CN106575676B - Solar battery with interdigital back contacts - Google Patents
Solar battery with interdigital back contacts Download PDFInfo
- Publication number
- CN106575676B CN106575676B CN201580035784.4A CN201580035784A CN106575676B CN 106575676 B CN106575676 B CN 106575676B CN 201580035784 A CN201580035784 A CN 201580035784A CN 106575676 B CN106575676 B CN 106575676B
- Authority
- CN
- China
- Prior art keywords
- layer
- conductive oxide
- region
- transparent conductive
- collector region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
- H10F10/165—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
- H10F10/166—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
- H10F77/247—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers comprising indium tin oxide [ITO]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
- H10F77/251—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers comprising zinc oxide [ZnO]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
Abstract
提供一种使用叉指背接触的太阳能电池。太阳能电池可以包括晶体硅基极层和在基极层的背侧上的电子集电极区域。电子集电极区域可以包括电耦合到基极层的第一导电氧化物材料。太阳能电池还可以包括在基极层的背侧上的空穴集电极区域。空穴集电极区域可以包括电耦合到基极层的第二导电氧化物材料。电子集电极区域和空穴集电极区域可以形成叉指图案。此外,第一导电氧化物材料和第二导电氧化物材料具有不同的功函数。
A solar cell using interdigital back contacts is provided. The solar cell may include a crystalline silicon base layer and an electron collector region on the backside of the base layer. The electron collector region may include a first conductive oxide material electrically coupled to the base layer. The solar cell may also include a hole collector region on the backside of the base layer. The hole collector region may include a second conductive oxide material electrically coupled to the base layer. The electron collector region and the hole collector region may form an interdigitated pattern. Furthermore, the first conductive oxide material and the second conductive oxide material have different work functions.
Description
其它申请的交叉引用CROSS-REFERENCE TO OTHER APPLICATIONS
本申请要求于2014年7月17日提交的美国临时申请No.62/025,924(代理人案卷号P76-1PUS)的权益,将其公开内容以其整体并入本文。This application claims the benefit of US Provisional Application No. 62/025,924 (Attorney Docket No. P76-1PUS), filed July 17, 2014, the disclosure of which is incorporated herein in its entirety.
技术领域technical field
本申请涉及太阳能电池结构和制造,包括使用隧穿氧化物结和叉指背接触的太阳能电池的设计,以及这种太阳能电池的制造工艺。This application relates to solar cell structure and fabrication, including the design of solar cells using tunnel oxide junctions and interdigital back contacts, and fabrication processes for such solar cells.
定义definition
“太阳能电池”或“电池”是能够将光转换成电的光伏结构。电池可以具有任何尺寸和任何形状,并且可以由各种材料产生。例如,太阳能电池可以是在硅晶片上制造的光伏结构或衬底材料(例如,玻璃、塑料或能够支撑光伏结构的任何其它材料)上的一个或多个薄膜,或其组合。A "solar cell" or "battery" is a photovoltaic structure capable of converting light into electricity. Batteries can be of any size and shape, and can be produced from a variety of materials. For example, a solar cell may be a photovoltaic structure fabricated on a silicon wafer or one or more thin films on a substrate material (eg, glass, plastic, or any other material capable of supporting a photovoltaic structure), or a combination thereof.
“太阳能电池带”、“光伏带”或“带”是光伏结构(诸如太阳能电池)的一部分或片段。太阳能电池可以被划分成多个带。带可以具有任何形状和任何尺寸。带的宽度和长度可以彼此相同或不同。可以通过进一步划分先前划分过的带而形成多个带。A "solar cell tape," "photovoltaic tape," or "tape" is a portion or segment of a photovoltaic structure, such as a solar cell. Solar cells can be divided into multiple bands. Bands can have any shape and any size. The width and length of the belts can be the same or different from each other. Multiple bands may be formed by further dividing previously divided bands.
“级联”是太阳能电池或带经由在其边缘上或边缘附近的电极而电耦合的一种物理布置。存在许多物理连接相邻光伏结构的方式。一种方式是在相邻结构的边缘(例如,阳极侧上的一个边缘以及阴极侧上的另一个边缘)处或附近将它们物理地重叠。该重叠过程有时被称为“搭接”。两个或更多个级联的光伏结构或带可以被称为“级联串”,或更简单地称为串。A "cascade" is a physical arrangement of solar cells or ribbons that are electrically coupled via electrodes on or near their edges. There are many ways of physically connecting adjacent photovoltaic structures. One way is to physically overlap them at or near the edges of adjacent structures (eg, one edge on the anode side and another edge on the cathode side). This overlapping process is sometimes referred to as "lapping". Two or more cascaded photovoltaic structures or strips may be referred to as "cascade strings", or more simply strings.
“指状线”、“指状电极”和“指状物”指光伏结构的用于收集载流子的细长的、导电的(例如,金属的)电极。"Fingerline", "digital electrode" and "finger" refer to the elongated, conductive (eg, metallic) electrodes of a photovoltaic structure for collecting charge carriers.
“汇流条”、“总线”或“总线电极”指光伏结构的用于聚集由两个或更多个指状线收集的电流的细长的、导电的(例如,金属的)电极。汇流条往往比指状线宽,并且可以沉积或以其他方式被布置在光伏结构上或光伏结构内的任何地方。单个的光伏结构可以具有一个或多个汇流条。"Bus bar," "bus," or "bus electrode" refers to an elongated, conductive (eg, metallic) electrode of a photovoltaic structure for collecting current collected by two or more finger wires. Bus bars tend to be wider than finger lines and can be deposited or otherwise arranged anywhere on or within a photovoltaic structure. A single photovoltaic structure may have one or more bus bars.
“光伏结构”可以指太阳能电池,片段或太阳能电池带。光伏结构不限于通过特定方法制造的器件。例如,光伏结构可以是晶体硅基太阳能电池、薄膜太阳能电池、非晶硅基太阳能电池、多晶硅基太阳能电池,或其带。A "photovoltaic structure" may refer to a solar cell, segment or solar cell ribbon. Photovoltaic structures are not limited to devices fabricated by a particular method. For example, the photovoltaic structure may be a crystalline silicon based solar cell, a thin film solar cell, an amorphous silicon based solar cell, a polycrystalline silicon based solar cell, or a strip thereof.
光伏结构的“前侧”指该结构的通常用于吸收直射目光的一侧。The "front side" of a photovoltaic structure refers to the side of the structure that is typically used to absorb direct sunlight.
光伏结构的“背侧”指结构的通常背离直射目光的一侧。The "back side" of a photovoltaic structure refers to the side of the structure that typically faces away from direct line of sight.
“发射极”是指光伏结构的收集载流子(空穴或电子)的部分。如果这种发射极具有与基极层的导电类型相同的导电类型,则发射极也可以被称为表面场(SF)层,其可以是背表面场(BSF)层或前表面场(FSF)层。一般地,p发射极收集由太阳能电池生成的空穴(即,其向外部电路“发射”p型载流子或空穴),而n发射极收集电子(即,其向外部电路“发射”n型载流子或电子)。因此,p发射极也可以被称为空穴集电极,以及n发射极也可以被称为电子集电极。"Emitter" refers to the portion of the photovoltaic structure that collects carriers (holes or electrons). If such an emitter has the same conductivity type as that of the base layer, the emitter can also be called a surface field (SF) layer, which can be a back surface field (BSF) layer or a front surface field (FSF) Floor. Generally, the p-emitter collects holes generated by the solar cell (ie, it "emits" p-type carriers or holes to an external circuit), while the n-emitter collects electrons (ie, it "emits" to the external circuit n-type carriers or electrons). Therefore, the p-emitter may also be referred to as the hole collector, and the n-emitter may also be referred to as the electron collector.
背景技术Background technique
用于制作太阳能板的光伏技术的进步已经帮助太阳能在希望减少其碳足迹和降低其每月的能量成本的那些人中获取大量的吸引力。光伏结构的能量转换效率一直以来是太阳能技术发展的焦点。最新的光伏结构设计已经生产出具有20%或更高的效率的太阳能电池,但对更高效的器件的追求还在继续。Advances in photovoltaic technology used to make solar panels have helped solar gain a lot of traction among those looking to reduce their carbon footprint and lower their monthly energy costs. The energy conversion efficiency of photovoltaic structures has always been the focus of solar technology development. The latest photovoltaic structural designs have produced solar cells with efficiencies of 20% or higher, but the quest for more efficient devices continues.
图1示出了示例性的硅异质结(SHJ)太阳能电池(现有技术)。SHJ太阳能电池100可以包括前栅电极102、重掺杂非晶硅(a-Si)发射极层104、本征a-Si层106、晶体Si(c-Si)衬底108和背栅电极110。图1中的箭头指示直接入射的目光。因为在a-Si层106和c-Si层108之间存在固有的带隙偏移,所以a-Si层106可以用于通过产生对于少数载流子的势垒来减少表面复合速度。本征a-Si层106还可以通过修复现有的Si悬空键来钝化c-Si层108的表面。此外,重掺杂的a-Si发射极层104的厚度可以相比于同质结太阳能电池的发射极层的厚度薄得多。因此,SHJ太阳能电池可以利用具有更高的开路电压(Voc)和更大的短路电流(Jsc)来提供更高的效率。然而,这种太阳能电池的效率受到由前侧电极102引起的遮光量的限制。解决该限制的一种方法是在光伏结构的背侧上具有p型和n型电极二者。尽管如此,这种配置要求复杂的制造步骤,并且阻止太阳能电池从背侧吸收光。Figure 1 shows an exemplary silicon heterojunction (SHJ) solar cell (prior art). SHJ solar cell 100 may include front gate electrode 102 , heavily doped amorphous silicon (a-Si) emitter layer 104 , intrinsic a-Si layer 106 , crystalline Si (c-Si) substrate 108 and back gate electrode 110 . Arrows in Figure 1 indicate directly incident gaze. Because there is an inherent bandgap shift between the a-Si layer 106 and the c-Si layer 108, the a-Si layer 106 can be used to reduce the surface recombination velocity by creating a barrier to minority carriers. The intrinsic a-Si layer 106 can also passivate the surface of the c-Si layer 108 by repairing existing Si dangling bonds. Furthermore, the thickness of the heavily doped a-Si emitter layer 104 can be much thinner compared to the thickness of the emitter layer of a homojunction solar cell. Therefore, SHJ solar cells can be utilized with higher open circuit voltage (V oc ) and larger short circuit current (J sc ) to provide higher efficiency. However, the efficiency of such solar cells is limited by the amount of light shielding caused by the front-side electrode 102 . One way to address this limitation is to have both p-type and n-type electrodes on the backside of the photovoltaic structure. Nonetheless, this configuration requires complex fabrication steps and prevents the solar cell from absorbing light from the backside.
发明内容SUMMARY OF THE INVENTION
本发明的一个实施例提供了一种使用叉指背接触的太阳能电池。太阳能电池可以包括晶体硅基极层和在基极层的背侧上的电子集电极区域。电子集电极区域可以包括电耦合到基极层的第一导电氧化物材料。太阳能电池还可以包括在基极层的背侧上的空穴集电极区域。空穴集电极区域可以包括电耦合到基极层的第二导电氧化物材料。电子集电极区域和空穴集电极区域可以形成叉指图案。此外,第一导电氧化物材料和第二导电氧化物材料具有不同的功函数。One embodiment of the present invention provides a solar cell using interdigital back contacts. The solar cell may include a crystalline silicon base layer and an electron collector region on the backside of the base layer. The electron collector region may include a first conductive oxide material electrically coupled to the base layer. The solar cell may also include a hole collector region on the backside of the base layer. The hole collector region may include a second conductive oxide material electrically coupled to the base layer. The electron collector region and the hole collector region may form an interdigitated pattern. Furthermore, the first conductive oxide material and the second conductive oxide material have different work functions.
在该实施例的变型中,太阳能电池可以包括在基极层和电子集电极区域之间的量子隧穿势垒层。In a variation of this embodiment, the solar cell may comprise a quantum tunneling barrier layer between the base layer and the electron collector region.
在另一实施例中,太阳能电池可以包括在量子隧穿势垒层和电子集电极区域之间的本征非晶硅层。In another embodiment, the solar cell may include an intrinsic amorphous silicon layer between the quantum tunneling barrier layer and the electron collector region.
在该实施例的变型中,电子集电极区域或空穴集电极区域不包含掺杂的非晶硅。In a variation of this embodiment, the electron collector region or the hole collector region does not contain doped amorphous silicon.
在该实施例的变型中,第一导电氧化物材料和第二导电氧化物材料中的至少一个是透明的。In a variation of this embodiment, at least one of the first conductive oxide material and the second conductive oxide material is transparent.
在该实施例的变型中,基极层可以被掺杂有p型掺杂剂。第一导电氧化物材料可以具有小于或等于4.2eV的功函数。In a variant of this embodiment, the base layer may be doped with a p-type dopant. The first conductive oxide material may have a work function less than or equal to 4.2 eV.
在另一变型中,第一导电氧化物材料包括选自以下材料组成的组中的至少一种材料:掺铝氧化锌、掺钨氧化铟、掺锡氧化铟、掺氟氧化锡、掺锌氧化铟以及掺杂锌和钨的氧化铟。In another variation, the first conductive oxide material comprises at least one material selected from the group consisting of aluminum doped zinc oxide, tungsten doped indium oxide, tin doped indium oxide, fluorine doped tin oxide, zinc doped oxide Indium and indium oxide doped with zinc and tungsten.
