steel strip subjected to continuous finishing heat treatment according to the present invention.

Claims (1)

【特許請求の範囲】 (1)重量%において、 C:0.10%以下、 Si:2.0%以下、 Mn:4.0%以下、 P:0.040%以下、 S:0.030%以下、 Ni:4.0%以下、 Cr:10.0%以上で20.0%以下、 N:0.12%以下、 O:0.02%以下、 Cu:4.0%以下、 を含有し、残部がFeおよび不可避的不純物からなる鋼
であって、且つ 0.01%≦C+N≦0.20% 0.5%≦Ni+(Mn+Cu)/3≦5.0%の関係
を満足する鋼のスラブを製造し、これを熱間圧延して熱
延鋼帯を製造する工程、 中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程、そして、 得られた冷延鋼帯を連続熱処理炉に通板して、Ac_1
点以上1100℃以下のフェライト+オーステナイトの
二相域温度に10分以内の保持のあと、最高加熱温度か
ら100℃までを平均冷却速度1℃/sec以上500
℃/sec以下で冷却する仕上熱処理を施す連続仕上熱
処理工程、 からなる、HV200以上の硬さを有し且つ延性に優れ
た高強度複相組織クロムステンレス鋼帯の製造法。 (2)連続仕上熱処理工程における加熱温度はAc_1
点+100℃以上で1100℃以下である特許請求の範
囲第1項記載の製造法。 (3)連続仕上熱処理工程における加熱温度は850℃
以上1100℃以下である特許請求の範囲第1項記載の
製造法。 (4)冷間圧延工程での冷間圧延率は30%以上95%
以下である特許請求の範囲第1項、第2項または第3項
記載の製造法。 (5)重量%において、 C:0.10%以下、 Si:2.0%以下、 Mn:4.0%以下、 P:0.040%以下、 S:0.030%以下、 Ni:4.0%以下、 Cr:10.0%以上で20.0%以下、 N:0.12%以下、 O:0.02%以下、 Cu:4.0%以下、 および、0.20%以下のAl、0.0050%以下の
B、1.0%以下のMo、0.10%以下のREM、0
.20%以下のYの一種または二種以上を含有し、残部
がFeおよび不可避的不純物からなる鋼であって、且つ
0.01%≦C+N≦0.20% 0.5%≦Ni+(Mn+Cu)/3≦5.0%の関係
を満足する鋼のスラブを製造し、これを熱間圧延して熱
延鋼帯を製造する工程、 中間焼鈍無しの一回冷延によって製品板厚にまで冷間圧
延して冷延鋼帯を製造する冷間圧延工程、そして、 得られた冷延鋼帯を連続熱処理炉に通板して、Ac_1
点以上1100℃以下のフェライト+オーステナイトの
二相域温度に10分以内の保持のあと、最高加熱温度か
ら100℃までを平均冷却速度1℃/sec以上500
℃/sec以下で冷却する仕上熱処理を施す連続仕上熱
処理工程、 からなる、HV200以上の硬さを有し且つ延性に優れ
た高強度複相組織クロムステンレス鋼帯の製造法。 (6)連続仕上熱処理工程における加熱温度はAc_1
点+100℃以上で1100℃以下である特許請求の範
囲第5項記載の製造法。 (7)連続仕上熱処理工程における加熱温度は850℃
以上1100℃以下である特許請求の範囲第5項記載の
製造法。 (8)冷間圧延工程での冷間圧延率は30%以上95%
以下である特許請求の範囲第5項、第6項または第7項
記載の製造法。
[Claims] (1) In weight%, C: 0.10% or less, Si: 2.0% or less, Mn: 4.0% or less, P: 0.040% or less, S: 0.030. % or less, Ni: 4.0% or less, Cr: 10.0% or more and 20.0% or less, N: 0.12% or less, O: 0.02% or less, Cu: 4.0% or less, steel with the balance consisting of Fe and unavoidable impurities, and which satisfies the following relationships: 0.01%≦C+N≦0.20% 0.5%≦Ni+(Mn+Cu)/3≦5.0% The process of producing a steel slab and hot rolling it to produce a hot-rolled steel strip.The cold-rolling process involves producing a cold-rolled steel strip by cold-rolling it once to the product thickness without intermediate annealing. After the inter-rolling process, the obtained cold-rolled steel strip is passed through a continuous heat treatment furnace to obtain Ac_1
After maintaining the ferrite + austenite two-phase region temperature of 1100°C or higher for less than 10 minutes, the average cooling rate from the maximum heating temperature to 100°C is 1°C/sec or more and 500°C.
A method for producing a high-strength multi-phase chromium stainless steel strip having a hardness of HV200 or more and excellent ductility, comprising: a continuous finishing heat treatment step of performing a finishing heat treatment with cooling at a temperature of ℃/sec or less. (2) The heating temperature in the continuous finishing heat treatment process is Ac_1
The manufacturing method according to claim 1, wherein the temperature is +100°C or higher and 1100°C or lower. (3) The heating temperature in the continuous finishing heat treatment process is 850℃
The manufacturing method according to claim 1, wherein the temperature is above 1100°C. (4) The cold rolling rate in the cold rolling process is 30% or more and 95%.
