[go: up one dir, main page]

JPS6250069B2 - - Google Patents

Info

Publication number
JPS6250069B2
JPS6250069B2 JP57016312A JP1631282A JPS6250069B2 JP S6250069 B2 JPS6250069 B2 JP S6250069B2 JP 57016312 A JP57016312 A JP 57016312A JP 1631282 A JP1631282 A JP 1631282A JP S6250069 B2 JPS6250069 B2 JP S6250069B2
Authority
JP
Japan
Prior art keywords
power generation
electrodes
layer
layers
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57016312A
Other languages
Japanese (ja)
Other versions
JPS58134482A (en
Inventor
Shinya Tsuda
Michitoshi Oonishi
Yukio Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57016312A priority Critical patent/JPS58134482A/en
Publication of JPS58134482A publication Critical patent/JPS58134482A/en
Publication of JPS6250069B2 publication Critical patent/JPS6250069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/17Photovoltaic cells having only PIN junction potential barriers
    • H10F10/172Photovoltaic cells having only PIN junction potential barriers comprising multiple PIN junctions, e.g. tandem cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は非晶質半導体を用いた光起電力装置に
関する。 この種装置として、基板上に互いに独立した複
数の非晶質半導体層領域を設け、隣接せる領域を
その隣接対向幅に亘つて互いに電気的直列に接続
した光起電力装置が既に知られている。斯る装置
の構造は任意の起電圧を出力でき、かつ直列接続
抵抗を小さくできる上で極めて好ましいものであ
る。 本発明は上記装置において、その電力変換効率
の向上を図るものである。 図は本発明実施例を示し、1はガラス等の透光
性絶縁基板、2a,2b,2cは該基板上に複数
個所定方向に配列被着された第1電極、3a,3
b,3cは夫々第1電極2a,2b,2c上に被
着された非晶質半導体層、4a,4b,4cは
夫々非晶質半導体層3a,3b,3c上に被着さ
れた第2電極、5は上記第1電極、非晶質半導体
層、第2電極の積層体を該第2電極側から密着包
囲する絶縁膜である。 上記第1電極の各々と、それに隣り合う第2電
極の各々とは、各隣接対向全幅Lに亘つて互いに
上記配列方向に延びる延長部10,11を有し、
該延長部にて重畳され接続されている。 上記第1電極は透光性を有し、酸化錫、酸化イ
ンジウム、酸化インジウム・錫(In2o3+xsno2
X≦0.1)などで構成され、上記第2電極はアル
ミニウム、クロムなどで構成されている。 上記非晶質半導体層3a,3b,3cの各々は
第1、第2及び第3の発電層31,32,33の
積層構造からなつている。 上記装置において、基板1及び第1電極を介し
て光が各発電層に入ると、各層内で自由キヤリア
(電子及び又は正孔)が生じ、これらが対向する
第1、第2電極に集められて両電極間に電圧が発
生する。このとき、左側の第2電極4aと中央の
第1電極2b、中央の第2電極4bと右側の第1
電極2cが夫々電気的接続された状態にあり、従
つて上記各対向電極間の起電圧は直列的に相加さ
れる。又、対をなす第1電極と第2電極及びこれ
らの電極間に介在する非晶質半導体層からなる構
成を一つの発電区域となすと、各発電区域12
a,12b,12c間の直列抵抗は小さいほど良
いが、本発明実施例太陽電池にあつては、隣り合
う第1、第2電極はその隣接対向全幅Lに亘つて
互いに上記配列方向に延びる延長部10,11に
重畳接続されているので、各区域間の電流が一部
に集中することなく各発電区域間の直列抵抗を小
さくすることができる。 本発明の特徴として、光入射方向に積層された
第1、第2、第3の発電層31,32,33の各
光学的禁止帯幅Eopは、第2図に示す如く光入射
側より順次小さくなつている。より具体的に説明
すると、第1〜第3発電層の具体的構成は下表の
通りである。
The present invention relates to a photovoltaic device using an amorphous semiconductor. As this type of device, a photovoltaic device is already known in which a plurality of mutually independent amorphous semiconductor layer regions are provided on a substrate and adjacent regions are electrically connected in series to each other over their adjacent opposing widths. . The structure of such a device is extremely preferable because it can output any electromotive voltage and can reduce series connection resistance. The present invention aims to improve the power conversion efficiency of the above device. The figure shows an embodiment of the present invention, in which 1 is a transparent insulating substrate such as glass; 2a, 2b, 2c are first electrodes arranged in a predetermined direction on the substrate; 3a, 3;
b, 3c are amorphous semiconductor layers deposited on the first electrodes 2a, 2b, 2c, respectively; 4a, 4b, 4c are second amorphous semiconductor layers deposited on the amorphous semiconductor layers 3a, 3b, 3c, respectively. The electrode 5 is an insulating film that tightly surrounds the laminate of the first electrode, the amorphous semiconductor layer, and the second electrode from the second electrode side. Each of the first electrodes and each of the second electrodes adjacent thereto have extension portions 10 and 11 that extend in the arrangement direction across each adjacent opposing full width L,
They are overlapped and connected at the extension. The first electrode has translucency and is made of tin oxide, indium oxide, indium tin oxide (In 2 o 3 +xsno 2 ,
X≦0.1), and the second electrode is made of aluminum, chromium, or the like. Each of the amorphous semiconductor layers 3a, 3b, and 3c has a laminated structure of first, second, and third power generation layers 31, 32, and 33. In the above device, when light enters each power generation layer via the substrate 1 and the first electrode, free carriers (electrons and/or holes) are generated within each layer, and these are collected at the opposing first and second electrodes. A voltage is generated between the two electrodes. At this time, the second electrode 4a on the left and the first electrode 2b on the center, the second electrode 4b on the center and the first electrode on the right
The electrodes 2c are electrically connected, so that the electromotive voltages between the opposing electrodes are added in series. Furthermore, if a configuration consisting of a pair of first and second electrodes and an amorphous semiconductor layer interposed between these electrodes constitutes one power generation area, each power generation area 12
The smaller the series resistance between a, 12b, and 12c is, the better; however, in the solar cell according to the embodiment of the present invention, the adjacent first and second electrodes have an extension extending in the above arrangement direction over the entire width L of the adjacent opposite electrodes. Since the power generating sections 10 and 11 are connected in an overlapping manner, the series resistance between the power generating sections can be reduced without the current between the sections concentrating on one part. As a feature of the present invention, the optical band gaps Eop of the first, second, and third power generation layers 31, 32, and 33 stacked in the light incidence direction are sequentially set from the light incidence side as shown in FIG. It's getting smaller. To explain more specifically, the specific configurations of the first to third power generation layers are as shown in the table below.

【表】 即ち、各発電層において主に発電作用の行なわ
れるのは夫々のI型層であるが上記の如く、光入
射側より順次積層されている第1I型層I1、第2I型
層I2及び第3I型層I3の夫々の光学的禁止帯幅Eop
は2.0ev、1.75ev、1.3evと順に小さくなつている
ものである。 半導体発電現象において、発電に寄与する入射
光波長、即ち吸収波長は発電領域の光学的禁止帯
幅に依存する。第3図は本実施例における第1、
第2、第3発電層31,32,33の夫々の光吸
収特性31a,32a,33aを示している。 発電素子がもし一つの光学的禁止帯幅しか持つ
ておらず、斯る素子に太陽光などが入射したとす
ると、その光学的禁止帯幅に応じた一部の波長の
光しか発電に寄与せず、それより短い波長の入射
光エネルギは素子内で熱となつて消散し、又長い
波長の入射光エネルギは素子内で吸収されること
なく散逸する。 これに対し、本実施例では第3図から明らかな
如く、素子全体として見れば複数の光学的禁止帯
幅が存在し、しかも光入射側から順次それが小さ
くなる配置であるので、入射光エネルギは、その
短波長側のものが素子の比較的浅い領域で有効に
発電に寄与すると共に、長波長側のものが素子の
浅い領域で吸収されることなく素子の比較的深い
領域にまで進んでそこで有効に寄与する結果、素
子全体として大きな発電効率が得られる。 単結晶材料を用いて、本実施例の如き異なる光
学的禁止帯幅の発電層を複数積層しようとすれ
ば、各発電層間の結晶格子の不整合問題と、更
に、隣接する発電層の間に、第1図に見られる、
第1N型層N1と第2P型層P2の間、第2N型層N2と第
3P型層P3との間の如き逆方向の整流接合が発生
することから、その実現は困難である。 しかし乍ら、本実施例の様に非晶質半導体材料
を用いる場合、上記の如き結晶素子の不整合は全
く生じず、かつ、非晶質半導体は極めて薄い膜厚
に形成できるので、上記の如き逆方向整流接合の
発生し得る部分の膜厚を実施例の様に非常に薄く
しておくことにより、トンネル電流が流れてその
部分の接合はほとんど実質的な整流接合とならな
いのである。 上記実施例の製造は、例えば第1電極2a,2
b,2cまで作成済みの基板1を反応室に入れ、
斯る反応室に適宜反応ガスを満してグロー放電を
生起せしめることにより行なわれる。各発電層3
1,32,33の組成は夫々異なるので、積層順
に反応ガスが切替えられることはもちろんであ
る。下表に、各層に対する反応ガスの組成を示
す。尚基板1は全ての層形成時、250℃の温度に
保たれる。
[Table] In other words, in each power generation layer, the power generation function is mainly performed in the respective I-type layer, but as mentioned above, the first I-type layer I 1 and the second I-type layer are laminated sequentially from the light incident side. Optical bandgap Eop of each of I 2 and the third I-type layer I 3
is decreasing in order of 2.0ev, 1.75ev, and 1.3ev. In the semiconductor power generation phenomenon, the wavelength of incident light that contributes to power generation, that is, the absorption wavelength, depends on the optical forbidden band width of the power generation region. FIG. 3 shows the first,
The light absorption characteristics 31a, 32a, 33a of the second and third power generation layers 31, 32, 33 are shown. If a power generation element has only one optical bandgap and sunlight, etc. is incident on such an element, only light of a part of the wavelength corresponding to the optical bandgap will contribute to power generation. First, incident light energy with a shorter wavelength becomes heat and dissipates within the element, and incident light energy with a longer wavelength is dissipated without being absorbed within the element. On the other hand, in this embodiment, as is clear from FIG. 3, there are multiple optical forbidden band widths when looking at the element as a whole, and since the arrangement is such that the optical band widths become smaller sequentially from the light incidence side, the incident light energy The short wavelength side effectively contributes to power generation in a relatively shallow area of the element, and the long wavelength side goes to a relatively deep area of the element without being absorbed in the shallow area of the element. As a result of making an effective contribution, a large power generation efficiency can be obtained as a whole of the element. If a single crystal material is used to laminate multiple power generation layers with different optical band gaps as in this example, there will be problems of crystal lattice mismatch between each power generation layer and problems between adjacent power generation layers. , seen in Figure 1,
Between the first N-type layer N1 and the second P-type layer P2 , between the second N-type layer N2 and the second P-type layer P2.
This is difficult to realize because a rectifying junction in the opposite direction, such as with the 3P type layer P3 , occurs. However, when an amorphous semiconductor material is used as in this example, the above-mentioned mismatch of crystal elements does not occur at all, and the amorphous semiconductor can be formed to an extremely thin film thickness. By making the thickness of the film in the portion where such a reverse rectifying junction is likely to occur very thin as in the embodiment, a tunnel current flows and the junction in that portion hardly becomes a substantial rectifying junction. For example, the manufacturing of the above embodiment can be carried out using the first electrodes 2a, 2
Put the substrate 1 prepared up to b and 2c into the reaction chamber,
This is carried out by appropriately filling the reaction chamber with a reaction gas to generate glow discharge. Each power generation layer 3
Since the compositions of Nos. 1, 32, and 33 are different from each other, it goes without saying that the reaction gases are changed in the order of stacking. The table below shows the composition of the reactive gas for each layer. Note that the substrate 1 is maintained at a temperature of 250° C. during the formation of all layers.

【表】 尚、反応ガスには他のキヤリアガスとしての
H2ガスが含まれている。 又、量産的な方法として、上記各層形成用の個
別の反応室を各層の形成順に近接配列すると共
に、これらの各反応室の間をシヤツタにより分離
する構成となし、基板1をこれら各室を順次通過
させることにより全ての層を流れ作業的に形成す
ることができる。 他の実施例として、上記第1、第2、第3I型層
I1,I2,I3の夫々の光学的禁止帯幅Eopを各層内
で入射光方向に徐々に小さくすることによりこれ
ら各層内で内部電界を追加的に形成しても良い。
斯る内部電界は各I型層内で光照射により発生す
る自由キヤリアの移動を促進して再結合消滅を抑
制し、効率を更に高める。 この様な第1I型層I1の形成は、上記第1の実施
例における反応ガス組成NH3/SiH4+NH3を当初
の10%から始め、膜の成長に従い最終5%まで
徐々に変化させればよく、この場合Eopは2.0eV
から1.8eVまで変化する。第2I型層I2の形成は、
上記第1の実施例における基板温度を当初の180
℃から始め、膜の成長に従い最終300℃にまで
徐々に変化させればよく、この場合Eopは1.8eV
から1.7eVまで変化する。第3I型層I3の形成は、
上記第1の実施例における反応ガス組成SnCl4
SiH4+SnCl4を当初の1%から始め、膜の成長に
従い最終20%まで徐々に変化させればよく、この
場合Eopは1.6eVから1.1eVまで変化する。尚第3I
型層I3の斯る変更に伴い、第3N型層N3の形成の
ための反応ガス組成は、SnCl4/SiH4+SnCl4
20%、PH3/SiH4+SnCl4=1%に変更され、こ
のときEopは1.1eVとなる。 更に他の実施例として、第1、第2、第3発電
層31,32,33の各隣接間に存在する逆方向
整流接合を完全になくすために、上記第1の実施
例における第1、第2N型層N1,N2の成長終了付
近の領域(各層の20%〜30%の厚み領域)をN+
に、又第2、第3P型層P2,P3の成長開始付近の
領域(各層の20〜30%の厚み領域)をP+型にな
してもよい。 以上の説明より明らかな如く、本発明によれ
ば、絶縁基板上に配列された複数の第1電極、該
第1電極の夫々の上に、個別的に順次被着された
非晶質半導体層及び第2電極を備え、隣に合う第
1、第2電極はその隣接対向幅に亘つて互いに上
記配列方向に延びて重畳接続された光起電力装置
において、非晶質半導体に特有な性質を利用して
発電層を積層構造となすことにより高効率の光起
電力装置を実現することができる。
[Table] In addition, the reaction gas includes other carrier gases.
Contains H2 gas. In addition, as a method for mass production, the individual reaction chambers for forming each of the layers are arranged in close proximity in the order in which the layers are formed, and the reaction chambers are separated by shutters, and the substrate 1 is separated from each of these chambers. All layers can be formed in assembly line by successive passes. As another embodiment, the first, second, and third I-type layers
An internal electric field may be additionally formed within each layer by gradually decreasing the optical band gap Eop of each of I 1 , I 2 , and I 3 in the direction of incident light within each layer.
Such an internal electric field promotes the movement of free carriers generated by light irradiation within each I-type layer, suppresses recombination annihilation, and further increases efficiency. The formation of the first I-type layer I 1 was carried out by starting from the initial 10% of the reactive gas composition NH 3 /SiH 4 +NH 3 in the first embodiment and gradually changing it to a final 5% as the film grows. In this case, Eop is 2.0eV
It varies from 1.8eV to 1.8eV. The formation of the second I-type layer I 2 is
The substrate temperature in the above first embodiment was set to 180°C.
It is sufficient to start at ℃ and gradually change it to a final temperature of 300℃ as the film grows. In this case, Eop is 1.8eV.
It varies from to 1.7eV. The formation of the third I-type layer I 3 is
The reaction gas composition in the first example above is SnCl 4 /
SiH 4 +SnCl 4 may be started from the initial 1% and gradually changed to a final 20% as the film grows, and in this case Eop changes from 1.6 eV to 1.1 eV. 3rd I
With such a change in the type layer I 3 , the reaction gas composition for the formation of the third N-type layer N 3 is SnCl 4 /SiH 4 +SnCl 4 =
20%, PH 3 /SiH 4 +SnCl 4 = 1%, and at this time Eop becomes 1.1 eV. As yet another embodiment, in order to completely eliminate the reverse rectifying junction that exists between adjacent first, second, and third power generation layers 31, 32, and 33, the first, N + _
Furthermore, the region near the start of growth of the second and third P-type layers P 2 and P 3 (the region with a thickness of 20 to 30% of each layer) may be made into P + type. As is clear from the above description, according to the present invention, a plurality of first electrodes are arranged on an insulating substrate, and an amorphous semiconductor layer is individually and sequentially deposited on each of the first electrodes. In a photovoltaic device including a first electrode and a second electrode, the adjacent first and second electrodes are connected to each other in an overlapping manner so as to extend in the above alignment direction over their adjacent opposing widths, the photovoltaic device has properties unique to an amorphous semiconductor. A highly efficient photovoltaic device can be realized by forming the power generation layer into a laminated structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明実施例の要部斜視図、第1図
Bは同拡大断面図、第2図はエネルギ帯構造図、
第3図は光吸収特性図である。 31,32,32……第1、第2、第3発電
層。
FIG. 1A is a perspective view of a main part of an embodiment of the present invention, FIG. 1B is an enlarged sectional view of the same, FIG. 2 is an energy band structure diagram,
FIG. 3 is a diagram of light absorption characteristics. 31, 32, 32...first, second, and third power generation layers.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板上に配列された複数の第1電極、該
第1電極の夫々の上に、個別的に順次被着された
非晶質半導体層及び第2電極を備え、隣り合う第
1、第2電極はその隣接対向幅に亘つて互いに上
記配列方向に延びて重畳接続された光起電力装置
であつて、上記非晶質半導体膜は、主として発電
作用を行なうI型層を、P型及びN型の不純物層
で挾持した第1、第2及び第3の発電層を光入射
方向に積層すると共に、上記発電層に於ける各I
型層の光学的禁止帯幅を光入射方向の発電層側か
ら順次小さくすべく第1I型層を非晶質シリコンナ
イトライド、第2I型層を非晶質シリコン、そして
第3I型層を非晶質シリコン錫で構成し、更にそれ
らI型層の膜厚を光入射方向の発電層側から順次
大きくしたことを特徴とする光起電力装置。
1 A plurality of first electrodes arranged on an insulating substrate, an amorphous semiconductor layer and a second electrode individually and sequentially deposited on each of the first electrodes, and adjacent first and second electrodes. The photovoltaic device is a photovoltaic device in which two electrodes are connected to each other in an overlapping manner so as to extend in the arrangement direction over their adjacent opposing widths. First, second, and third power generation layers sandwiched by N-type impurity layers are laminated in the direction of light incidence, and each I in the power generation layer is laminated in the direction of light incidence.
In order to gradually reduce the optical bandgap width of the type layer from the power generation layer side in the light incident direction, the first I type layer is made of amorphous silicon nitride, the second I type layer is made of amorphous silicon, and the third I type layer is made of amorphous silicon. 1. A photovoltaic device made of crystalline silicon tin, and further characterized in that the thickness of the I-type layers is gradually increased from the power generation layer side in the direction of light incidence.
JP57016312A 1982-02-05 1982-02-05 Photovoltaic device Granted JPS58134482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57016312A JPS58134482A (en) 1982-02-05 1982-02-05 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57016312A JPS58134482A (en) 1982-02-05 1982-02-05 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS58134482A JPS58134482A (en) 1983-08-10
JPS6250069B2 true JPS6250069B2 (en) 1987-10-22

Family

ID=11912997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57016312A Granted JPS58134482A (en) 1982-02-05 1982-02-05 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS58134482A (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method
JPS5511397A (en) * 1979-06-05 1980-01-26 Shunpei Yamazaki Semiconductor device with continuous connection and its production method
JPS561579A (en) * 1979-06-18 1981-01-09 Shunpei Yamazaki Semiconductor device
JPS5688597A (en) * 1979-12-21 1981-07-18 Kogyo Gijutsuin Road traffic control unit
JPS55124274A (en) * 1980-02-04 1980-09-25 Sanyo Electric Co Ltd Solar battery
US4292092A (en) * 1980-06-02 1981-09-29 Rca Corporation Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery

Also Published As

Publication number Publication date
JPS58134482A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
CN106575676B (en) Solar battery with interdigital back contacts
CN108352421B (en) Solar cell with multiple absorbers interconnected by carrier-selective contacts
US4253881A (en) Solar cells composed of semiconductive materials
JPH0577308B2 (en)
US4914044A (en) Method of making tandem solar cell module
JPS63122283A (en) Amorphous solar cell
JP3721620B2 (en) Parallel integrated solar cell
JPH09172193A (en) Thin film solar cell
JPS6333308B2 (en)
JPH0237116B2 (en)
JPH0125235B2 (en)
JP2675754B2 (en) Solar cell
JPS58171869A (en) Photovoltaic device
US4857115A (en) Photovoltaic device
JPS58116779A (en) photovoltaic device
JPS6250069B2 (en)
JPS59161081A (en) thin film solar cells
JP2632740B2 (en) Amorphous semiconductor solar cell
JP2737705B2 (en) Solar cell
JP2004111687A (en) Tandem solar cells
JP2004335733A (en) Thin film solar cell
JP2004335734A (en) Thin film solar cell
JPH073876B2 (en) Photovoltaic device
JPS5983916A (en) Amorphous multielement semiconductor
JPS58116778A (en) Photovoltaic device