在该实施例的变型中,基极层被掺杂有n型掺杂剂。第一导电氧化物材料可以具有大于或等于5.0eV的功函数。In a variant of this embodiment, the base layer is doped with an n-type dopant. The first conductive oxide material may have a work function greater than or equal to 5.0 eV.
在另一变型中,第一导电氧化物材料可以包括选自以下材料组成的组中的至少一种材料:掺钨氧化铟、掺锡氧化铟、镓铟氧化物,镓铟锡氧化物、锌铟氧化物、锌铟锡氧化物、氧化钨、掺钛氧化铟、氧化铈、氧化锰以及氧化铟。In another variation, the first conductive oxide material may comprise at least one material selected from the group consisting of tungsten doped indium oxide, tin doped indium oxide, gallium indium oxide, gallium indium tin oxide, zinc Indium oxide, zinc indium tin oxide, tungsten oxide, titanium-doped indium oxide, cerium oxide, manganese oxide, and indium oxide.
在另一个实施例中,电子集电极区域和空穴集电极区域是至少部分透明的,从而允许太阳能电池从背侧吸收光。In another embodiment, the electron collector region and the hole collector region are at least partially transparent, allowing the solar cell to absorb light from the backside.
附图说明Description of drawings
图1示出了示例性硅异质结太阳能电池(现有技术)。Figure 1 shows an exemplary silicon heterojunction solar cell (prior art).
图2示出了示例性双侧隧穿结太阳能电池(现有技术)。Figure 2 shows an exemplary double-sided tunnel junction solar cell (prior art).
图3示出了根据本发明的实施例的示例性隧穿氧化物叉指背接触(TIBC)太阳能电池。3 illustrates an exemplary tunneling oxide interdigitated back contact (TIBC) solar cell according to an embodiment of the present invention.
图4示出了根据本发明的实施例的示例性TIBC太阳能电池。Figure 4 shows an exemplary TIBC solar cell according to an embodiment of the present invention.
图5A示出根据本发明的实施例的晶体Si和导电氧化物材料之间的能带图。5A shows an energy band diagram between crystalline Si and a conductive oxide material according to an embodiment of the present invention.
图5B示出根据本发明的实施例的晶体Si和导电氧化物材料之间的能带图。5B shows an energy band diagram between crystalline Si and a conductive oxide material according to an embodiment of the present invention.
图6A示出根据本发明的实施例的晶体Si和导电氧化物材料之间的能带图。6A shows an energy band diagram between crystalline Si and a conductive oxide material according to an embodiment of the present invention.
图6B示出了根据本发明实施例的晶体Si和导电氧化物材料之间的能带图。6B shows an energy band diagram between crystalline Si and a conductive oxide material according to an embodiment of the present invention.
图6C示出了根据本发明的实施例的晶体Si和导电氧化物材料之间的能带图。6C shows an energy band diagram between crystalline Si and a conductive oxide material according to an embodiment of the present invention.
图7示出了根据本发明实施例的TIBC太阳能电池的示例性布局。7 shows an exemplary layout of a TIBC solar cell according to an embodiment of the present invention.
图8A示出根据本发明的实施例的TIBC太阳能电池的示例性布局。8A shows an exemplary layout of a TIBC solar cell according to an embodiment of the present invention.
图8B示出根据本发明的实施例的TIBC太阳能电池带的示例性级联。8B shows an exemplary cascade of TIBC solar cell ribbons in accordance with embodiments of the present invention.
图9示出了根据本发明实施例的TIBC太阳能电池的示例性制造工艺。9 illustrates an exemplary fabrication process for a TIBC solar cell according to an embodiment of the present invention.
在附图中,相似的附图标记指相同的附图元件。In the drawings, like reference numerals refer to the same drawing elements.
具体实施方式Detailed ways
以下描述被呈现以使本领域任何技术人员能够实现和使用实施例,并且以下描述是在特定应用及其要求的情境中提供的。对所公开的实施例的各种修改对于本领域技术人员将是显而易见的,并且在不脱离本公开的精神和范围的情况下,本文定义的一般原理可以被应用于其他实施例和应用。因此,本发明不限于所示实施例,而是符合与本文公开的原理和特征一致的最宽范围。The following descriptions are presented to enable any person skilled in the art to make and use the embodiments, and are provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
概述Overview
本发明的实施例通过提供具有叉指背接触的隧穿结太阳能电池来解决太阳能电池上的前侧电极遮光的问题。太阳能电池可以包括轻掺杂的基极层,其前侧和背侧覆盖有用作量子隧穿势垒(QTB)层的氧化硅的薄层。经常以指状形状形成的电子集电极区域和空穴集电极区域在太阳能电池的背侧上形成叉指图案。然后可以在电子集电极区域和空穴集电极区域上分别形成电子集电极和空穴集电极。这些电极可以相应地形成用于太阳能电池的叉指背接触(IBC)。电子集电极区域可以包括p型掺杂的氢化a-Si或具有足够低的功函数的导电氧化物(CO)。空穴集电极区域可以包括n型掺杂的a-Si或具有足够高的功函数的CO。使用具有被适当调节的功函数的导电氧化物材料可以免除分别使用掺杂的a-Si材料作为电子和空穴集电极的需要。此外,太阳能电池的背侧可以整体或部分地被透明导电氧化物(TCO)材料覆盖,这允许太阳能电池以双面模式运转并从前侧和背侧两侧吸收光。Embodiments of the present invention solve the problem of shading of the front side electrodes on solar cells by providing tunnel junction solar cells with interdigital back contacts. A solar cell may include a lightly doped base layer, the front and back sides of which are covered with thin layers of silicon oxide serving as quantum tunneling barrier (QTB) layers. Electron collector regions and hole collector regions, often formed in finger-like shapes, form an interdigitated pattern on the backside of the solar cell. An electron collector and a hole collector can then be formed on the electron collector region and the hole collector region, respectively. These electrodes can accordingly form interdigital back contacts (IBCs) for solar cells. The electron collector region may comprise p-type doped hydrogenated a-Si or a conducting oxide (CO) with a sufficiently low work function. The hole collector region may comprise n-type doped a-Si or CO with a sufficiently high work function. Using a conductive oxide material with a properly tuned work function can obviate the need to use doped a-Si material as electron and hole collectors, respectively. Furthermore, the backside of the solar cell can be covered in whole or in part with a transparent conductive oxide (TCO) material, which allows the solar cell to operate in a bifacial mode and absorb light from both the front and back sides.
为了提高钝化,可以在背侧QTB层与电子和空穴集电极区域之间布置本征a-Si的薄层。另外,电极可以基于铜并且使用电镀、物理气相沉积或其组合来形成。因为所有的电连接都在太阳能电池的背侧上,并且因为电池的背侧现在可以是透明的,所以具有IBC的隧穿结太阳能电池可以从前侧和背侧两侧吸收光,这导致了更高的效率。此外,IBC构造可以促进更有效的模块制造和模块具有更高的封装因子,因为不再需要将连接片从太阳能电池的一侧编织到相邻太阳能电池的另一侧。To improve passivation, a thin layer of intrinsic a-Si can be arranged between the backside QTB layer and the electron and hole collector regions. Additionally, the electrodes may be copper based and formed using electroplating, physical vapor deposition, or a combination thereof. Because all electrical connections are on the backside of the solar cell, and because the backside of the cell can now be transparent, tunnel junction solar cells with IBCs can absorb light from both the front and back sides, resulting in more high efficiency. In addition, the IBC construction can facilitate more efficient module fabrication and modules with higher encapsulation factors, since there is no longer a need to weave tabs from one side of a solar cell to the other side of an adjacent solar cell.
隧穿氧化物叉指背接触(TIBC)太阳能电池Tunneling oxide interdigital back contact (TIBC) solar cells
已经示出,特定类型的SHJ太阳能电池(即,隧穿结太阳能电池)可以提供优异的性能,因为量子隧穿势垒(QTB)层可以有效地钝化基极层的表面而不损害载流子收集效率。隧穿结可以位于太阳能电池的任一侧或两侧。图2示出了示例性双侧隧穿结太阳能电池。双侧隧穿结太阳能电池200可以包括基极层202和覆盖在基极层202的两侧并可以钝化表面缺陷态的量子隧穿势垒(QTB)层204和206。太阳能电池200还包括作为前表面场(FSF)层208的前侧的掺杂a-Si层、作为发射极层210的背侧的掺杂a-Si层、前透明导电氧化物(TCO)层212、背TCO层214、前金属栅线216以及背金属栅线218。要注意,取决于基极层202的掺杂类型,FSF层208和发射极210可以具有不同的掺杂类型。一般地,“发射极”也可以指具有与基极层的掺杂类型相反的掺杂类型以使得在基极层中生成的多数载流子可以被有效地收集的层。表面场层(在基极层的前侧或背侧上)可以与基极层具有相同的掺杂类型,以收集在基极层中生成的少数载流子。例如,如果基极层202是n型掺杂的,则发射极210可以是p型掺杂的,并且FSF层208可以是n型掺杂的。类似地,如果基极层202是p型掺杂的,则发射极210可以是n型掺杂的,并且FSF层208可以是p型掺杂的。It has been shown that certain types of SHJ solar cells (i.e., tunneling junction solar cells) can provide excellent performance because a quantum tunneling barrier (QTB) layer can effectively passivate the surface of the base layer without compromising current carrying Subcollection efficiency. Tunneling junctions can be located on either or both sides of the solar cell. Figure 2 shows an exemplary double-sided tunnel junction solar cell. The double-sided tunneling junction solar cell 200 can include a base layer 202 and quantum tunneling barrier (QTB) layers 204 and 206 that overlie both sides of the base layer 202 and can passivate surface defect states. The solar cell 200 also includes a doped a-Si layer as the front side of the front surface field (FSF) layer 208, a doped a-Si layer as the back side of the emitter layer 210, a front transparent conductive oxide (TCO) layer 212 , the back TCO layer 214 , the front metal gate line 216 and the back metal gate line 218 . Note that, depending on the doping type of base layer 202, FSF layer 208 and emitter 210 may have different doping types. In general, "emitter" may also refer to a layer having a doping type opposite to that of the base layer so that majority carriers generated in the base layer can be efficiently collected. The surface field layer (on the front or back side of the base layer) may have the same doping type as the base layer to collect minority carriers generated in the base layer. For example, if base layer 202 is n-doped, emitter 210 may be p-doped, and FSF layer 208 may be n-doped. Similarly, if base layer 202 is p-doped, emitter 210 may be n-doped, and FSF layer 208 may be p-doped.
由于通过量子势垒的隧穿效应,沉积在基极层的任一侧或两侧上的超薄隧穿氧化物层(例如,QTB层204和206)可导致可小于1×1011/cm2的低的界面缺陷密度(Dit),而没有显著增加相关联的串联电阻。作为结果,可以实现具有大于715mV的开路电压(Voc)的高效太阳能电池。关于双侧隧穿结太阳能电池200的细节(包括制造方法),可以在由发明人JiunnBenjamin Heng、Chentao Yu、Zheng Xu以及Jianming Fu在2010年11月12日提交的题为“Solar Cell with Oxide Tunneling Junctions”的美国专利No.8,686,283中找到,其公开内容通过引用以其整体并入本文。Ultrathin tunneling oxide layers (eg, QTB layers 204 and 206 ) deposited on either or both sides of the base layer can result in layers that can be less than 1×10 11 /cm due to tunneling through the quantum barrier A low interfacial defect density (D it ) of 2 without a significant increase in the associated series resistance. As a result, a high-efficiency solar cell with an open circuit voltage (V oc ) greater than 715 mV can be realized. Details of the double-sided tunneling junction solar cell 200, including the fabrication method, can be found in a paper entitled "Solar Cell with Oxide Tunneling" submitted by inventors Jiunn Benjamin Heng, Chentao Yu, Zheng Xu and Jianming Fu on November 12, 2010 Junctions", US Patent No. 8,686,283, the disclosure of which is incorporated herein by reference in its entirety.
要注意,也可以在太阳能电池的前侧上具有发射极层并且在背侧上具有背表面场(BSF)层,以实现具有改进的性能的背结太阳能电池。然而,将发射极(即多数载流子集电极)放置在背侧上可以具有一定的优点。例如,对于n型掺杂的基极层,在背侧上放置具有更高缺陷密度的重p型掺杂发射极可以减少太阳能电池的前表面附近的短波长光的吸收。此外,当被放置于背侧时,p型掺杂发射极可以相对地较厚,以消除发射极耗尽效应,而不会引发过多的短波长吸收。作为减少载流子耗尽的结果,电池的开路电压和填充因子可以提高。另外,背结结构可以提供更多的灵活性来调节p型掺杂发射极的功函数以更好地匹配背TCO材料的功函数,和/或允许更好的匹配的背侧TCO材料,而不用受TCO材料的光透射性能的限制。此外,因为背结可以主要受长波长、低能量吸收的影响,所以它较少受高能量、过多载流子结复合的影响。关于具有隧道氧化物的背结太阳能电池的细节(包含制造方法),可以在由发明人Jiunn Benjamin Heng、Jianming Fu、Zheng Xu和Zhigang Xie于2012年8月31日提交的题为“Back Junction Solar Cell with Tunnel Oxide”的美国专利申请No.13/601,441(代理人案卷号SCTY-P52-2NUS)中找到,其公开内容通过引用以其整体并入本文。Note that it is also possible to have an emitter layer on the front side of the solar cell and a back surface field (BSF) layer on the back side to achieve a back junction solar cell with improved performance. However, placing the emitter (ie the majority carrier collector) on the backside can have certain advantages. For example, for an n-doped base layer, placing a heavily p-doped emitter with a higher defect density on the backside can reduce the absorption of short wavelength light near the front surface of the solar cell. Furthermore, when placed on the backside, the p-doped emitter can be relatively thick to eliminate emitter depletion effects without inducing excessive short wavelength absorption. As a result of reducing carrier depletion, the open circuit voltage and fill factor of the cell can be increased. Additionally, the back junction structure may provide more flexibility to tune the work function of the p-type doped emitter to better match the work function of the back TCO material, and/or allow for a better matched back TCO material, while Not limited by the light transmission properties of the TCO material. Furthermore, because the back junction can be affected primarily by long wavelength, low energy absorption, it is less affected by high energy, excess carrier junction recombination. Details on back junction solar cells with tunnel oxides, including fabrication methods, can be found in a paper entitled "Back Junction Solar Cells," submitted by inventors Jiunn Benjamin Heng, Jianming Fu, Zheng Xu, and Zhigang Xie on August 31, 2012 Cell with Tunnel Oxide" US Patent Application No. 13/601,441 (Attorney Docket No. SCTY-P52-2NUS), the disclosure of which is incorporated herein by reference in its entirety.
尽管提供了许多益处,但具有隧道氧化物的背结太阳能电池仍然可能依旧表现出某些不足。例如,因为背结结构要求更长的扩散长度以允许过多的载流子被背结处的内建电势扫过,所以会存在电流的固有损耗。Despite the many benefits provided, back junction solar cells with tunnel oxides may still exhibit certain deficiencies. For example, there is an inherent loss of current flow because the back junction structure requires longer diffusion lengths to allow excess carriers to be swept by the built-in potential at the back junction.
为了进一步改进具有隧道氧化物的背结太阳能电池的性能,在本发明的一些实施例中,将叉指背接触(IBC)结合到这种背结太阳能电池中以形成隧穿氧化物叉指背接触(TIBC)太阳能电池。IBC可以消除对于在常规太阳能电池中引起遮光的前侧电极的需要,从而通过增加短路电流(Isc)来改进太阳能电池性能。另外,与其他常规的基于IBC的太阳能电池相比,TIBC太阳能电池具有增强的Voc,因为隧穿氧化物层可以提高在后面的正电极和负电极上的钝化。在一些实施例中,可以在隧穿氧化物层与电子和空穴集电极层之间插入本征a-Si层,以促进电子和空穴集电极区域之间的更好的钝化和分离,这可以带来提高的Voc和填充因子。To further improve the performance of back junction solar cells with tunnel oxides, in some embodiments of the present invention, interdigital back contacts (IBCs) are incorporated into such back junction solar cells to form tunnel oxide interdigital backs Contact (TIBC) solar cells. IBC can eliminate the need for front side electrodes that cause shading in conventional solar cells, thereby improving solar cell performance by increasing short circuit current (I sc ). In addition, TIBC solar cells have enhanced Voc compared to other conventional IBC-based solar cells because the tunneling oxide layer can improve passivation on the subsequent positive and negative electrodes. In some embodiments, an intrinsic a-Si layer may be inserted between the tunneling oxide layer and the electron and hole collector layers to facilitate better passivation and separation between the electron and hole collector regions , which can lead to improved V oc and fill factor.
图3示出了根据本发明的实施例的示例性TIBC太阳能电池。太阳能电池300包括基极层302、前QTB层304、背QTB层306、抗反射涂覆(ARC)层308、可选的本征a-Si层310、载流子集电极层312,以及多个电极(诸如电极318和320),载流子集电极层312包括可以形成叉指图案的电子集电极(也被称为n发射极)和空穴集电极(也称为p发射极),诸如n发射极314和p发射极316。箭头指示入射光。Figure 3 shows an exemplary TIBC solar cell according to an embodiment of the present invention. Solar cell 300 includes base layer 302, front QTB layer 304, back QTB layer 306, anti-reflection coating (ARC) layer 308, optional intrinsic a-Si layer 310, carrier collector layer 312, and multiple electrodes, such as electrodes 318 and 320, the carrier collector layer 312 includes an electron collector (also referred to as an n-emitter) and a hole collector (also referred to as a p-emitter) that may form an interdigitated pattern, Such as n-emitter 314 and p-emitter 316 . Arrows indicate incident light.
基极层302可以包括外延生长的c-Si层,或从经由切克劳斯基(Czochralski(CZ))或浮动区域(FZ)工艺获取的晶锭切割的c-Si晶片,并且轻掺杂有n-型或p型掺杂剂。基极层302的厚度可以在80到200μm之间。在一些实施例中,基极层302的厚度在80到120μm之间。基极层302的电阻率可以在1ohm-cm到10ohm-cm之间。在一个实施例中,基极层302的电阻率在1ohm-cm到5ohm-cm之间,并且体少数载流子寿命(MCL)为至少1ms。在另一实施例中,基极层302可以用n型掺杂剂渐变掺杂,并且可以包括纹理化表面。The base layer 302 may comprise an epitaxially grown c-Si layer, or a c-Si wafer cut from an ingot obtained via a Czochralski (CZ) or floating zone (FZ) process, and lightly doped There are n-type or p-type dopants. The thickness of the base layer 302 may be between 80 and 200 μm. In some embodiments, the thickness of the base layer 302 is between 80 and 120 μm. The resistivity of the base layer 302 may be between 1 ohm-cm and 10 ohm-cm. In one embodiment, the resistivity of the base layer 302 is between 1 ohm-cm and 5 ohm-cm, and the bulk minority carrier lifetime (MCL) is at least 1 ms. In another embodiment, the base layer 302 may be graded with an n-type dopant and may include a textured surface.
QTB层304和306可以与基极层302直接接触,并且可以包括电介质薄膜和/或有低掺杂或无掺杂的宽带隙半导体材料层。用于电介质薄膜的示例性材料包括但不限于:氧化硅(SiOx)、氢化SiOx、氮化硅(SiNx)、氢化SiNx、氮氧化硅(SiON)、氢化SiON、氧化铝(AlOx或Al2O3)以及氮化铝(AlNx)。宽带隙材料的示例包括但不限于:非晶硅(a-Si)、氢化a-Si、碳掺杂a-Si以及碳化硅(SiC)。在一个实施例中,背QTB层306可以包括SiOx,诸如SiO或SiO2,和/或氢化SiOx。前QTB层304可以包括以下的一种或多种:本征a-Si、非晶SiO、SiOx、SiNx以及Al2O3。可以通过使用诸如以下的各种氧化技术来形成SiOx或氢化SiOx层:将晶片浸入热去离子水(DIW)、低压自由基氧化、臭氧氧氧化、原子氧氧化、热氧化、化学氧化、蒸汽或湿法氧化、原子层沉积、DIW中的臭氧鼓泡、以及等离子体增强化学气相沉积(PECVD)。QTB层304和306的厚度可以在1到20埃之间。在一个实施例中,QTB层304和306可以各自包括具有在8到15埃之间的厚度的SiOx层。在一些实施例中,QTB层304和306的Dit可以小于5×1011/cm2。The QTB layers 304 and 306 may be in direct contact with the base layer 302 and may include dielectric thin films and/or layers of low or undoped wide bandgap semiconductor material. Exemplary materials for dielectric films include, but are not limited to: silicon oxide ( SiOx ), hydrogenated SiOx , silicon nitride ( SiNx ), hydrogenated SiNx , silicon oxynitride (SiON), hydrogenated SiON, aluminum oxide (AlO x or Al 2 O 3 ) and aluminum nitride (AlN x ). Examples of wide bandgap materials include, but are not limited to, amorphous silicon (a-Si), hydrogenated a-Si, carbon-doped a-Si, and silicon carbide (SiC). In one embodiment, the back QTB layer 306 may include SiOx , such as SiO or SiO2 , and/or hydrogenated SiOx . The front QTB layer 304 may include one or more of the following: intrinsic a - Si, amorphous SiO, SiOx , SiNx , and Al2O3 . SiOx or hydrogenated SiOx layers can be formed by using various oxidation techniques such as: immersion of the wafer in hot deionized water (DIW), low pressure radical oxidation, ozone oxygen oxidation, atomic oxygen oxidation, thermal oxidation, chemical oxidation, Steam or wet oxidation, atomic layer deposition, ozone bubbling in DIW, and plasma enhanced chemical vapor deposition (PECVD). The thickness of QTB layers 304 and 306 may be between 1 and 20 Angstroms. In one embodiment, QTB layers 304 and 306 may each comprise a SiOx layer having a thickness between 8 and 15 Angstroms. In some embodiments, the D it of QTB layers 304 and 306 may be less than 5×10 11 /cm 2 .
ARC层308可以被沉积在前QTB层304上,以最大化由太阳能电池300吸收的光的量。在一些实施例中,ARC层308可以包括以下的一种或多种:透明导电氧化物(TCO)、SiNx、SiOx、以及AlxO3。An ARC layer 308 may be deposited on the front QTB layer 304 to maximize the amount of light absorbed by the solar cell 300 . In some embodiments, the ARC layer 308 may include one or more of the following: transparent conductive oxide (TCO), SiNx , SiOx , and AlxO3 .
本征a-Si层310可以被沉积在背QTB层306上。在一些实施例中,本征a-Si层310的厚度可以在到之间的范围内。在另一实施例中,本征a-Si层310的厚度大约为可以通过使用等离子体增强化学气相沉积(PECVD)技术来沉积本征a-Si层310。可选的本征a-Si层310可以进一步减少少数载流子复合。Intrinsic a-Si layer 310 may be deposited on back QTB layer 306 . In some embodiments, the thickness of the intrinsic a-Si layer 310 may be between arrive within the range between. In another embodiment, the thickness of the intrinsic a-Si layer 310 is approximately The intrinsic a-Si layer 310 may be deposited by using a plasma enhanced chemical vapor deposition (PECVD) technique. The optional intrinsic a-Si layer 310 can further reduce minority carrier recombination.
载流子集电极层312可包括叉指图案(例如交错、平行的指状物)的p发射极和n发射极。更具体地,诸如发射极314的n发射极可以包括p型掺杂的a-Si,并且可以与本征a-Si层310接触。在一些实施例中,n发射极可以包括具有渐变掺杂分布的氢化a-Si。如果基极层302是n型掺杂的,则n发射极可以具有与基极层302相反的导电类型。p型掺杂的a-Si层、本征a-Si层310、QTB层306和基极层302一起形成异质隧穿背结。在一些实施例中,n发射极(具有与n型掺杂的基极层302的导电类型相反的导电类型)可以具有在3到20nm之间的厚度以及在1×1015/cm3到5×1020/cm3之间的掺杂浓度。这种掺杂的并足够厚的n发射极可以确保良好的欧姆接触和大的内建电势,以促进强的隧穿效应。The carrier collector layer 312 may include p-emitter and n-emitter of an interdigitated pattern (eg, interleaved, parallel fingers). More specifically, an n-emitter such as emitter 314 may include p-type doped a-Si and may be in contact with intrinsic a-Si layer 310 . In some embodiments, the n-emitter may comprise hydrogenated a-Si with a graded doping profile. If base layer 302 is n-type doped, the n-emitter may have the opposite conductivity type as base layer 302 . The p-doped a-Si layer, the intrinsic a-Si layer 310, the QTB layer 306 and the base layer 302 together form a hetero-tunneling back junction. In some embodiments, the n-emitter (having the opposite conductivity type to that of the n-doped base layer 302 ) may have a thickness between 3 and 20 nm and between 1×10 15 /cm 3 to 5 Doping concentration between ×10 20 /cm 3 . This doped and sufficiently thick n-emitter can ensure a good ohmic contact and a large built-in potential to promote strong tunneling effects.
类似地,诸如发射极316的p发射极可以包括n型掺杂的a-Si,并且与本征a-Si层310接触。在一些实施例中,p发射极可以包括具有渐变掺杂分布的氢化a-Si。如果基极层302是n型掺杂的,则p发射极具有与基极层302相同的导电类型。在一些实施例中,p发射极可以具有在1到30nm之间的厚度以及在1×1015/cm3到5×1020/cm3之间的掺杂浓度。叉指图案可促进多个p发射极接触下面的本征a-Si层310和QTB层306。n和p发射极二者的叉指图案允许相邻的发射极具有相反的导电掺杂类型。形成发射极经常涉及在一个或多个图案化掩模上外延生长掺杂的Si,因此仔细设计的掩模可以确保在相反掺杂类型的发射极之间保持具有恰当尺寸的间隙。这防止在具有相反极性的电极之间形成短路。Similarly, a p-emitter such as emitter 316 may comprise n-type doped a-Si and be in contact with intrinsic a-Si layer 310 . In some embodiments, the p-emitter may comprise hydrogenated a-Si with a graded doping profile. If the base layer 302 is n-doped, the p-emitter has the same conductivity type as the base layer 302 . In some embodiments, the p-emitter may have a thickness between 1 and 30 nm and a doping concentration between 1×10 15 /cm 3 and 5×10 20 /cm 3 . The interdigitated pattern may facilitate multiple p-emitter contacts to the underlying a-Si layer 310 and QTB layer 306 . The interdigitated pattern of both n and p emitters allows adjacent emitters to have opposite conductivity doping types. Forming an emitter often involves epitaxially growing doped Si on one or more patterned masks, so a carefully designed mask can ensure that a properly sized gap is maintained between emitters of opposite doping type. This prevents short circuits from forming between electrodes with opposite polarities.
被沉积在p型和n型发射极上的电极,诸如电极318和320,提供对发射极的电耦合。如图3所示,在具有相反掺杂类型的相邻发射极之间可存在间隙,以确保电极不短路。例如,p型发射极314和n型发射极316被间隙330分隔开,这确保电极318和320彼此充分隔离。Electrodes deposited on the p-type and n-type emitters, such as electrodes 318 and 320, provide electrical coupling to the emitters. As shown in Figure 3, there may be gaps between adjacent emitters of opposite doping type to ensure that the electrodes are not shorted. For example, p-type emitter 314 and n-type emitter 316 are separated by a gap 330, which ensures that electrodes 318 and 320 are sufficiently isolated from each other.
在一些实施例中,导电氧化物(CO)层322可以被形成在载流子集电极层312和电极金属层之间。CO层322可促进与p型和n型发射极的良好欧姆接触的形成。在一些实施例中,CO层322可以包括一种或多种透明导电氧化物(TCO)材料。作为结果,太阳能电池300的背侧可以在未被电极覆盖的区域中整体或部分地是透明的。使用TCO允许太阳能电池300接收和吸收入射在其背侧上的光,这相应地允许太阳能电池300以双面模式运转。In some embodiments, a conductive oxide (CO) layer 322 may be formed between the carrier collector layer 312 and the electrode metal layer. The CO layer 322 can facilitate the formation of good ohmic contacts to the p-type and n-type emitters. In some embodiments, the CO layer 322 may include one or more transparent conductive oxide (TCO) materials. As a result, the backside of the solar cell 300 may be transparent in whole or in part in areas not covered by the electrodes. Using a TCO allows solar cell 300 to receive and absorb light incident on its backside, which in turn allows solar cell 300 to operate in a bifacial mode.
可以通过使用以下技术中的一种或多种来沉积CO层322:等离子体气相沉积、热蒸发、离子镀、和远端等离子体沉积。金属层可以被沉积在CO层322上或直接沉积在p型或n型掺杂的a-Si上。在一些实施例中,金属层可以包括一个或多个金属(诸如Cu、Ag、Ni等)的层。包括但不限于以下的各种技术可用于沉积该一个或多个金属层:物理气相沉积(PVD)、丝网印刷、蒸发、喷墨印刷、气溶胶印刷、具有图案的电镀或化学镀。在一个实施例中,金属电极可以包括铜,并且可以通过使用电镀技术来形成。在另一实施例中,可以通过使用PVD工艺沉积铜的籽晶层,并可以通过使用电镀工艺在籽晶层上形成块铜。关于如何在光伏结构上形成电镀金属栅线的更多细节可以在发明人Jianming Fu、Zheng Xu、Chentao Yu以及Jiunn Benjamin Heng的题为“SOLAR CELL WITH ELECTROPLATED METAL GRID”的美国专利申请No.13/220,532中找到,其公开内容通过引用以其整体并入本文。The CO layer 322 may be deposited by using one or more of the following techniques: plasma vapor deposition, thermal evaporation, ion plating, and remote plasma deposition. The metal layer can be deposited on the CO layer 322 or directly on the p-type or n-type doped a-Si. In some embodiments, the metal layer may include one or more layers of metals such as Cu, Ag, Ni, etc. Various techniques including, but not limited to, the following may be used to deposit the one or more metal layers: physical vapor deposition (PVD), screen printing, evaporation, inkjet printing, aerosol printing, patterned electroplating, or electroless plating. In one embodiment, the metal electrodes may include copper and may be formed using electroplating techniques. In another embodiment, a seed layer of copper may be deposited by using a PVD process, and bulk copper may be formed on the seed layer by using an electroplating process. More details on how to form plated metal gridlines on photovoltaic structures can be found in US Patent Application No. 13 entitled "SOLAR CELL WITH ELECTROPLATED METAL GRID" by inventors Jianming Fu, Zheng Xu, Chentao Yu and Jiunn Benjamin Heng/ 220,532, the disclosure of which is incorporated herein by reference in its entirety.
代替使用a-Si基发射极,在本发明的一些实施例中,可以通过使用CO材料(可以是透明的或不透明的)来形成n或p发射极,而不用使用任何掺杂的a-Si材料。图4示出了根据本发明的实施例的示例性TIBC太阳能电池。太阳能电池400包括基极层402、前QTB层404、背QTB层406、抗反射涂覆(ARC)层408、可选的本征a-Si层410、CO层412。CO层412可包括起空穴集电极作用的高功函数CO区域和起电子集电极作用的低功函数CO区域。具有不同功函数的这两个CO区域形成叉指图案(诸如低功函数CO区域414(电子集电极)和高功函数CO区域416(空穴集电极))。可以在CO层142上形成多个金属电极(诸如金属电极418和420)。Instead of using a-Si based emitters, in some embodiments of the present invention, n or p emitters can be formed by using CO materials (which may be transparent or opaque) without using any doped a-Si Material. Figure 4 shows an exemplary TIBC solar cell according to an embodiment of the present invention. Solar cell 400 includes base layer 402 , front QTB layer 404 , back QTB layer 406 , anti-reflective coating (ARC) layer 408 , optional intrinsic a-Si layer 410 , CO layer 412 . The CO layer 412 may include a high work function CO region serving as a hole collector and a low work function CO region serving as an electron collector. These two CO regions with different work functions form an interdigitated pattern (such as a low work function CO region 414 (electron collector) and a high work function CO region 416 (hole collector)). A plurality of metal electrodes (such as metal electrodes 418 and 420 ) may be formed on CO layer 142 .
基极层402、前和背QTB层404和406、ARC层408以及本征a-Si层410可以分别与基极层302、前和背QTB层304和306、ARC层308和本征a-Si层310类似。然而,代替渐变掺杂的a-Si,CO层412(可以包括在两个或更多步骤中沉积的两种类型的CO材料)可以被沉积在本征a-Si层410或背QTB层406(如果a-Si层410不存在)上并与其直接接触。如图4所示,CO层412包括低功函数CO区域(诸如CO区域414),以及高功函数CO区域(诸如CO区域416)。可以按照叉指图案将高功函数CO区域和低功函数CO区域两者交错。金属电极418和420可以与金属电极318和320类似。Base layer 402, front and back QTB layers 404 and 406, ARC layer 408, and intrinsic a-Si layer 410 may be associated with base layer 302, front and back QTB layers 304 and 306, ARC layer 308, and intrinsic a-Si layer, respectively. Si layer 310 is similar. However, instead of graded doped a-Si, a CO layer 412 (which may include both types of CO materials deposited in two or more steps) may be deposited on either the intrinsic a-Si layer 410 or the back QTB layer 406 (if the a-Si layer 410 is not present) and in direct contact therewith. As shown in FIG. 4, CO layer 412 includes a low work function CO region, such as CO region 414, and a high work function CO region, such as CO region 416. Both the high work function CO regions and the low work function CO regions may be interleaved in an interdigitated pattern. Metal electrodes 418 and 420 may be similar to metal electrodes 318 and 320 .
如上所述,为了收集空穴,可以使用高功函数的CO材料代替使用n型掺杂的a-Si。理想地,该高功函数CO材料具有其绝对值在接近或大于基极层402中使用的c-Si(轻掺杂或本征的)的价带边缘的值Ev(大约为5.17eV)的小范围(例如,0.3eV)内的功函数。当与c-Si基极层402接合时,该高功函数CO区域(诸如CO区域416)可以产生内建电场,其可以将空穴拉离生成载流子(即,电子和空穴二者)的基极层402。因为CO材料的功函数足够大,所以在该交界面处的电势差足够大到引起空穴隧穿通过背侧QTB层406。如果基极层402是n型掺杂的,则该高功函数CO层可以起到表面场区域的作用,因为它吸引少数载流子(即,空穴)。如果基极层403是p型掺杂的,则该高功函数CO层可以起到发射极区域的作用,因为它吸引多数载流子(即,空穴)。As mentioned above, in order to collect holes, a high work function CO material can be used instead of using n-doped a-Si. Ideally, the high work function CO material has an absolute value close to or greater than the value Ev (about 5.17 eV) of the valence band edge of c-Si (lightly doped or intrinsic) used in base layer 402 Work function in a small range (eg, 0.3 eV). When engaged with c-Si base layer 402, this high work function CO region, such as CO region 416, can generate a built-in electric field that can pull holes away from generating carriers (ie, both electrons and holes) ) of the base layer 402. Because the work function of the CO material is large enough, the potential difference at this interface is large enough to cause hole tunneling through the backside QTB layer 406 . If the base layer 402 is n-doped, the high work function CO layer can act as a surface field region because it attracts minority carriers (ie, holes). If the base layer 403 is p-type doped, the high work function CO layer can function as an emitter region because it attracts majority carriers (ie, holes).
类似地,为了收集电子,可以使用低功函数CO材料代替使用p型掺杂的a-Si。理想地,该低功函数CO材料具有其绝对值在接近或小于基极层402中使用的c-Si(轻掺杂或本征的)的导带边缘的值的小范围(例如,0.1eV~0.3eV)内的功函数。当与c-Si基极层402接合时,该低功函数CO区域(诸如CO区域414)可以产生内建电场,其可以将电子拉离基极层402。因为CO材料的功函数足够小,所以在该交界面处的电势差足够大到引起电子隧穿通过背侧QTB层406。如果基极层402是n型掺杂的,则该低功函数CO层可以起到发射极的作用,因为它吸引多数载流子(即,电子)。如果基极层402是p型掺杂的,则该低功函数CO层可以起到表面场区域的作用,因为它吸引少数载流子(即,电子)。Similarly, to collect electrons, a low work function CO material can be used instead of using p-type doped a-Si. Ideally, the low work function CO material has a small range (eg, 0.1 eV) whose absolute value is close to or less than the conduction band edge of the c-Si (lightly doped or intrinsic) used in base layer 402 ~0.3 eV) work function. When bonded to c-Si base layer 402 , this low work function CO region, such as CO region 414 , can generate a built-in electric field that can pull electrons away from base layer 402 . Because the work function of the CO material is small enough, the potential difference at this interface is large enough to cause electron tunneling through the backside QTB layer 406 . If the base layer 402 is n-type doped, the low work function CO layer can act as an emitter because it attracts majority carriers (ie, electrons). If the base layer 402 is p-type doped, the low work function CO layer can act as a surface field region because it attracts minority carriers (ie, electrons).
此外,由于本征a-Si层410的钝化效应,可以形成具有低界面缺陷密度的CO膜。在一个实施例中,界面缺陷密度(Dit)可以小于1e11/cm2,这使得可以消除在CO-半导体交界面处的费米能级钉扎效应。费米能级钉扎效应可以由与缺陷相关联的表面态引起,并且将使得在半导体侧的能带弯曲几乎不可能。作为费米能级钉扎的结果,肖特基势垒高度可以对导体(在这种情况下是CO材料)的功函数不敏感。由于由本征a-Si层410导致的低的界面缺陷密度,现在可以基于CO层的费米能级来操纵载流子传输性能。因此,当CO/本征a-Si/QTB结构与轻掺杂的c-Si基极接触时,具有恰当功函数和低Dit的CO层中的简并载流子分布使得可能具有强的隧穿效应。根据Wentzel-Kramers-Brillouin(WKB)近似,隧穿过程可以取决于在起始侧(c-Si侧)处的可用载流子浓度和在接收侧(CO侧)处的态密度。如以下结合图5A、5B、6A、6B和6C所更详细地解释,取决于CO材料的不同功函数,强隧穿可以在两种不同的情形中存在。In addition, due to the passivation effect of the intrinsic a-Si layer 410, a CO film with a low interface defect density can be formed. In one embodiment, the interface defect density (D it ) may be less than 1e 11 /cm 2 , which makes it possible to eliminate the Fermi level pinning effect at the CO-semiconductor interface. The Fermi level pinning effect can be caused by surface states associated with defects and will make band bending on the semiconductor side nearly impossible. As a result of Fermi level pinning, the Schottky barrier height can be insensitive to the work function of the conductor (in this case the CO material). Due to the low interfacial defect density caused by the intrinsic a-Si layer 410, the carrier transport performance can now be manipulated based on the Fermi level of the CO layer. Therefore, when the CO/intrinsic a-Si/QTB structure is in contact with the lightly doped c-Si base, the degenerate carrier distribution in the CO layer with the proper work function and low D it makes it possible to have strong tunneling effect. According to the Wentzel-Kramers-Brillouin (WKB) approximation, the tunneling process can depend on the available carrier concentration at the initiation side (c-Si side) and the density of states at the receiving side (CO side). As explained in more detail below in conjunction with Figures 5A, 5B, 6A, 6B and 6C, depending on the different work functions of the CO material, strong tunneling can exist in two different scenarios.