The manufacturing method according to claim 1, 2, or 3 below. (5) In weight%, C: 0.10% or less, Si: 2.0% or less, Mn: 4.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 4 .0% or less, Cr: 10.0% or more and 20.0% or less, N: 0.12% or less, O: 0.02% or less, Cu: 4.0% or less, and 0.20% or less Al, 0.0050% or less B, 1.0% or less Mo, 0.10% or less REM, 0
.. Steel containing 20% or less of one or more types of Y, with the balance consisting of Fe and unavoidable impurities, and 0.01%≦C+N≦0.20% 0.5%≦Ni+(Mn+Cu) A process of manufacturing a steel slab that satisfies the relationship of /3≦5.0% and hot rolling it to produce a hot rolled steel strip, which is cooled to the product thickness by one cold rolling without intermediate annealing A cold rolling process in which a cold rolled steel strip is produced by inter-rolling, and the obtained cold rolled steel strip is passed through a continuous heat treatment furnace to produce Ac_1
After maintaining the ferrite + austenite two-phase region temperature of 1100°C or higher for less than 10 minutes, the average cooling rate from the maximum heating temperature to 100°C is 1°C/sec or more and 500°C.
A method for producing a high-strength multi-phase chromium stainless steel strip having a hardness of HV200 or more and excellent ductility, comprising: a continuous finishing heat treatment step of performing a finishing heat treatment with cooling at a temperature of ℃/sec or less. (6) The heating temperature in the continuous finishing heat treatment process is Ac_1
The manufacturing method according to claim 5, wherein the temperature is +100°C or higher and 1100°C or lower. (7) The heating temperature in the continuous finishing heat treatment process is 850℃
The manufacturing method according to claim 5, wherein the temperature is above 1100°C. (8) The cold rolling rate in the cold rolling process is 30% or more and 95%.
The manufacturing method according to claim 5, 6 or 7 as follows.
JP10187A 1986-12-30 1987-01-03 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility Expired - Fee Related JPH07107178B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP10187A JPH07107178B2 (en) 1987-01-03 1987-01-03 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
DE3787961T DE3787961T2 (en) 1986-12-30 1987-12-11 Process for the production of stainless chrome steel strip with two-phase structure with high strength and high elongation and with low anisotropy.
ES87118422T ES2044905T3 (en) 1986-12-30 1987-12-11 PROCESS FOR THE PRODUCTION OF A CHROME STAINLESS STEEL BELT OF A DOUBLE STRUCTURE THAT HAS A HIGH STRENGTH AND EXTENSION AS WELL AS A BETTER FLAT ANISTROPY.
EP87118422A EP0273279B1 (en) 1986-12-30 1987-12-11 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
US07134873 US4824491B1 (en) 1986-12-30 1987-12-18 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
CA000555161A CA1308997C (en) 1986-12-30 1987-12-22 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
BR8707115A BR8707115A (en) 1986-12-30 1987-12-26 PROCESS FOR THE PRODUCTION OF A STEEL STEEL STRIP TO THE DUPLEX STRUCTURE CHROME, HAVING HIGH RESISTANCE AND STRETCHING AND ALSO REDUCED FLAT ANISOTROPY
CN87105997A CN1011987B (en) 1986-12-30 1987-12-29 Process for production of double structure stainless cr-steel band having high strength, high ductility and low degree aeolotropy
KR1019870015473A KR950013188B1 (en) 1986-12-30 1987-12-30 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10187A JPH07107178B2 (en) 1987-01-03 1987-01-03 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility

Publications (2)

Publication Number Publication Date
JPS63169331A true JPS63169331A (en) 1988-07-13
JPH07107178B2 JPH07107178B2 (en) 1995-11-15

Family

ID=11464703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10187A Expired - Fee Related JPH07107178B2 (en) 1986-12-30 1987-01-03 Method for producing high strength dual phase chromium stainless steel strip with excellent ductility

Country Status (1)

Country Link
JP (1) JPH07107178B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013405A1 (en) * 1993-11-12 1995-05-18 Nisshin Steel Co., Ltd. High-strength high-ductility two-phase stainless steel and process for producing the same
JP2003089851A (en) * 2001-09-14 2003-03-28 Nisshin Steel Co Ltd High strength duplex stainless steel sheet having high elasticity, and production method therefor
JP2004115888A (en) * 2002-09-27 2004-04-15 Nisshin Steel Co Ltd Tire rim material and frame material for stainless steel-made two-wheeled vehicle excellent in deflecting resistance
US7294212B2 (en) 2003-05-14 2007-11-13 Jfe Steel Corporation High-strength stainless steel material in the form of a wheel rim and method for manufacturing the same
WO2009093652A1 (en) * 2008-01-22 2009-07-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural members excellent in workability and impact absorption characteristics and process for the production of the sheet
JP2010174334A (en) * 2009-01-29 2010-08-12 Daido Steel Co Ltd Duplex stainless steel, and steel material and steel product using the same
JP2012138571A (en) * 2010-12-10 2012-07-19 Jfe Steel Corp Steel foil for solar cell substrate, method for manufacturing the same, solar cell substrate, solar cell, and method for manufacturing solar cell
CN115449717A (en) * 2022-08-10 2022-12-09 山东泰山钢铁集团有限公司 Tough and durable wear-resistant cutter steel and preparation method of wide coiled plate thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013405A1 (en) * 1993-11-12 1995-05-18 Nisshin Steel Co., Ltd. High-strength high-ductility two-phase stainless steel and process for producing the same
US5624504A (en) * 1993-11-12 1997-04-29 Nisshin Steel Co., Ltd. Duplex structure stainless steel having high strength and elongation and a process for producing the steel
JP2003089851A (en) * 2001-09-14 2003-03-28 Nisshin Steel Co Ltd High strength duplex stainless steel sheet having high elasticity, and production method therefor
JP2004115888A (en) * 2002-09-27 2004-04-15 Nisshin Steel Co Ltd Tire rim material and frame material for stainless steel-made two-wheeled vehicle excellent in deflecting resistance
US7294212B2 (en) 2003-05-14 2007-11-13 Jfe Steel Corporation High-strength stainless steel material in the form of a wheel rim and method for manufacturing the same
WO2009093652A1 (en) * 2008-01-22 2009-07-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural members excellent in workability and impact absorption characteristics and process for the production of the sheet
JP2009197326A (en) * 2008-01-22 2009-09-03 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-austenite stainless steel sheet for structural member excellent in workability and impact-absorbing property, and method for production thereof
US8303733B2 (en) 2008-01-22 2012-11-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural component excellent in workability and impact-absorbing property and method for producing the same
JP2010174334A (en) * 2009-01-29 2010-08-12 Daido Steel Co Ltd Duplex stainless steel, and steel material and steel product using the same
JP2012138571A (en) * 2010-12-10 2012-07-19 Jfe Steel Corp Steel foil for solar cell substrate, method for manufacturing the same, solar cell substrate, solar cell, and method for manufacturing solar cell
CN115449717A (en) * 2022-08-10 2022-12-09 山东泰山钢铁集团有限公司 Tough and durable wear-resistant cutter steel and preparation method of wide coiled plate thereof
CN115449717B (en) * 2022-08-10 2023-11-03 山东泰山钢铁集团有限公司 Strong and durable wear-resistant cutter steel and preparation method of wide coiled plate thereof

Also Published As

Publication number Publication date
JPH07107178B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
US5178693A (en) Process for producing high strength stainless steel of duplex structure having excellent spring limit value
JPH10219394A (en) Cold rolled steel sheet with good deep drawability and aging resistance and hot rolled steel strip for cold rolled steel sheet
JPH04154921A (en) Manufacture of high strength stainless steel strip having excellent shape
CN115176042A (en) Steel sheet and method for producing steel sheet
JP3363590B2 (en) High-strength duplex stainless steel and method for producing the same
JPS5818970B2 (en) Method for manufacturing high-strength thin steel sheets with excellent cold workability
JPS63169331A (en) Production of chromium stainless steel strip of high strength double phase structure having excellent ductility
JPS63169334A (en) Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength
JPS63169330A (en) Production of chromium stainless steel strip of high-strength double phase structure having excellent ductility
CN115917029B (en) Ferritic stainless steel and method for producing ferritic stainless steel
JP2001207244A (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
US4373971A (en) Process for the production of ferritic stainless steel sheets or strips and products produced by said process
JPS63169333A (en) Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength
JPS63169335A (en) Production of chromium stainless steel strip of double phase structure having small ntra-surface anisotropy and high ductility and high strength
JPH10280087A (en) High-strength cold-rolled steel sheet excellent in surface properties and formability and its manufacturing method
JPH01172525A (en) Production of complex phase structure chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
JPS63169332A (en) Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength
KR101528014B1 (en) Cold-rolled steel plate and method for producing same
JPS585965B2 (en) The first and last day of the year.
JPH0572449B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees