JPS6333308B2 - - Google Patents
Info
- Publication number
- JPS6333308B2 JPS6333308B2 JP54162649A JP16264979A JPS6333308B2 JP S6333308 B2 JPS6333308 B2 JP S6333308B2 JP 54162649 A JP54162649 A JP 54162649A JP 16264979 A JP16264979 A JP 16264979A JP S6333308 B2 JPS6333308 B2 JP S6333308B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- amorphous silicon
- solar cell
- approximately
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 45
- 239000011195 cermet Substances 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
- H10F10/172—Photovoltaic cells having only PIN junction potential barriers comprising multiple PIN junctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/162—Non-monocrystalline materials, e.g. semiconductor particles embedded in insulating materials
- H10F77/166—Amorphous semiconductors
- H10F77/1662—Amorphous semiconductors including only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】
この発明は無定形シリコン太陽電池、特に2層
以上の無定形シリコン層を直列に積層配置したも
のに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous silicon solar cell, particularly to an amorphous silicon solar cell in which two or more amorphous silicon layers are stacked in series.
光起電力装置、即ち太陽電池は太陽光を有用な
電気エネルギに変換することができる。このエネ
ルギ変換は光起電力効果として太陽電池の分野で
は周知の効果によつて行なわれる。太陽電池に入
射し、その活性領域で吸収された太陽光は電子と
正孔を発生させる。発生した電子と正孔は太陽電
池の例えば接合のような内部電界によつて分離さ
れ、この電子と正孔との分離によつて以下に説明
するように電流が発生する。例えばこの内部電界
はP型、真性、N型の水素添加無定形シリコンの
活性領域を持つ半導体層によつて太陽電池中に作
られる。真性領域中で適当なバンドギヤツプの太
陽光を吸収して電子−正孔対が発生する。N型領
域に向つて電子が流れ、同時にP型領域に向つて
正孔が流れてこの電子−正孔対が分離すると光電
圧と光電流とが発生することになる。 Photovoltaic devices, or solar cells, can convert sunlight into useful electrical energy. This energy conversion is performed by the photovoltaic effect, which is well known in the field of solar cells. Sunlight incident on a solar cell and absorbed by its active region generates electrons and holes. The generated electrons and holes are separated by the internal electric field of the solar cell, such as a junction, and the separation of the electrons and holes generates a current as explained below. For example, this internal electric field is created in the solar cell by a semiconductor layer with an active region of P-type, intrinsic, and N-type hydrogenated amorphous silicon. In the intrinsic region, sunlight with a suitable band gap is absorbed and electron-hole pairs are generated. Electrons flow toward the N-type region and, at the same time, holes flow toward the P-type region, and when these electron-hole pairs are separated, a photovoltage and a photocurrent are generated.
太陽電池の光電流出力は半導体材料によつて吸
収される異なるエネルギおよび波長の光子の総数
を増大させることにより増大することができる。
太陽光のスペクトルは約30Åから約220Åの波長
領域に分布し、これらはエネルギに換算して約
4.2eVから約0.59eVに相当する。太陽電池で吸収
される太陽光のスペクトル領域は半導体材料のバ
ンドギヤツプエネルギの大きさで決定される。従
来、太陽電池は約1.45eVのバンドギヤツプエネ
ルギを持つガリウム砒素または約1.1eVのバンド
ギヤツプエネルギのシリコン等の単結晶材料で製
作されていた。バンドギヤツプエネルギ以下のエ
ネルギの太陽光は半導体材料で吸収されず、太陽
電池の光電流出力に寄与しない。 The photocurrent output of a solar cell can be increased by increasing the total number of photons of different energies and wavelengths absorbed by the semiconductor material.
The spectrum of sunlight is distributed in the wavelength range from approximately 30 Å to approximately 220 Å, and these are approximately equivalent to energy.
This corresponds to approximately 0.59eV from 4.2eV. The spectral range of sunlight absorbed by a solar cell is determined by the bandgap energy of the semiconductor material. Traditionally, solar cells have been fabricated from single crystal materials such as gallium arsenide, which has a band gap energy of about 1.45 eV, or silicon, which has a band gap energy of about 1.1 eV. Sunlight with energy below the bandgap energy is not absorbed by the semiconductor material and does not contribute to the photocurrent output of the solar cell.
ガリウム砒素、単結晶シリコンのような半導体
材料を太陽電池に共に用いて太陽エネルギの電気
エネルギへの総変換効率向上を計つたこともある
が、異なる半導体材料を同一の太陽電池に使用す
ることには問題があつた。異なる半導体材料を用
いて太陽電池を製作する問題の第1の解法は第1
の材料の太陽電池上に適当な波長の光を反射し、
吸収されない光を第2の半導体材料の太陽電池に
透過するフイルタを使用することであつた。第2
の解法はアルミニウム・ガリウム砒素、ガリウム
砒素、ガリウム燐のように互いにエピタキシヤル
成長させ得る異なるバンドギヤツプの半導体材料
を使用することであつた。これら2つの構造は漠
然と直列接合型太陽電池と呼ばれて来た。第3の
案は異なるバンドギヤツプエネルギの太陽電池を
個々に作り、それを直列に接続して積層する方法
であつた。これらの3つの方法はいずれも複雑、
高価または装置の大型化といつた欠点を有してい
る。 Semiconductor materials such as gallium arsenide and single-crystal silicon have been used together in solar cells to improve the total conversion efficiency of solar energy into electrical energy, but it is difficult to use different semiconductor materials in the same solar cell. There was a problem. The first solution to the problem of manufacturing solar cells using different semiconductor materials is
reflect light of the appropriate wavelength onto the solar cell made of material,
The solution was to use a filter that transmits the unabsorbed light to the solar cell of a second semiconductor material. Second
The solution was to use different bandgap semiconductor materials that could be epitaxially grown together, such as aluminum gallium arsenide, gallium arsenide, and gallium phosphide. These two structures have been loosely referred to as series junction solar cells. The third option was to create individual solar cells with different bandgap energies, connect them in series, and stack them. All three methods are complicated,
This method has drawbacks such as being expensive and requiring large-sized equipment.
このため光フイルタ、相互の活性領域のエピタ
キシヤル成長の場合、別個の太陽電池の直列接続
等を必要とせずに積層構造の分離した活性領域を
持つ直列接合型太陽電池を開発することが強く望
まれていた。 Therefore, in the case of optical filters and epitaxial growth of mutual active regions, it is strongly desirable to develop series junction solar cells with separate active regions in a stacked structure without the need for serial connection of separate solar cells. It was rare.
この発明の太陽電池は複数の水素添加無定形シ
リコン層をトンネル接合で分離し、直列の積層構
造に配置した構成を持つ。無定形シリコン層の厚
さは変換効率を最大にし、各層で発生する電流を
等しくするように調整される。直列積層型の水素
添加無定形シリコン太陽電池はそのバンドギヤツ
プエネルギを水素濃度を調整することによつて約
1.5eVから約1.8eVの範囲に亘つて変化させるこ
ともできる。以下添付した図面を参照しつつこの
発明を詳細に説明する。 The solar cell of this invention has a configuration in which a plurality of hydrogenated amorphous silicon layers are separated by a tunnel junction and arranged in a series stacked structure. The thickness of the amorphous silicon layer is adjusted to maximize conversion efficiency and equalize the current generated in each layer. Series-stacked hydrogenated amorphous silicon solar cells can reduce their bandgap energy by adjusting the hydrogen concentration.
It can also be varied over a range of 1.5eV to about 1.8eV. The present invention will be described in detail below with reference to the attached drawings.
第1図は直列接合型水素添加無定形シリコン太
陽電池10を示す。太陽電池10に入射する太陽
光100は太陽電池の各層の入射面の基準点とな
る。太陽電池10は太陽光を透過するガラスその
他の適当な材料の透明基板12上に形成される。
透明導電性酸化物被膜(以後TCOと略す)14
を基板12上に被着し、約10〜40体積%の白金を
含有し約0.2〜1Åの厚さを持つPtSiO2のサーメ
ツト層16とオーム接触を形成する。このサーメ
ツト層16は米国特許第4167015号明細書記載の
TiO2のような誘電体材料で作ることもできる。 FIG. 1 shows a series junction type hydrogenated amorphous silicon solar cell 10. As shown in FIG. The sunlight 100 incident on the solar cell 10 serves as a reference point for the incident plane of each layer of the solar cell. Solar cell 10 is formed on a transparent substrate 12 of glass or other suitable material that is transparent to sunlight.
Transparent conductive oxide film (hereinafter abbreviated as TCO) 14
is deposited on substrate 12 to form ohmic contact with a cermet layer 16 of PtSiO 2 containing about 10-40 volume percent platinum and having a thickness of about 0.2-1 Å. This cermet layer 16 is as described in U.S. Pat. No. 4,167,015.
It can also be made from dielectric materials such as TiO2 .
複数の水素添加無定形シリコン層から成り、そ
の層の各対が光を透過するトンネル接合で分離さ
れている活性基体20がサーメツト層16上に形
成される。第1図において、活性基体20はトン
ネル接合層24で分離された2つの水素添加無定
形シリコン層22,26を持つている。この活性
基体20は2〜5層またはそれ以上の水素添加無
定形シリコン層で作ることができる。 An active substrate 20 is formed on the cermet layer 16, consisting of a plurality of hydrogenated amorphous silicon layers, each pair of layers separated by a light-transmissive tunnel junction. In FIG. 1, active substrate 20 has two hydrogenated amorphous silicon layers 22, 26 separated by a tunnel junction layer 24. In FIG. The active substrate 20 can be made from two to five or more layers of hydrogenated amorphous silicon.