在一个实施例中,当使用具有不同功函数的CO材料代替p型和n型掺杂a-Si作为电子和空穴集电极时,CO材料可以是透明的、不透明的或部分透明的。在一个实施例中,高功函数和低功函数CO材料是透明的(即,二者都是TCO材料)。作为结果,太阳能电池可以从前侧和背侧两侧吸收光。这种太阳能电池可以然后被用于建造能够比常规的单侧太阳能板生产更多能量的双面太阳能板。In one embodiment, the CO material can be transparent, opaque, or partially transparent when using CO materials with different work functions instead of p-type and n-type doped a-Si as electron and hole collectors. In one embodiment, the high work function and low work function CO materials are transparent (ie, both are TCO materials). As a result, the solar cell can absorb light from both the front side and the back side. Such solar cells can then be used to build double-sided solar panels that can produce more energy than conventional single-sided solar panels.
图5A示出在晶体Si和具有靠近Si价带边缘的功函数的CO材料之间的交界面处的能带图。在图5A中,CO材料的功函数靠近c-Si价带边缘(差在0.1eV以内)。当CO材料通过QTB层与c-Si基极层接合时,应该对齐CO材料和c-Si的费米能级以保持电中性。作为结果,在c-Si侧的能带向上弯曲,并且在c-Si价带之间(作为价带中的电子被激发到导带的结果,由太阳能电池产生的空穴所在处)出现电势差,空穴将由于隧穿效应而通过QTB朝向CO区域迁移。取决于轻掺杂c-Si的掺杂类型,在交界面处可能存在空穴累积(如果c-Si是p型掺杂的)或载流子反转(如果c-Si是n型掺杂的),以及最高的空穴浓度可以接近在CO材料中的掺杂浓度(例如,大约1×1020/cm3)。如图5A所示,在QTB/Si交界面处存在能带弯曲,推动费米能级更靠近c-Si的价带边缘(Ev)。因为c-Si和CO之间的能带偏移可以相当小,并且考虑到热拓宽,隧穿效应可以很强。Figure 5A shows a band diagram at the interface between crystalline Si and a CO material with a work function close to the Si valence band edge. In Figure 5A, the work function of the CO material is close to the c-Si valence band edge (within 0.1 eV). When the CO material is bonded to the c-Si base layer through the QTB layer, the Fermi levels of the CO material and c-Si should be aligned to maintain electrical neutrality. As a result, the energy band on the c-Si side bends upward, and a potential difference occurs between the c-Si valence bands (where the holes generated by the solar cell are located as a result of electrons in the valence band being excited to the conduction band) , the holes will migrate towards the CO region through the QTB due to the tunneling effect. Depending on the doping type of lightly doped c-Si, there may be hole accumulation (if c-Si is p-doped) or carrier inversion (if c-Si is n-doped) at the interface ), and the highest hole concentration can be close to the doping concentration in the CO material (eg, about 1×10 20 /cm 3 ). As shown in Figure 5A, there is band bending at the QTB/Si interface, pushing the Fermi level closer to the valence band edge (Ev) of c-Si. Because the band offset between c-Si and CO can be quite small, and considering thermal broadening, the tunneling effect can be strong.
图5B示出了根据本发明实施例的在c-Si和具有比c-Si价带边缘大得多的功函数的CO材料之间的交界面处的能带图。在图5B中,CO材料的功函数比c-Si价带边缘(大约为5.17eV)大得多。在QTB/Si交界面处,能带弯曲的斜率可以足够大,使得对于空穴的量子阱出现。因此对于在Si侧上的强烈简并的空穴的最低能级不是在价带边缘,而是在第一束缚能级,其可以是在价带边缘之上0.1eV(如图5B中的圆所示)。此外,重空穴和轻空穴具有不同的质量和能量态。作为结果,实现能级对准相对容易,要求能级对准是由于对空穴的带内隧穿的节能要求。另一方面,电子将被势垒排斥。由于接收侧在禁带内,所以将没有电子的隧穿。5B shows a band diagram at the interface between c-Si and a CO material having a work function much larger than the c-Si valence band edge, according to an embodiment of the present invention. In Figure 5B, the work function of the CO material is much larger than the c-Si valence band edge (approximately 5.17 eV). At the QTB/Si interface, the slope of the band bending can be large enough that quantum wells for holes appear. So the lowest energy level for strongly degenerate holes on the Si side is not at the valence band edge, but at the first bound energy level, which can be 0.1 eV above the valence band edge (the circle in Figure 5B shown). Furthermore, heavy and light holes have different mass and energy states. As a result, it is relatively easy to achieve energy level alignment, which is required due to energy saving requirements for in-band tunneling of holes. On the other hand, electrons will be repelled by the barrier. Since the receiving side is within the forbidden band, there will be no tunneling of electrons.
要注意,如果CO材料的功函数远小于c-Si价带边缘,则可能没有足够的能带弯曲,因此不足以隧穿通过QTB层。Note that if the work function of the CO material is much smaller than the c-Si valence band edge, there may not be enough band bending and therefore not enough to tunnel through the QTB layer.
在一些实施例中,高功函数CO材料可以包括但不限于:掺钨氧化铟(IWO)、掺Sn的氧化铟(ITO)、GaInO(GIO)、GaInSnO(GITO)、ZnInO(ZIO)、ZnInSnO(ZITO)、WOx、MnOx、ITiO、InO、CeO及其组合。可以通过调整载流子浓度和掺杂来调节大多数CO材料的功函数。例如,具有3%或5%Sn的ITO具有在5.0到5.3eV之间的功函数。另外,可以通过控制晶体取向和表面条件来控制CO功函数。为了确保足够低的Dit,在一个实施例中,通过使用低损伤沉积方法在本征a-Si层上沉积CO层。低损伤沉积方法的示例包括但不限于:射频(RF)溅射(RF频率至少13MHz,优选大于13.56MHz)、热蒸发、诸如分子束外延(MBE)和金属有机化学气相沉积(MOCVD)的外延生长、原子层沉积(ALD)、远端等离子体沉积和离子镀沉积(IPD)。在一个实施例中,交界面处的Dit可以小于1×1011/cm2,这确保了良好的表面钝化。高功函数CO层可以被重掺杂(利用金属离子),具有至少为1×1019/cm3的掺杂浓度。在一个实施例中,高功函数CO层的掺杂浓度可以大于2×1020/cm3。In some embodiments, high work function CO materials may include, but are not limited to: tungsten doped indium oxide (IWO), Sn doped indium oxide (ITO), GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO), WOx, MnOx , ITiO , InO, CeO, and combinations thereof. The work function of most CO materials can be tuned by adjusting the carrier concentration and doping. For example, ITO with 3% or 5% Sn has a work function between 5.0 and 5.3 eV. Additionally, the CO work function can be controlled by controlling the crystal orientation and surface conditions. To ensure a sufficiently low D it , in one embodiment, a CO layer is deposited on the intrinsic a-Si layer by using a low damage deposition method. Examples of low damage deposition methods include, but are not limited to: radio frequency (RF) sputtering (RF frequency at least 13 MHz, preferably greater than 13.56 MHz), thermal evaporation, epitaxy such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) Growth, Atomic Layer Deposition (ALD), Remote Plasma Deposition and Ion Plating Deposition (IPD). In one embodiment, D it at the interface can be less than 1×10 11 /cm 2 , which ensures good surface passivation. The high work function CO layer can be heavily doped (with metal ions) with a doping concentration of at least 1×10 19 /cm 3 . In one embodiment, the doping concentration of the high work function CO layer may be greater than 2×10 20 /cm 3 .
关于具有基于TCO的空穴集电极的太阳能电池的细节(包括制造方法),可以在由发明人Zhigang Xie、Jiunn Benjamin Heng、Wei Wang、Jianming Fu、Zheng Xu于2013年10月10日提交的题为“NOVEL HOLE COLLECTORS FOR SILICON PHOTOVOLTAIC CELLS”的美国专利申请No.14/051,336(代理人案卷号P64-1NUS)中找到,其公开内容通过引用以其整体并入本文。Details on solar cells with TCO-based hole collectors, including fabrication methods, can be found in a question submitted by inventors Zhigang Xie, Jiunn Benjamin Heng, Wei Wang, Jianming Fu, Zheng Xu on October 10, 2013 Found in US Patent Application No. 14/051,336 (Attorney Docket No. P64-1NUS) for "NOVEL HOLE COLLECTORS FOR SILICON PHOTOVOLTAIC CELLS," the disclosure of which is incorporated herein by reference in its entirety.
类似地,为了收集电子,可以使用低功函数CO材料代替使用p型掺杂的a-Si。理想地,该低功函数CO材料具有其绝对值在接近或小于基极层中使用的c-Si(轻掺杂或本征的)的导带边缘的值Ec的小范围(例如,0.3eV)内的功函数。当与c-Si基极层402接合时,该低功函数CO区域(诸如CO区域414)可以产生内建电场,其可以将电子拉离基极层402,并因此起到电子集电极(或n发射极)的作用。与高功函数区域的机制类似,在交界面处的低Dit可以减少或消除费米能级钉扎效应,并且隧穿过程取决于在起始侧(c-Si侧)处的可用载流子浓度以及在接收侧(CO侧)处的态密度。基于CO功函数和c-Si导带边缘之间的差,当存在强隧穿时,有三种不同的情形(如下所述)。Similarly, to collect electrons, a low work function CO material can be used instead of using p-type doped a-Si. Ideally, the low work function CO material has an absolute value in a small range (eg, 0.3 eV) close to or less than the value Ec of the conduction band edge of c-Si (lightly doped or intrinsic) used in the base layer ) in the work function. When bonded to c-Si base layer 402, this low work function CO region, such as CO region 414, can generate a built-in electric field that can pull electrons away from base layer 402 and thus act as an electron collector (or n emitter). Similar to the mechanism in the high work function region, low D at the interface can reduce or eliminate the Fermi level pinning effect, and the tunneling process depends on the available current carrying at the initiation side (c-Si side) subconcentration and density of states at the receiving side (CO side). Based on the difference between the CO work function and the c-Si conduction band edge, there are three different scenarios (described below) when there is strong tunneling.
关于具有基于TCO的电子集电极的太阳能电池的细节(包括制造方法),可以在由发明人Zhigang Xie、Wei Wang、Jiunn Benjamin Heng、Jianming Fu和Zheng Xu于2013年10月15日提交的题为“NOVEL ELECTRON COLLECTORS FOR SILICON PHOTOVOLTAIC CELLS”的美国专利申请No.14/054,688(代理人案卷号P65-1NUS)中找到,其公开内容通过引用以其整体并入本文。Details on solar cells with TCO-based electron collectors, including fabrication methods, can be found in a paper entitled Oct. 15, 2013, by inventors Zhigang Xie, Wei Wang, Jiunn Benjamin Heng, Jianming Fu, and Zheng Xu "NOVEL ELECTRON COLLECTORS FOR SILICON PHOTOVOLTAIC CELLS," US Patent Application No. 14/054,688 (Attorney Docket No. P65-1NUS), the disclosure of which is incorporated herein by reference in its entirety.
在具有不同功函数的相邻CO区域之间可以存在间隙,以确保电极不短路。例如,低功函数CO区域414和高功函数CO区域416可以由间隙分隔开,以确保电极418和420不短路。CO区域的形成可以涉及在一个或多个图案化掩模上的PECVD,因此仔细设计的掩模可以确保在具有不同功函数的CO区域之间保持具有恰当尺寸的间隙。There may be gaps between adjacent CO regions with different work functions to ensure that the electrodes are not shorted. For example, low work function CO region 414 and high work function CO region 416 may be separated by a gap to ensure electrodes 418 and 420 are not shorted. The formation of CO regions can involve PECVD on one or more patterned masks, so a carefully designed mask can ensure that properly sized gaps are maintained between CO regions with different work functions.
图6A示出了根据本发明的实施例的在c-Si和具有略低于c-Si导带边缘的功函数的CO材料之间的交界面处的能带图。在图6A中,CO材料的功函数略低于c-Si导带边缘(差在0.1eV以内)。当CO材料通过QTB层与c-Si基极层接合时,应该对齐CO材料和c-Si的费米能级以保持电中性。作为结果,在c-Si侧的能带向下弯曲,并且在c-Si的导带之间(由太阳能电池产生的电子所在处)出现电势差,电子将由于隧穿效应通过QTB朝向CO区域迁移。取决于轻掺杂c-Si的掺杂类型,在交界面处可能存在电子累积(如果c-Si是n型掺杂的)或载流子反转(如果c-Si是p型掺杂的),并且最高电子浓度可以接近CO材料中的掺杂浓度(例如,大约1×1020/cm3)。如图6A所示,在QTB/Si交界面处存在能带弯曲,推动费米能级更靠近c-Si的导带边缘(Ec)。因为Si和TCO之间的能带偏移可以相当小,并且考虑到热扩宽,隧穿效应可以很强。6A shows a band diagram at the interface between c-Si and a CO material having a work function slightly lower than the c-Si conduction band edge, according to an embodiment of the present invention. In Figure 6A, the work function of the CO material is slightly lower than the c-Si conduction band edge (within 0.1 eV). When the CO material is bonded to the c-Si base layer through the QTB layer, the Fermi levels of the CO material and c-Si should be aligned to maintain electrical neutrality. As a result, the energy band on the c-Si side bends downward and a potential difference appears between the conduction bands of c-Si (where the electrons generated by the solar cell are located), the electrons will migrate through the QTB towards the CO region due to the tunneling effect . Depending on the doping type of lightly doped c-Si, there may be electron accumulation (if c-Si is n-doped) or carrier inversion (if c-Si is p-doped) at the interface ), and the highest electron concentration can be close to the doping concentration in the CO material (eg, about 1×10 20 /cm 3 ). As shown in Figure 6A, there is band bending at the QTB/Si interface, pushing the Fermi level closer to the conduction band edge (Ec) of c-Si. Because the energy band offset between Si and TCO can be quite small, and considering thermal broadening, the tunneling effect can be strong.