サーメツト層16上に異なる導電型の領域22
a,22b,22cから成る第1の水素添加無定
形シリコンの活性層22が被着されている。領域
22aは硼素その他の適当なP型導電度変換体を
ドープした水素添加無定形シリコン層である。こ
の領域は厚さ約1〜4Åで、約3.75Åが好まし
い。領域22bは約5〜50Åの厚さを持つ真性型
の水素添加無定形シリコン層である。真性型の水
素添加無定形シリコンは米国特許第4064521号明
細書記載のように僅かにN型を示すことが知られ
ている。N+型の水素添加無定形シリコン層の領
域22cは厚さ約1〜4Åで真性領域22bと接
触している。 Regions 22 of different conductivity types on the cermet layer 16
A first active layer 22 of hydrogenated amorphous silicon is deposited, consisting of a, 22b and 22c. Region 22a is a hydrogenated amorphous silicon layer doped with boron or other suitable P-type conductivity converter. This region has a thickness of about 1-4 Å, preferably about 3.75 Å. Region 22b is an intrinsic hydrogenated amorphous silicon layer having a thickness of approximately 5-50 Å. It is known that intrinsic type hydrogenated amorphous silicon exhibits a slight N type as described in US Pat. No. 4,064,521. Region 22c of the N + type hydrogenated amorphous silicon layer has a thickness of approximately 1-4 Å and is in contact with intrinsic region 22b.
活性層22,26の間にはトンネル接合層24
が形成され、これらの層を通して裏面基板28に
向う電流径路を形成している。この接合層24は
約0.2〜1.5Åの厚さを持ち、PtSiO2サーメツト、
薄い金属層とPtSiO2サーメツト、または薄い金
属層から成る。金属層は太陽光を透過する白金、
チタン、ニツケル等の金属で形成することができ
る。絶縁体を十分に薄くすると電子はその中をト
ンネル効果で通過することができるが、トンネル
接合層24が絶縁体となると直列接合型の太陽電
池10の性能は劣化する。 A tunnel junction layer 24 is provided between the active layers 22 and 26.
are formed, forming a current path toward the back substrate 28 through these layers. This bonding layer 24 has a thickness of about 0.2 to 1.5 Å and is made of PtSiO 2 cermet,
Consists of a thin metal layer and PtSiO 2 cermet, or a thin metal layer. The metal layer is platinum, which allows sunlight to pass through.
It can be made of metal such as titanium or nickel. If the insulator is made sufficiently thin, electrons can pass through it due to the tunnel effect, but if the tunnel junction layer 24 becomes an insulator, the performance of the series junction solar cell 10 will deteriorate.
理論的にはこのトンネル接合層24は、N+型
水素添加無定形シリコン層の領域22cとP+型
水素添加無定形シリコン層の領域26aとが十分
なN型およびP型の導電度変換体を持つことがで
きると活性層22,26の間でトンネル接合が発
生するため、除去することができる。太陽電池1
0はトンネル接合層24なしで製作できるが、
PtSiO2サーメツトおよび類似の材料または薄い
金属層に相当する特性を持つトンネル接合状態を
作り出すための十分高いドーピング量は水素添加
無定形シリコンでは得られていない。 Theoretically, this tunnel junction layer 24 is a conductivity converter of sufficient N type and P type, with a region 22c of the N + type hydrogenated amorphous silicon layer and a region 26a of the P + type hydrogenated amorphous silicon layer. If the active layers 22 and 26 can be removed, a tunnel junction will occur between the active layers 22 and 26, so that they can be removed. solar cell 1
0 can be manufactured without the tunnel junction layer 24, but
Doping levels high enough to create tunnel junction conditions with properties comparable to PtSiO 2 cermets and similar materials or thin metal layers have not been obtained in hydrogenated amorphous silicon.
第2の活性層26は異なる導電型の水素添加無
定形シリコンの領域26a,26b,26cから
成る。領域26aは領域22aと同様のもので、
適当なP+型の導電度変換体がドープされている。
領域26bは領域22bと、領域26cは領域2
2cとそれぞれ同様にして作られる。領域26
a,26b,26cは活性層22よりも低い水素
濃度と低いバンドギヤツプエネルギを持つ層を形
成するように高い温度で被着することもある。こ
の第2の活性層26の厚さは太陽電池の全電流が
活性層22または26の低い方の電流で制限され
るため、第1および第2の活性層22,26で発
生する電流が等しくなるように調整しなければな
らない。 The second active layer 26 consists of regions 26a, 26b, and 26c of hydrogenated amorphous silicon of different conductivity types. Area 26a is similar to area 22a,
It is doped with a suitable P + type conductivity converter.
The area 26b is the area 22b, and the area 26c is the area 2.
They are made in the same way as 2c. area 26
a, 26b, and 26c may be deposited at elevated temperatures to form a layer with a lower hydrogen concentration and lower bandgap energy than active layer 22. The thickness of this second active layer 26 is such that the current generated in the first and second active layers 22, 26 is equal, since the total current of the solar cell is limited by the lower current of the active layer 22 or 26. You have to adjust accordingly.
水素添加無定形シリコン太陽電池の吸収効率は
真性領域の厚さが約50Åになると一定値に近付
く。直列接合型太陽電池において、この領域の厚
さをこれ以上増しても太陽光の吸収は増加するが
太陽電池の性能は改善されず、太陽光を吸収する
次の層が不要になるだけである。従つて、各真性
領域の厚さは積層の水素添加無定形シリコン層数
が増加すると、薄くしなければならない。 The absorption efficiency of hydrogenated amorphous silicon solar cells approaches a constant value when the thickness of the intrinsic region becomes approximately 50 Å. Increasing the thickness of this region further in a series junction solar cell will increase the absorption of sunlight but will not improve the performance of the solar cell, it will only eliminate the need for the next layer to absorb sunlight. . Therefore, the thickness of each intrinsic region must be reduced as the number of hydrogenated amorphous silicon layers in the stack increases.
最後にN+型水素添加無定形シリコン領域26
cに密着し良好なオーム接触を形成するチタン、
モリブデン、ニオブ等の材料から成る金属層28
を領域26c上に被着する。金属層14,28に
配線15,29を接続し、太陽電池10を照射し
て発生する電流を取出す。 Finally, N + type hydrogenated amorphous silicon region 26
Titanium, which adheres closely to c and forms a good ohmic contact.
Metal layer 28 made of material such as molybdenum, niobium, etc.
is deposited on region 26c. Wirings 15 and 29 are connected to the metal layers 14 and 28, and the current generated by irradiating the solar cell 10 is extracted.
第2図はこの発明の他の実施例を示す。第2図
の太陽電池50は第1図の太陽電池10と反対側
に基板12を持つ。太陽電池50,10の各層お
よび領域は第2図でも同一の引用数字で示されて
いる。太陽光100は基板12を通過する必要が
ないため、基板はステンレス鋼、モリブデン、チ
タン等の金属板で作ることができる。さらに、太
陽電池の基板を導電性にするための金属層14は
太陽電池50では不要となる。 FIG. 2 shows another embodiment of the invention. Solar cell 50 in FIG. 2 has substrate 12 on the opposite side from solar cell 10 in FIG. Each layer and region of the solar cells 50, 10 is designated by the same reference numeral in FIG. Since the sunlight 100 does not need to pass through the substrate 12, the substrate can be made of a metal plate such as stainless steel, molybdenum, titanium, etc. Furthermore, the metal layer 14 for making the substrate of the solar cell conductive is not necessary in the solar cell 50.
太陽電池50を逆転構造にすると厚膜のバラス
ト抵抗体のサーメツト層52、格子電極56、
TCO反射防止層58を設けることができる。サ
ーメツト層52は米国特許第4162505号明細書記
載のように電気的短絡を減少させるのに有効であ
る。 When the solar cell 50 has an inverted structure, the cermet layer 52 of the thick film ballast resistor, the grid electrode 56,
A TCO antireflection layer 58 may be provided. Cermet layer 52 is effective in reducing electrical shorts as described in U.S. Pat. No. 4,162,505.
第1図および第2図の太陽電池は幾つかの方法
で製作することができる。金属層14は蒸着ある
いは電気化学的被着等の他の公知の方法で基板1
2上に被着する。サーメツト層は上記米国特許第
4167015号明細書記載の方法に基いて製作する。
水素添加無定形シリコン層22,26は上記米国
特許第4064521号および特開昭53−42693号の各明
細書記載のようにシランその他の適当なシリコン
と水素との化合物をグロー放電して被着する。層
22,26はまた高周波放電装置で形成すること
もできる。高周波放電の適当な条件の一例とし
て、高周波電力約0.5w/cm2以下、ターゲツト面
積約160cm2、ガス圧約2〜5×10-2mmHg、シラン
流量約30secm、装置の温度約200〜350℃がある。
層22または26のP型領域は被着用気体にP型
ドープ剤としてジボランを濃度約10-4〜10-5%に
混合して形成する。N+型領域は被着用気体にN
型ドープ剤としてホスフインを濃度約2×10-3%
に混合して形成する。最後に金属層を蒸着、高周
波スパツタまたは他の適当な方法で被着して電池
が完成する。 The solar cells of FIGS. 1 and 2 can be fabricated in several ways. The metal layer 14 is applied to the substrate 1 by vapor deposition or other known methods such as electrochemical deposition.
2. The cermet layer is described in the above U.S. patent no.
Manufactured based on the method described in No. 4167015.
The hydrogenated amorphous silicon layers 22 and 26 are deposited by glow discharging silane or other suitable silicon-hydrogen compound as described in the above-mentioned U.S. Pat. do. Layers 22, 26 can also be formed with a high frequency discharge device. Examples of suitable conditions for high-frequency discharge include: high-frequency power of approximately 0.5 W/cm 2 or less, target area of approximately 160 cm 2 , gas pressure of approximately 2 to 5 x 10 -2 mmHg, silane flow rate of approximately 30 secm, and device temperature of approximately 200 to 350°C. There is.
The P-type region of layer 22 or 26 is formed by mixing diborane as a P-type dopant in the coating gas at a concentration of about 10 -4 to 10 -5 %. The N + type region is N
Phosphine as a type dopant at a concentration of approximately 2×10 -3 %
Mix and form. Finally, a metal layer is applied by vapor deposition, radio frequency sputtering or other suitable method to complete the cell.
上述の方法で製作した太陽電池の全体の電圧は
個々の活性層からの電圧を合計した値よりも僅か
に低い値を示す。この電圧の差は水素添加無定形
シリコン層を順次通過する太陽光の光吸収によ
るものと考えられる。 The overall voltage of the solar cell produced by the method described above is slightly lower than the sum of the voltages from the individual active layers. This difference in voltage is considered to be due to light absorption of sunlight passing through the hydrogenated amorphous silicon layer.
次にこの発明を例をあげてさらに詳細に説明す
るが、この発明はこの例示に限定されるものでな
く、当業者に容易に類推できる改変はこの発明の
技術的範囲に属する。 Next, this invention will be explained in more detail by giving examples, but this invention is not limited to these examples, and modifications that can be easily inferred by those skilled in the art belong to the technical scope of this invention.
例 1
厚さ約1.6mmの低ソーダガラス板に約5.8Åの透
明導電酸化物(TCO)の酸化インジウムを約1
×10-2mmHgの圧力において高周波スパツタ法で
被着した後約400℃で約24時間焼鈍した。この
TCO層は約10Ω/□以下の面抵抗を持つ。次に
このTCO層上に白金サーメツト(PtSiO2)を厚
さ約1.1Åに高周波スパツタ法で被着した。サー
メツトは約10〜15体積%の白金を含み、可視光領
域で約95%の透過率を持ち、室温で約106Ω−cm
以下の比抵抗を持つ。この白金サーメツト上に
P+型、真性およびN+型の領域を持つ第1の水素
添加無定形シリコン層を米国特許第4167015号お
よび同第4162505号の各明細書記載の方法で被着
した。P+型領域はサーメツトと接触し、他の領
域は前述のようにP+型領域に隣接している。P+
型およびN+型領域の厚さはそれぞれ約4.1Å、約
4.5Åであり、また真性領域の厚さは約24Åであ
る。トンネル接合層としてPtSiO2サーメツト層
を再び被着し、その上に3つの領域を持つ第2の
水素添加無定形シリコン層を形成した。第2のサ
ーメツト層は厚さ約0.9Åである。P+型、真性お
よびN+型領域の厚さはそれぞれ約3.2Å、約50Å
および約4.5Åである。最後に厚さ約20Åのアル
ミニウム電極をこの第2の層のN+型領域上に蒸
着した。Example 1 Approximately 5.8 Å transparent conductive oxide (TCO) indium oxide is placed on a low soda glass plate approximately 1.6 mm thick.
After being deposited by high frequency sputtering at a pressure of ×10 -2 mmHg, it was annealed at about 400°C for about 24 hours. this
The TCO layer has a sheet resistance of approximately 10Ω/□ or less. Next, platinum cermet (PtSiO 2 ) was deposited on this TCO layer to a thickness of about 1.1 Å by high-frequency sputtering. Cermet contains about 10-15% platinum by volume, has a transmittance of about 95% in the visible light range, and has a resistance of about 10 6 Ω-cm at room temperature.
It has the following specific resistance. on this platinum cermet
A first hydrogenated amorphous silicon layer with P + , intrinsic, and N + regions was deposited as described in U.S. Pat. Nos. 4,167,015 and 4,162,505. The P + type region is in contact with the cermet, and other regions are adjacent to the P + type region as described above. P +
The thickness of the type and N + type regions is approximately 4.1 Å, approximately
4.5 Å, and the thickness of the intrinsic region is about 24 Å. A PtSiO 2 cermet layer was again deposited as a tunnel junction layer, and a second hydrogenated amorphous silicon layer with three regions was formed thereon. The second cermet layer is approximately 0.9 Å thick. The thickness of the P + type, intrinsic and N + type regions is approximately 3.2 Å and approximately 50 Å, respectively.
and approximately 4.5 Å. Finally, an aluminum electrode approximately 20 Å thick was deposited on the N + type region of this second layer.
この直列構成の積層型太陽電池に1太陽定数の
光強度の光源を照射すると、開放電圧(Vpcと略
す)は約1.21V、短絡電流(Jscと略す)は約1.71
mA/cm2の値が得られた。 When this series-configured stacked solar cell is irradiated with a light source with a light intensity of 1 solar constant, the open circuit voltage (abbreviated as V pc ) is approximately 1.21 V, and the short circuit current (abbreviated as J sc ) is approximately 1.71 V.
Values in mA/cm 2 were obtained.
例 2
直列接合型太陽電池を例1で説明した方法で製
作した。この例では第1の水素添加無定形シリコ
ン層のN+型領域上にPtSiO2サーメツトおよび第
2の水素添加無定形シリコン層を被着する前に厚
さ約0.5Åの厚さのチタン層を被着した。両方の
無定形シリコン層のPtSiO2層、P+型領域および
N+型領域はそれぞれ同じもので厚さはそれぞれ
約1.8Å、約3.6Åおよび約3.6Åとした。第1およ
び第2の真性領域の厚さはそれぞれ約9.1Åおよ
び約50Åとした。TCO層は厚さ約2.5Å、第2の
無定形シリコン層に接触するチタン層は約2.6Å
であつた。この太陽電池に1太陽定数の光源を照
射すると、約1.34VのVpcと約2.5mA/cm2のJscが
得られた。Example 2 A series junction solar cell was fabricated using the method described in Example 1. In this example, a titanium layer approximately 0.5 Å thick is deposited on the N + type region of the first hydrogenated amorphous silicon layer before depositing the PtSiO 2 cermet and the second hydrogenated amorphous silicon layer. It was covered. PtSiO 2 layer for both amorphous silicon layers, P + type region and
The N + type regions were the same and had thicknesses of about 1.8 Å, about 3.6 Å, and about 3.6 Å, respectively. The thicknesses of the first and second intrinsic regions were about 9.1 Å and about 50 Å, respectively. The TCO layer is approximately 2.5 Å thick, and the titanium layer in contact with the second amorphous silicon layer is approximately 2.6 Å thick.
It was hot. When this solar cell was irradiated with a light source with a solar constant of 1, a V pc of about 1.34 V and a J sc of about 2.5 mA/cm 2 were obtained.
比較例 1
直列接合型太陽電池を例1で説明した方法で製
作した。この例では第1および第2の水素添加無
定形シリコン層を分離するサーメツト層または金
属層を設けなかつた。前面のサーメツト層の厚さ
は約1.5Å、両無定形シリコン層のP+型およびN+
型領域の厚さは約4.5Åとした。第1および第2
の真性領域の厚さはそれぞれ約7.6Åおよび約5.9
Åとした。この太陽電池のVpcは約0.96V、Jscは
約1.98mA/cm2であつた。低いVpcの値は第1の
無定形のシリコン層のN+型領域と第2の無定形
シリコン層のP+型領域との間に逆方向ダイオー
ドが存在していることを示している。Comparative Example 1 A series junction solar cell was fabricated using the method described in Example 1. In this example, there was no cermet or metal layer separating the first and second hydrogenated amorphous silicon layers. The thickness of the cermet layer on the front side is about 1.5 Å, both P + type and N + type of amorphous silicon layer.
The thickness of the mold region was approximately 4.5 Å. 1st and 2nd
The thickness of the intrinsic region is about 7.6 Å and about 5.9 Å, respectively.
It was set as Å. This solar cell had a V pc of about 0.96 V and a J sc of about 1.98 mA/cm 2 . A low V pc value indicates the presence of a reverse diode between the N + type region of the first amorphous silicon layer and the P + type region of the second amorphous silicon layer.
例 3
5層の水素添加無定形シリコン層を持つ直列接
合型太陽電池を例1で説明した方法で製作した。
真性領域の厚さは各層の電池の電流を等しくする
ため各層で順次厚く、すなわちそれぞれ4.5Å、
4.5Å、5.3Å、6.8Å、36.3Åとした。得られた太
陽電池のVpcは約2.4V、Jscは約0.58mA/cm2であ
つた。Example 3 A series junction solar cell with five hydrogenated amorphous silicon layers was fabricated using the method described in Example 1.
The thickness of the intrinsic region is sequentially thicker in each layer, i.e. 4.5 Å, respectively, to equalize the cell current in each layer.
They were 4.5 Å, 5.3 Å, 6.8 Å, and 36.3 Å. The obtained solar cell had a V pc of about 2.4 V and a J sc of about 0.58 mA/cm 2 .
比較例 2 直列接合型太陽電池を例1の方法で製作した。Comparative example 2 A series junction solar cell was fabricated using the method of Example 1.
この例では厚さ約0.2Åの窒化シリコン絶縁層
2層によつて3層の水素添加無定形シリコン層を
互いに分離した。無定形シリコン層のN+型、P+
型および真性領域の厚さはそれぞれ3.8Å、14.5
Å、3.8Åであつた。絶縁層はグロー放電で被着
したもので、この電池ののVpcは約0.2Vであつ
た。絶縁層は十分に薄く電子がその中をトンネル
効果で通過することはできるが、太陽電池の性能
は前述の例のVpcに比較にならぬものである。 In this example, three hydrogenated amorphous silicon layers were separated from each other by two silicon nitride insulating layers approximately 0.2 Å thick. Amorphous silicon layer N + type, P +
The thickness of the type and intrinsic region is 3.8 Å and 14.5 Å, respectively.
Å, 3.8 Å. The insulating layer was deposited by glow discharge, and the cell's V pc was approximately 0.2V. Although the insulating layer is thin enough to allow electrons to tunnel through it, the performance of the solar cell is incomparable to the V pc of the previous example.
第1図はトンネル接合で分離した水素添加無定
形シリコン層を積層配置した直列接合型太陽電池
を示す断面図、第2図は格子電極と厚膜サーメツ
トを具備する直列接合型無定形シリコン太陽電池
を示す断面図である。
10……無定形シリコン太陽電池、12……基
板、20……活性基体、22,26……無定形シ
リコン層、24……トンネル接合層、28……サ
ーメツト層、29……接触手段。
Figure 1 is a cross-sectional view showing a series junction type solar cell in which hydrogenated amorphous silicon layers separated by a tunnel junction are stacked, and Figure 2 is a series junction type amorphous silicon solar cell equipped with a grid electrode and a thick film cermet. FIG. DESCRIPTION OF SYMBOLS 10... Amorphous silicon solar cell, 12... Substrate, 20... Active substrate, 22, 26... Amorphous silicon layer, 24... Tunnel junction layer, 28... Cermet layer, 29... Contact means.
Claims (1)
1の主要面およびこの第1の主要面と反対側の第
2の主要面を持つ活性基体と、上記第1の主要面
に接触する高仕事関数の金属サーメツト層と、こ
の金属サーメツト層に電気的に接触する手段とを
具備し、上記活性基体が、異なる導電型の領域を
持ち積層構造に配列された複数の水素添加無定形
シリコン層を含み、この無定形シリコン層相互間
に高仕事関数の金属サーメツトまたは金属の透明
なトンネル接合層が配置されている無定形シリコ
ン太陽電池。1 an active substrate having a conductive substrate, a first major surface in ohmic contact with the substrate and a second major surface opposite the first major surface, and a high-work substrate in contact with the first major surface; a functional metal cermet layer and means for electrically contacting the metal cermet layer, the active substrate comprising a plurality of hydrogenated amorphous silicon layers having regions of different conductivity types and arranged in a stacked structure. An amorphous silicon solar cell comprising a transparent tunnel junction layer of high work function metal cermet or metal disposed between the amorphous silicon layers.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3146079A | 1979-04-19 | 1979-04-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55141765A JPS55141765A (en) | 1980-11-05 |
JPS6333308B2 true JPS6333308B2 (en) | 1988-07-05 |
Family
ID=21859579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16264979A Granted JPS55141765A (en) | 1979-04-19 | 1979-12-13 | Amorphous silicon solar battery |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS55141765A (en) |
DE (1) | DE2950085A1 (en) |
FR (1) | FR2454705B1 (en) |
GB (1) | GB2047463B (en) |
IT (1) | IT1194594B (en) |
MY (1) | MY8500782A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2464564A1 (en) * | 1979-08-28 | 1981-03-06 | Rca Corp | AMORPHOUS SILICON SOLAR BATTERY |
ZA849070B (en) * | 1983-12-07 | 1985-07-31 | Energy Conversion Devices Inc | Semiconducting multilayered structures and systems and methods for synthesizing the structures and devices incorporating the structures |
EP0153043A3 (en) * | 1984-02-15 | 1986-09-24 | Energy Conversion Devices, Inc. | Ohmic contact layer |
EP0168132A3 (en) * | 1984-05-14 | 1987-04-29 | Energy Conversion Devices, Inc. | Static field-induced semiconductor structures |
JPS6132481A (en) * | 1984-07-24 | 1986-02-15 | Sharp Corp | Amorphous semiconductor device |