图6B示出根据本发明的实施例的在c-Si和具有比c-Si导带边缘小得多的功函数的CO材料之间的交界面处的能带图。在图6B中,CO材料的功函数比c-Si导带边缘小得多。在QTB/Si交界面处,能带弯曲的斜率可以足够大,使得对于电子的量子阱出现,而三角形状的量子势垒可以仅仅几纳米厚。作为结果,对于在Si侧上的强烈简并的电子的最低能级不在导带边缘处,而是在第一束缚能级,其可以在距导带边缘0.1eV以内(如图6B中的点所示)。因此,对于电子的带内隧穿,可能不存在明显的能级偏移。另一方面,空穴可以被势垒排斥。6B shows a band diagram at the interface between c-Si and a CO material having a much smaller work function than the c-Si conduction band edge, according to an embodiment of the present invention. In Figure 6B, the work function of the CO material is much smaller than that of the c-Si conduction band edge. At the QTB/Si interface, the slope of the band bending can be large enough that a quantum well for electrons emerges, while the triangular-shaped quantum barrier can be only a few nanometers thick. As a result, the lowest energy level for strongly degenerate electrons on the Si side is not at the conduction band edge, but at the first bound energy level, which can be within 0.1 eV from the conduction band edge (as the point in Fig. 6B ) shown). Therefore, there may not be a significant energy level shift for in-band tunneling of electrons. On the other hand, holes can be repelled by the barrier.
图6C示出根据本发明的实施例的在c-Si和具有略大于c-Si导带边缘的功函数的CO材料之间的交界面处的能带图。在图6C中,CO材料的功函数比c-Si的Ec大0.05-0.15eV左右。具有从导带边缘Ec起始的能级的电子将从c-Si侧进入CO的未填充导带。由于电势差,将有更少的电子从CO侧转移到c-Si侧。作为结果,在QTB/Si交界面处的电子浓度将小于例如1×1018/cm3。因此,在交界面处可能没有足够的能带弯曲,并且钝化受损。为了提高钝化,可以在c-Si衬底的表面上施加浅n型掺杂。要注意,为了最小化不期望的短波长光的吸收,浅掺杂理想地具有至少1×1019/cm3的峰值浓度和小于或等于100nm的深度。6C shows a band diagram at the interface between c-Si and a CO material having a work function slightly larger than the c-Si conduction band edge, according to an embodiment of the present invention. In Figure 6C, the work function of CO material is about 0.05-0.15 eV larger than the Ec of c-Si. Electrons with energy levels starting from the conduction band edge Ec will enter the unfilled conduction band of CO from the c-Si side. Due to the potential difference, there will be fewer electrons transferred from the CO side to the c-Si side. As a result, the electron concentration at the QTB/Si interface will be less than eg 1×10 18 /cm 3 . Therefore, there may not be sufficient band bending at the interface and passivation is compromised. To improve passivation, shallow n-type doping can be applied on the surface of the c-Si substrate. Note that in order to minimize undesired absorption of short wavelength light, the shallow doping ideally has a peak concentration of at least 1×10 19 /cm 3 and a depth of less than or equal to 100 nm.
在一个实施例中,低功函数CO材料具有小于或等于4.2eV的功函数。低功函数CO材料的示例包括但不限于:掺铝氧化锌(AZO)、掺钨氧化铟(IWO)、掺Sn氧化铟(ITO)、掺氟氧化锡(F:SnO2)、掺锌氧化铟(IZO)、掺杂锌和钨的氧化铟(IZWO)及其组合。要注意,可以通过调整载流子浓度和掺杂来调节大多数CO材料的功函数。另外,可以通过控制晶体取向和表面条件来控制CO功函数。与高功函数CO材料的沉积类似,可以通过使用低损伤沉积方法来沉积低功函数CO材料。低损伤沉积方法的示例包括但不限于:射频(RF)溅射、热蒸发、诸如分子束外延(MBE)和金属有机化学气相沉积(MOCVD)的外延生长、原子层沉积(ALD)、远端等离子体沉积和离子镀沉积(IPD)。在一个实施例中,在交界面处的Dit可以小于1×1011/cm2,这可以确保足够的表面钝化。In one embodiment, the low work function CO material has a work function less than or equal to 4.2 eV. Examples of low work function CO materials include, but are not limited to: aluminum doped zinc oxide (AZO), tungsten doped indium oxide (IWO), Sn doped indium oxide (ITO), fluorine doped tin oxide (F:SnO 2 ), zinc doped oxide Indium (IZO), indium oxide doped with zinc and tungsten (IZWO), and combinations thereof. Note that the work function of most CO materials can be tuned by adjusting the carrier concentration and doping. Additionally, the CO work function can be controlled by controlling the crystal orientation and surface conditions. Similar to the deposition of high work function CO materials, low work function CO materials can be deposited by using low damage deposition methods. Examples of low damage deposition methods include, but are not limited to: radio frequency (RF) sputtering, thermal evaporation, epitaxial growth such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), remote Plasma Deposition and Ion Plating Deposition (IPD). In one embodiment, D it at the interface can be less than 1×10 11 /cm 2 , which can ensure adequate surface passivation.
在一些实施例中,可以仅用低功函数CO材料替换p型掺杂的a-Si或者仅用高功函数CO材料替换n型掺杂的a-Si,而代替分别用低功函数和高功函数CO材料替换p型掺杂和n型掺杂的a-Si二者。此外,通过将a-Si发射极或CO发射极直接沉积到背侧QTB层上,也可以不在TIBC太阳能电池中包括本征a-Si层(层310或410)。In some embodiments, p-type doped a-Si may be replaced with only low work function CO material or n-type doped a-Si may be replaced with only high work function CO material, instead of low work function and high work function respectively The work function CO material replaces both p-type doped and n-type doped a-Si. Furthermore, it is also possible not to include an intrinsic a-Si layer (layer 310 or 410) in the TIBC solar cell by depositing the a-Si emitter or CO emitter directly onto the backside QTB layer.
图7示出了根据本发明的一个实施例的示例性IBC太阳能电池布局。在该示例中,太阳能电池700具有轻n型掺杂的c-Si基极层,在背侧上存在两个区域:作为空穴集电极的高功函数TCO区域702(以点状图案示出)以及作为电子集电极的低功函数TCO区域704(以交叉阴影线图案示出)。两个区域都被按照指状线图案配置,并且指状物是交错的,形成叉指图案。可以在每个区域上分别形成诸如电极708和712的金属电极。在一个实施例中,每个电极的宽度可以小于相应的TCO指状物的宽度以减少遮光。在每个区域(即,电子集电极区域或空穴集电极区域)中,用汇流条连接金属指状线,汇流条被放置在太阳能电池的边缘附近。因为TCO的透明性质,并且因为金属电极仅覆盖背侧的一部分,所以光可以穿过背侧并到达基极层,从而允许太阳能电池以双面模式运转。Figure 7 shows an exemplary IBC solar cell layout according to one embodiment of the present invention. In this example, the solar cell 700 has a lightly n-doped c-Si base layer with two regions on the backside: a high work function TCO region 702 (shown in a dotted pattern) that acts as a hole collector ) and a low work function TCO region 704 (shown in a cross-hatched pattern) as an electron collector. Both regions are arranged in a finger line pattern, and the fingers are interleaved, forming an interdigitated pattern. Metal electrodes such as electrodes 708 and 712 may be formed on each region, respectively. In one embodiment, the width of each electrode may be smaller than the width of the corresponding TCO finger to reduce shading. In each region (ie, the electron collector region or the hole collector region), the metal fingers are connected by bus bars, which are placed near the edges of the solar cell. Because of the transparent nature of the TCO, and because the metal electrode covers only a portion of the backside, light can pass through the backside and reach the base layer, allowing the solar cell to operate in bifacial mode.
在另一实施例中,可以通过使用具有不同功函数的不透明CO材料来形成电子集电极和空穴集电极。可替换地,可以分别通过使用p型掺杂的a-Si和n型掺杂的a-S来形成电子集电极和空穴集电极。这两个区域然后可以被相同的透明或不透明的CO材料覆盖。In another embodiment, the electron collector and hole collector may be formed by using opaque CO materials with different work functions. Alternatively, the electron collector and the hole collector can be formed by using p-type doped a-Si and n-type doped a-S, respectively. These two regions can then be covered with the same transparent or opaque CO material.
图8A示出了根据本发明的实施例的另一个IBC太阳能电池布局。在该示例中,常规的方形或准方形电池800可以被划分为三个带802、804以及806。每个带具有与图7中示出的太阳能电池700的IBC配置类似的IBC配置。在一个实施例中,多个这种带可以被级联成串,其可以具有与常规的太阳能板相同的输出电压,常规的太阳能板具有在单个串中被串联连接的方形或准方形太阳能电池。然后可以在单个板内把利用这些带形成的多个级联串并联连接。因此,可以显著减少整个太阳能板的总内阻,并且可以相应地增加板的输出功率。这种级联(也称为“搭接”)配置的更多细节可以在发明人Bobby Yang、Peter P.Nguyen、JiunnBenjamin Heng、Anand J.Reddy以及Zheng Xu的题为“HIGH EFFICIENCY SOLAR PANEL”的美国专利申请No.14/563,867(代理人案卷号P67-3US)中找到,其公开内容通过引用以其整体并入本文。Figure 8A shows another IBC solar cell layout according to an embodiment of the present invention. In this example, a conventional square or quasi-square cell 800 can be divided into three strips 802 , 804 and 806 . Each strip has an IBC configuration similar to that of solar cell 700 shown in FIG. 7 . In one embodiment, multiple such strips can be cascaded into a string, which can have the same output voltage as a conventional solar panel with square or quasi-square solar cells connected in series in a single string . Multiple cascades formed with these strips can then be connected in series and in parallel within a single board. Therefore, the total internal resistance of the entire solar panel can be significantly reduced, and the output power of the panel can be increased accordingly. More details of this cascading (also known as "lap") configuration can be found in a paper titled "HIGH EFFICIENCY SOLAR PANEL" by inventors Bobby Yang, Peter P. Nguyen, Jiunn Benjamin Heng, Anand J. Reddy, and Zheng Xu US Patent Application No. 14/563,867 (Attorney Docket No. P67-3US), the disclosure of which is incorporated herein by reference in its entirety.
图8B示出根据本发明的一个实施例的使用IBC的太阳能电池带的示例性级联配置。在该示例中,三个带802、804和806被沿着它们的长边缘串联地级联。因为每个带的汇流条都在背侧,并且具有相反极性的汇流条被安放在相对的边缘上,所以可以相互紧邻地放置带,并且来自两个邻接的带的相邻汇流条具有相反的极性。例如,带802的正汇流条808可以被放置在带804的负汇流条810旁边。在一个实施例中,金属片812可以用于连接汇流条808和810,从而在带802和804之间形成串联连接。在一个实施例,可以彼此靠近地放置带以减小它们之间的间隙。也可以使用其他方法来连接两个相邻的汇流条。例如,可以在汇流条808和810上施加导电粘合胶来连接它们。8B illustrates an exemplary cascade configuration of solar cell ribbons using IBCs according to one embodiment of the present invention. In this example, three strips 802, 804 and 806 are cascaded in series along their long edges. Because the busbars of each strip are on the backside, and the busbars with opposite polarity are placed on opposite edges, the strips can be placed next to each other, and adjacent busbars from two adjoining strips have opposite polarity. For example, the positive bus bar 808 of strip 802 may be placed next to the negative bus bar 810 of strip 804 . In one embodiment, metal sheet 812 may be used to connect bus bars 808 and 810 to form a series connection between strips 802 and 804 . In one embodiment, the straps may be placed close to each other to reduce the gap between them. Other methods can also be used to connect two adjacent bus bars. For example, a conductive adhesive may be applied to the bus bars 808 and 810 to connect them.
制造方法Manufacturing method
可以使用或n型或p型掺杂的高质量的太阳级硅(SG-Si)晶片来制造TIBC太阳能电池。图9示出了根据本发明实施例的制造TIBC太阳能电池的示例性工艺。TIBC solar cells can be fabricated using either n- or p-type doped high quality solar-grade silicon (SG-Si) wafers. 9 illustrates an exemplary process for fabricating a TIBC solar cell according to an embodiment of the present invention.
在操作9A中,可以制备SG-Si衬底以形成基极层900。SG-Si衬底的电阻率可以在但不限于1ohm-cm到10ohm-cm之间的范围中。在一个实施例中,SG-Si衬底的电阻率可以在1ohm-cm到6ohm-cm之间。基极层900可以包括从使用CZ/FZ工艺获得的晶锭切割的c-Si晶片。在一些实施例中,基极层900可以具有范围从80μm到200μm的厚度。制备操作可以包括锯损伤蚀刻,其去除大约10-30μm的硅。在一个实施例中,还可以进行表面纹理化以产生随机角锥状纹理化表面。随后,SG-Si衬底可以经历表面清洁。另外,还可以通过使用外延工艺(诸如MOCVD)形成基极层900,其中,可以在生长衬底上生长c-Si外延膜,并且然后从生长衬底去除c-Si外延膜。在一个实施例中,基极层900可以被轻掺杂,具有范围在5×1014/cm3到1×1016/cm3之间的掺杂浓度。In operation 9A, an SG-Si substrate may be prepared to form a base layer 900 . The resistivity of the SG-Si substrate can be in, but not limited to, the range between 1 ohm-cm to 10 ohm-cm. In one embodiment, the resistivity of the SG-Si substrate may be between 1 ohm-cm and 6 ohm-cm. The base layer 900 may include a c-Si wafer cut from an ingot obtained using a CZ/FZ process. In some embodiments, the base layer 900 may have a thickness ranging from 80 μm to 200 μm. Fabrication operations may include a saw damage etch, which removes approximately 10-30 μm of silicon. In one embodiment, surface texturing may also be performed to produce a random pyramid-like textured surface. Subsequently, the SG-Si substrate can undergo surface cleaning. In addition, the base layer 900 may also be formed by using an epitaxy process such as MOCVD, in which a c-Si epitaxial film may be grown on a growth substrate and then removed from the growth substrate. In one embodiment, the base layer 900 may be lightly doped, with a doping concentration ranging from 5×10 14 /cm 3 to 1×10 16 /cm 3 .
在操作9B中,可以在基极层900的前表面和背表面上形成高质量(具有小于1×1011/cm2的Dit)的电介质材料的薄层,以形成前侧QTB层902和背侧QTB层904。可以使用各种类型的电介质材料来形成QTB层,电介质材料包括但不限于:氧化硅(SiOx,包括二氧化硅和一氧化硅)、氢化SiOx、氮化硅(SiNx)、氢化SiNx、氮氧化硅(SiON)、氢化SiON、氧化铝(AlOx)以及氮化铝(AlNx)。在一个实施例中,背侧QTB层904可以包括SiOx和/或氢化SiOx。可以使用各种技术形成这种氧化物层,这些技术包括但不限于:将衬底浸入热去离子水(DIW)、低压自由基氧化、臭氧氧氧化、原子氧氧化、热氧化、化学氧化、蒸汽或湿法氧化、原子层沉积、DIW中的臭氧鼓泡和/或等离子体增强化学气相沉积(PECVD)。QTB层的厚度可以在1到之间。在一些实施例中,除了电介质材料之外,也可以使用诸如a-Si、氢化a-Si、碳掺杂的a-Si以及SiC的各种宽带隙半导体材料来形成前QTB层902。在一些实施例中,QTB层902和904的Dit可以小于5×1011/cm2。In operation 9B, thin layers of high quality (with D it less than 1×10 11 /cm 2 ) dielectric material may be formed on the front and back surfaces of base layer 900 to form front side QTB layer 902 and Backside QTB layer 904. Various types of dielectric materials may be used to form the QTB layer, including but not limited to: silicon oxide ( SiOx , including silicon dioxide and silicon monoxide), hydrogenated SiOx , silicon nitride ( SiNx ), hydrogenated SiN x , silicon oxynitride (SiON), hydrogenated SiON, aluminum oxide (AlO x ), and aluminum nitride (AlN x ). In one embodiment, the backside QTB layer 904 may include SiOx and/or hydrogenated SiOx . Such oxide layers can be formed using various techniques including, but not limited to, immersion of the substrate in hot deionized water (DIW), low pressure radical oxidation, ozone oxygen oxidation, atomic oxygen oxidation, thermal oxidation, chemical oxidation, Steam or wet oxidation, atomic layer deposition, ozone bubbling in DIW and/or plasma enhanced chemical vapor deposition (PECVD). The thickness of the QTB layer can range from 1 to between. In some embodiments, in addition to dielectric materials, various wide bandgap semiconductor materials such as a-Si, hydrogenated a-Si, carbon-doped a-Si, and SiC can also be used to form the front QTB layer 902 . In some embodiments, the D it of QTB layers 902 and 904 may be less than 5×10 11 /cm 2 .
在操作9C中,可以在QTB层902上形成抗反射涂覆(ARC)层906。在一些实施例中,ARC层906可以包括以下的一种或多种:TCO材料、SiNx、SiOx以及AlxO3。ARC层906的厚度可以是大约100nm。In operation 9C, an anti-reflective coating (ARC) layer 906 may be formed on the QTB layer 902 . In some embodiments, the ARC layer 906 may include one or more of the following: TCO material, SiNx , SiOx , and AlxO3 . The thickness of the ARC layer 906 may be about 100 nm.
在可以是可选的操作9D中,可以在背侧QTB层904上形成本征a-Si层908。这种本征a-Si层908可以提高钝化并促进n和p发射极之间的隔离。在一些实施例中,本征a-Si层908的厚度可以在从到的范围。在另一实施例中,本征a-Si层908的厚度大约为可以通过使用等离子体增强化学气相沉积(PECVD)技术来形成本征a-Si层908。In operation 9D, which may be optional, an intrinsic a-Si layer 908 may be formed on the backside QTB layer 904. This intrinsic a-Si layer 908 can improve passivation and promote isolation between the n and p emitters. In some embodiments, the thickness of the intrinsic a-Si layer 908 may vary from arrive range. In another embodiment, the thickness of the intrinsic a-Si layer 908 is approximately Intrinsic a-Si layer 908 may be formed by using plasma enhanced chemical vapor deposition (PECVD) techniques.
在操作9E中,可以在本征a-Si层908上沉积诸如发射极910的第一发射极层(n或p)。该发射极层与随后形成的具有相反极性的第二发射极层一起,可以形成叉指图案。在一些实施例中,发射极可以包括具有渐变掺杂的a-Si层。发射极的导电类型可以与基极层900的导电类型相反。在另一实施例中,渐变掺杂a-Si发射极可以具有在1到20nm之间的厚度,并且渐变掺杂a-Si的掺杂浓度在1×1015/cm3到5×1020/cm3之间。在一些实施例中,发射极可以包括具有恰当功函数的导电氧化物(CO)材料。例如,具有高功函数的CO材料可以包括但不限于:掺钨氧化铟(IWO)、掺Sn的氧化铟(ITO)、GaInO(GIO)、GaInSnO(GITO)、ZnInO(ZIO)、ZnInSnO(ZITO)、WOx、ITiO、MnOx、InO、CeOx及其组合。优选地,CO的功函数可以为至少5.0eV。在另一实施例中,CO材料可以具有大于c-Si价带边缘的能级的功函数。为了促进叉指图案,可以使用涉及施加掩模、材料沉积(可以涉及PECVD或PVD)和掩模去除的工艺。要注意,因为这些发射极位于太阳能电池900的背侧,所以不要求它们是透明的。In operation 9E, a first emitter layer (n or p) such as emitter 910 may be deposited on the intrinsic a-Si layer 908 . This emitter layer, together with a subsequently formed second emitter layer of opposite polarity, can form an interdigitated pattern. In some embodiments, the emitter may include an a-Si layer with graded doping. The conductivity type of the emitter may be opposite to that of the base layer 900 . In another embodiment, the graded doped a-Si emitter may have a thickness between 1 and 20 nm, and the graded doped a-Si has a doping concentration of 1×10 15 /cm 3 to 5×10 20 /cm 3 . In some embodiments, the emitter may comprise a conductive oxide (CO) material with an appropriate work function. For example, CO materials with high work function may include, but are not limited to: tungsten doped indium oxide (IWO), Sn doped indium oxide (ITO), GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO) ), WO x , ITiO, MnO x , InO, CeO x and combinations thereof. Preferably, the work function of CO may be at least 5.0 eV. In another embodiment, the CO material may have a work function greater than the energy level of the c-Si valence band edge. To facilitate the interdigitated pattern, a process involving applying a mask, material deposition (which may involve PECVD or PVD) and mask removal can be used. Note that because these emitters are located on the backside of solar cell 900, they are not required to be transparent.
在操作9F中,可以在本征a-Si层908上形成具有相反极性的第二发射极层(诸如发射极912)。第二发射极层与在操作9E中形成的第一发射极层交错,从而形成叉指图案。在一些实施例中,第二发射极层可以包括具有渐变掺杂的a-Si层。在另一实施例中,第二发射极层可以具有在1到30nm之间的厚度,以及,如果使用渐变掺杂的a-Si作为该第二发射极层,则渐变掺杂a-Si的掺杂浓度可以在1×1015/cm3到5×1020/cm3之间。在一些实施例中,第二发射极层可以是具有恰当功函数的CO材料。例如,第二发射极层可以包括低功函数TCO材料,包括但不限于:掺铝氧化锌(AZO)、掺钨氧化铟(IWO)、掺Sn氧化铟(ITO)、掺氟氧化锡(F:SnO2)、掺锌氧化铟(IZO)、掺杂锌和钨的氧化铟(IZWO)及其组合。在另一实施例中,低功函数TCO可以具有小于4.2eV的功函数。为了形成叉指图案,可以使用涉及施加掩模、材料沉积和掩模去除的工艺。可以按照这种方式设计用于沉积两个发射极层的掩模,使得具有相反极性的相邻发射极区域被间隙分隔开。例如,发射极910和发射极912被间隙930分隔开。In operation 9F, a second emitter layer (such as emitter 912 ) having an opposite polarity may be formed on the intrinsic a-Si layer 908 . The second emitter layers are interleaved with the first emitter layers formed in operation 9E, thereby forming an interdigitated pattern. In some embodiments, the second emitter layer may include an a-Si layer with graded doping. In another embodiment, the second emitter layer may have a thickness between 1 and 30 nm, and, if graded doped a-Si is used as the second emitter layer, the graded doped a-Si The doping concentration can be between 1×10 15 /cm 3 to 5×10 20 /cm 3 . In some embodiments, the second emitter layer may be a CO material with an appropriate work function. For example, the second emitter layer may include a low work function TCO material including but not limited to: aluminum doped zinc oxide (AZO), tungsten doped indium oxide (IWO), Sn doped indium oxide (ITO), fluorine doped tin oxide (F : SnO 2 ), zinc-doped indium oxide (IZO), zinc- and tungsten-doped indium oxide (IZWO), and combinations thereof. In another embodiment, the low work function TCO may have a work function of less than 4.2 eV. To form an interdigitated pattern, a process involving applying a mask, material deposition, and mask removal can be used. The mask for depositing the two emitter layers can be designed in such a way that adjacent emitter regions with opposite polarities are separated by a gap. For example, emitter 910 and emitter 912 are separated by gap 930 .
在另一个实施例中,发射极910可以被沉积为地毯式覆盖层,并且发射极912可以被沉积在选择的区域中,使得发射极910在发射极912下面的部分可以变成反向掺杂,以实际具有与发射极912相同的掺杂类型,尤其是在可以导致掺杂剂扩散的热处理之后。In another embodiment, the emitter 910 may be deposited as a blanket blanket, and the emitter 912 may be deposited in selected areas such that the portion of the emitter 910 below the emitter 912 may become reverse doped , to actually have the same doping type as emitter 912, especially after thermal treatments that can cause dopant diffusion.
可以具有用掺杂的a-Si形成的一种类型的发射极和用具有恰当功函数的CO材料形成的另一个类型的发射极,反之亦然。在一个示例中,基极层900可以是p型掺杂的,p发射极可以是n型掺杂的a-Si,以及n发射极可以包括高功函数CO材料。在另一个示例中,基极层900可以是p型掺杂的,p发射极可以是低功函数CO材料,以及n发射极可以是p型掺杂的a-Si。在另一示例中,基极层900可以是n型掺杂的,n发射极可以是p型掺杂的a-Si,以及p发射极可以包括低功函数CO材料。在又一示例中,基极层900可以是n型掺杂的,n发射极可以是高功函数CO材料,以及p发射极可以是n型掺杂的a-Si。It is possible to have one type of emitter formed with doped a-Si and another type of emitter formed with CO material with the appropriate work function, and vice versa. In one example, the base layer 900 may be p-type doped, the p-emitter may be n-type doped a-Si, and the n-emitter may include a high work function CO material. In another example, the base layer 900 may be p-type doped, the p-emitter may be a low work function CO material, and the n-emitter may be p-type doped a-Si. In another example, the base layer 900 may be n-type doped, the n-emitter may be p-type doped a-Si, and the p-emitter may include a low work function CO material. In yet another example, the base layer 900 may be n-doped, the n-emitter may be a high work function CO material, and the p-emitter may be n-doped a-Si.