JPS6177375A (en) * | 1984-09-21 | 1986-04-19 | Sharp Corp | color sensor |
JPS61104678A (en) * | 1984-10-29 | 1986-05-22 | Mitsubishi Electric Corp | amorphous solar cell |
JPS63100858U (en) * | 1986-12-19 | 1988-06-30 | ||
US20080135083A1 (en) * | 2006-12-08 | 2008-06-12 | Higher Way Electronic Co., Ltd. | Cascade solar cell with amorphous silicon-based solar cell |
KR101918737B1 (en) * | 2012-03-19 | 2019-02-08 | 엘지전자 주식회사 | Solar cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55111180A (en) * | 1979-02-19 | 1980-08-27 | Sharp Corp | Thin-film solar battery of high output voltage |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1129220A (en) * | 1955-07-25 | 1957-01-17 | High efficiency photovoltaic cells | |
IL48996A (en) * | 1975-02-27 | 1977-08-31 | Varian Associates | Photovoltaic cells |
DE2514013A1 (en) * | 1975-03-29 | 1976-10-07 | Licentia Gmbh | Radiation sensitive semiconductor element - has tunnel zone surrounded by semiconductor layers as wave guide for impinging radiation |
US4064521A (en) * | 1975-07-28 | 1977-12-20 | Rca Corporation | Semiconductor device having a body of amorphous silicon |
JPS531483A (en) * | 1976-06-28 | 1978-01-09 | Futaba Denshi Kogyo Kk | Pn junction solar battery and method of producing same |
US4094704A (en) * | 1977-05-11 | 1978-06-13 | Milnes Arthur G | Dual electrically insulated solar cells |
US4167015A (en) * | 1978-04-24 | 1979-09-04 | Rca Corporation | Cermet layer for amorphous silicon solar cells |
-
1979
- 1979-11-22 IT IT27500/79A patent/IT1194594B/en active
- 1979-11-22 FR FR7928779A patent/FR2454705B1/en not_active Expired
- 1979-12-12 GB GB7942918A patent/GB2047463B/en not_active Expired
- 1979-12-13 JP JP16264979A patent/JPS55141765A/en active Granted
- 1979-12-13 DE DE19792950085 patent/DE2950085A1/en active Granted
-
1985
- 1985-12-30 MY MY782/85A patent/MY8500782A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55111180A (en) * | 1979-02-19 | 1980-08-27 | Sharp Corp | Thin-film solar battery of high output voltage |
Also Published As
Publication number | Publication date |
---|---|
MY8500782A (en) | 1985-12-31 |
IT1194594B (en) | 1988-09-22 |
DE2950085A1 (en) | 1980-10-30 |
JPS55141765A (en) | 1980-11-05 |
IT7927500A0 (en) | 1979-11-22 |
GB2047463A (en) | 1980-11-26 |
GB2047463B (en) | 1983-06-15 |
FR2454705A1 (en) | 1980-11-14 |
DE2950085C2 (en) | 1992-01-23 |
FR2454705B1 (en) | 1986-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4272641A (en) | Tandem junction amorphous silicon solar cells | |
US4496788A (en) | Photovoltaic device | |
US9640706B2 (en) | Hybrid multi-junction photovoltaic cells and associated methods | |
US4638111A (en) | Thin film solar cell module | |
US20190131472A1 (en) | Solar cell | |
CN102623517B (en) | Back contact type crystalline silicon solar cell and production method thereof | |
US6162987A (en) | Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance | |
US4914044A (en) | Method of making tandem solar cell module | |
JP2013513964A (en) | Back contact / heterojunction solar cell | |
JPS6333308B2 (en) | ||
JP2002118273A (en) | Integrated hybrid thin film photoelectric conversion device | |
CN103367472B (en) | A T-shaped top electrode back reflective thin film solar cell | |
JP3721620B2 (en) | Parallel integrated solar cell | |
EP0248953A1 (en) | Tandem photovoltaic devices | |
CN110797428A (en) | Heterojunction solar cells | |
JPH09172193A (en) | Thin film solar battery | |
JPH0125235B2 (en) | ||
JPS636882A (en) | Photocell of tandem structure | |
JPH03263880A (en) | Solar cell and manufacture thereof | |
JPH0586677B2 (en) | ||
TWI850761B (en) | Double-sided light-absorbing photovoltaic cells | |
JP2757896B2 (en) | Photovoltaic device | |
KR101223055B1 (en) | Method of preparing solar cell and solar cell prepared by the same | |
JP3473255B2 (en) | Manufacturing method of thin film solar cell | |
JPH0597413A (en) | Amorphous multicomponent semiconductor and device using the same |