在操作9G中,在n和p发射极区域上形成背侧电极,诸如电极914和916。电极可以包括一个或多个金属层和CO层。如果两种类型的发射极由掺杂的a-Si制成,则电极可以包括CO层以促进欧姆接触。另一方面,如果通过使用CO材料形成发射极,则将不需要附加的CO层。在一些实施例中,可以通过使用各种技术形成金属层,技术包括但不限于丝网印刷、蒸发、喷墨印刷、气溶胶印刷、电镀或化学镀。在一些实施例中,金属层可以包括通过使用各种技术形成的Cu栅线,技术包括但不限于:化学镀、电镀、溅射以及蒸发。In operation 9G, backside electrodes, such as electrodes 914 and 916, are formed on the n and p emitter regions. The electrodes may include one or more metal layers and CO layers. If both types of emitters are made of doped a-Si, the electrodes may include a CO layer to facilitate ohmic contact. On the other hand, if the emitter is formed by using CO material, no additional CO layer will be required. In some embodiments, the metal layer may be formed using various techniques including, but not limited to, screen printing, evaporation, inkjet printing, aerosol printing, electroplating, or electroless plating. In some embodiments, the metal layer may include Cu gate lines formed using various techniques including, but not limited to: electroless plating, electroplating, sputtering, and evaporation.
仅出于例示和描述的目的呈现了各种实施例的前述描述。它们不旨在是详尽的或将本发明限制为所公开的形式。因此,许多修改和变化对于本领域技术人员将是明显的。另外,上述公开内容不旨在限制本发明。The foregoing descriptions of various embodiments have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the invention to the form disclosed. Accordingly, many modifications and variations will be apparent to those skilled in the art. Additionally, the above disclosure is not intended to limit the present invention.
Claims (17)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462025924P | 2014-07-17 | 2014-07-17 | |
US62/025,924 | 2014-07-17 | ||
PCT/US2015/041027 WO2016011426A1 (en) | 2014-07-17 | 2015-07-17 | Solar cell with interdigitated back contact |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106575676A CN106575676A (en) | 2017-04-19 |
CN106575676B true CN106575676B (en) | 2019-06-28 |
Family
ID=55075280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580035784.4A Active CN106575676B (en) | 2014-07-17 | 2015-07-17 | Solar battery with interdigital back contacts |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160020342A1 (en) |
EP (1) | EP3170209B1 (en) |
JP (1) | JP2017520920A (en) |
CN (1) | CN106575676B (en) |
WO (1) | WO2016011426A1 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101622091B1 (en) * | 2014-08-20 | 2016-05-18 | 엘지전자 주식회사 | Solar cell and method for manufacuring the same |
US20170098722A1 (en) * | 2015-10-01 | 2017-04-06 | Lg Electronics Inc. | Solar cell |
CN106784129A (en) * | 2015-11-20 | 2017-05-31 | 上海神舟新能源发展有限公司 | The preparation method of emitter junction back side tunnel oxidation passivation contact high-efficiency battery |
JP6619273B2 (en) * | 2016-03-23 | 2019-12-11 | シャープ株式会社 | Photoelectric conversion device |
KR101964968B1 (en) * | 2016-03-28 | 2019-04-03 | 엘지전자 주식회사 | Solar cell panel |
CN105742391B (en) * | 2016-04-27 | 2017-03-08 | 中国科学院宁波材料技术与工程研究所 | A kind of tunneling silicon oxygen nitrogen layer passivation contact solar cell and preparation method thereof |
US9960302B1 (en) * | 2016-10-18 | 2018-05-01 | Tesla, Inc. | Cascaded photovoltaic structures with interdigitated back contacts |
CN106449781A (en) * | 2016-10-26 | 2017-02-22 | 中国科学院宁波材料技术与工程研究所 | Passivation contact solar cell |
KR101995833B1 (en) * | 2016-11-14 | 2019-07-03 | 엘지전자 주식회사 | Solar cell and method for manufacturing the same |
CN106684160A (en) * | 2016-12-30 | 2017-05-17 | 中国科学院微电子研究所 | Back-junction back-contact solar cell |
US10749052B2 (en) | 2017-02-14 | 2020-08-18 | Alliance For Sustainable Energy, Llc | Methods of forming interdigitated back contact solar cells |
KR102274685B1 (en) | 2017-03-09 | 2021-07-09 | 플렉스 엘티디 | Shingled array solar cells and method of manufacturing solar modules including the same |
USD841571S1 (en) | 2017-08-25 | 2019-02-26 | Flex Ltd. | Solar panel |
USD841570S1 (en) | 2017-08-25 | 2019-02-26 | Flex Ltd | Solar cell |
US10714652B2 (en) * | 2017-06-21 | 2020-07-14 | Alliance For Sustainable Energy, Llc | Methods of forming interdigitated back contact layers |
WO2019165295A1 (en) * | 2018-02-23 | 2019-08-29 | Phion Technologies Llc | Assembly for optical to electrical power conversion |
CN110634962A (en) * | 2018-06-01 | 2019-12-31 | 君泰创新(北京)科技有限公司 | A kind of solar cell and preparation method thereof |
CN108922938B (en) * | 2018-09-06 | 2024-03-15 | 福建钜能电力有限公司 | Back contact heterojunction solar cell and preparation method thereof |
CN109065656A (en) * | 2018-10-31 | 2018-12-21 | 伟创力有限公司 | The method for forming the colored electro-conductive welding for being integrated in solar cell module |
ES2901323T3 (en) * | 2019-07-26 | 2022-03-22 | Meyer Burger Germany Gmbh | Photovoltaic device and method for manufacturing the same |
WO2021253751A1 (en) * | 2020-06-15 | 2021-12-23 | 隆基绿能科技股份有限公司 | Back contact solar cell and production method, and back contact battery assembly |
CN112133793A (en) * | 2020-10-12 | 2020-12-25 | 青海黄河上游水电开发有限责任公司光伏产业技术分公司 | Back-junction back-contact solar cell and manufacturing method thereof |
CN112466961B (en) | 2020-11-19 | 2024-05-10 | 晶科绿能(上海)管理有限公司 | Solar cell and method for manufacturing the same |
CN113540264A (en) * | 2021-01-11 | 2021-10-22 | 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) | A kind of solar cell and preparation method thereof |
CN113299771A (en) | 2021-06-04 | 2021-08-24 | 浙江爱旭太阳能科技有限公司 | Solar cell with buried selective contact region and back contact structure thereof |
CN113437159B (en) * | 2021-06-07 | 2022-09-09 | 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 | A kind of N-type TOPCon battery with quantum well structure and its manufacturing method |
CN113809120B (en) * | 2021-09-16 | 2023-06-20 | 北京载诚科技有限公司 | Laminated solar cell |
CN115588718B (en) * | 2022-10-21 | 2024-05-14 | 通威太阳能(安徽)有限公司 | Solar cell and preparation method thereof |
NL2033406B1 (en) | 2022-10-27 | 2024-05-17 | Univ Delft Tech | Simplified processing of interdigitated-back-contacted silicon heterojunction solar cells |
CN115621333B (en) * | 2022-11-22 | 2023-03-10 | 金阳(泉州)新能源科技有限公司 | Back contact solar cell passivated by double-sided tunneling silicon oxide and preparation method thereof |
CN116093176B (en) * | 2023-03-31 | 2023-06-23 | 福建金石能源有限公司 | A kind of back contact battery with isolation groove specially arranged and preparation method thereof |
CN118053927A (en) | 2023-12-15 | 2024-05-17 | 浙江晶科能源有限公司 | Solar cell, preparation method thereof and photovoltaic module |
CN117457759B (en) * | 2023-12-22 | 2024-03-29 | 浙江爱旭太阳能科技有限公司 | Double-sided solar cell, cell assembly and photovoltaic system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263157A (en) * | 2010-05-04 | 2011-11-30 | 美国喜瑞能源公司 | Solar cells with oxide tunnel junctions |
CN103094395A (en) * | 2012-08-17 | 2013-05-08 | 常州天合光能有限公司 | Method for decreasing series resistors of P type substrate hetero junction with intrinsic thin layer (HIT) solar cell |
CN103346211A (en) * | 2013-06-26 | 2013-10-09 | 英利集团有限公司 | Back contact solar battery and preparing method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7388147B2 (en) * | 2003-04-10 | 2008-06-17 | Sunpower Corporation | Metal contact structure for solar cell and method of manufacture |
EP1519422B1 (en) * | 2003-09-24 | 2018-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Photovoltaic cell and its fabrication method |
FR2880989B1 (en) * | 2005-01-20 | 2007-03-09 | Commissariat Energie Atomique | SEMICONDUCTOR DEVICE WITH HETEROJUNCTIONS AND INTERDIGITAL STRUCTURE |
US7737357B2 (en) * | 2006-05-04 | 2010-06-15 | Sunpower Corporation | Solar cell having doped semiconductor heterojunction contacts |
US20080000522A1 (en) * | 2006-06-30 | 2008-01-03 | General Electric Company | Photovoltaic device which includes all-back-contact configuration; and related processes |
DE102006042617B4 (en) * | 2006-09-05 | 2010-04-08 | Q-Cells Se | Method for generating local contacts |
FR2906406B1 (en) * | 2006-09-26 | 2008-12-19 | Commissariat Energie Atomique | PROCESS FOR PRODUCING A PHOTOVOLTAIC CELL WITH REAR-SIDE HETEROJUNCTION |
DE102008045522A1 (en) * | 2008-09-03 | 2010-03-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Hetero-solar cell and process for the preparation of hetero-solar cells |
KR20100107600A (en) * | 2009-03-26 | 2010-10-06 | 삼성전자주식회사 | Solar cell and manufacturing method thereof |
JP5424270B2 (en) * | 2010-05-11 | 2014-02-26 | 国立大学法人東京農工大学 | Semiconductor solar cell |
JP2012049156A (en) * | 2010-08-24 | 2012-03-08 | Osaka Univ | Solar cell and manufacturing method thereof |
KR101275575B1 (en) * | 2010-10-11 | 2013-06-14 | 엘지전자 주식회사 | Back contact solar cell and manufacturing method thereof |
US20120285517A1 (en) * | 2011-05-09 | 2012-11-15 | International Business Machines Corporation | Schottky barrier solar cells with high and low work function metal contacts |
JP5774204B2 (en) * | 2012-03-29 | 2015-09-09 | 三菱電機株式会社 | Photovoltaic element, manufacturing method thereof, and solar cell module |
KR101918738B1 (en) * | 2012-04-17 | 2018-11-15 | 엘지전자 주식회사 | Solar cell |
-
2015
- 2015-07-17 US US14/802,663 patent/US20160020342A1/en not_active Abandoned
- 2015-07-17 JP JP2016573117A patent/JP2017520920A/en active Pending
- 2015-07-17 CN CN201580035784.4A patent/CN106575676B/en active Active
- 2015-07-17 EP EP15748100.3A patent/EP3170209B1/en active Active
- 2015-07-17 WO PCT/US2015/041027 patent/WO2016011426A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263157A (en) * | 2010-05-04 | 2011-11-30 | 美国喜瑞能源公司 | Solar cells with oxide tunnel junctions |
CN103094395A (en) * | 2012-08-17 | 2013-05-08 | 常州天合光能有限公司 | Method for decreasing series resistors of P type substrate hetero junction with intrinsic thin layer (HIT) solar cell |
CN103346211A (en) * | 2013-06-26 | 2013-10-09 | 英利集团有限公司 | Back contact solar battery and preparing method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP3170209A1 (en) | 2017-05-24 |
CN106575676A (en) | 2017-04-19 |
JP2017520920A (en) | 2017-07-27 |
WO2016011426A1 (en) | 2016-01-21 |
EP3170209B1 (en) | 2018-12-12 |
US20160020342A1 (en) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106575676B (en) | Solar battery with interdigital back contacts | |
CN104718630B (en) | There is the tunnelling joint solar cell of shallow contra-doping layer in a substrate | |
CN103650165B (en) | There is the tunnel knot solaode of copper grid for concentrating photovoltaic application | |
US7863515B2 (en) | Thin-film solar cell and method of manufacturing the same | |
CN105493304B (en) | Efficiently stacked solar cells | |
JP5546616B2 (en) | Rear junction solar cell with tunnel oxide | |
US9960302B1 (en) | Cascaded photovoltaic structures with interdigitated back contacts | |
CN1862840B (en) | Surface passivated photovoltaic devices | |
US10084107B2 (en) | Transparent conducting oxide for photovoltaic devices | |
US20140102524A1 (en) | Novel electron collectors for silicon photovoltaic cells | |
US20120318340A1 (en) | Back junction solar cell with tunnel oxide | |
US20110056544A1 (en) | Solar cell | |
US20100243042A1 (en) | High-efficiency photovoltaic cells | |
US9865754B2 (en) | Hole collectors for silicon photovoltaic cells | |
KR100850641B1 (en) | High efficiency crystalline silicon solar cell and its manufacturing method | |
CN105845769A (en) | Back junction solar cell with tunnel oxide | |
US20130125974A1 (en) | Solar cell with metal grid fabricated by electroplating | |
JP7618868B1 (en) | Solar cell and its manufacturing method, photovoltaic module | |
JP2015506584A (en) | Photovoltaic cell and manufacturing method | |
CN113451434A (en) | Laminated photovoltaic device and production method | |
CN111403538A (en) | Solar cell and preparation method thereof | |
CN220233205U (en) | Main-grid-free heterojunction solar cell and assembly thereof | |
CN108630763B (en) | Photoelectric conversion device and preparation method thereof | |
JP2024547156A (en) | SOLAR CELLS AND METHODS FOR FORMING SAME - Patent application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: California, USA Patentee after: Tesla Corp. Address before: California, USA Patentee before: Tesla Motors, Inc. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20191024 Address after: California, USA Patentee after: Tesla Motors, Inc. Address before: California, USA Patentee before: SILEVO, Inc. |