JPS6211227A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS6211227A JPS6211227A JP15046385A JP15046385A JPS6211227A JP S6211227 A JPS6211227 A JP S6211227A JP 15046385 A JP15046385 A JP 15046385A JP 15046385 A JP15046385 A JP 15046385A JP S6211227 A JPS6211227 A JP S6211227A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- contact hole
- insulating layer
- cvd
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 238000001020 plasma etching Methods 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 14
- 238000011049 filling Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims 1
- 208000037998 chronic venous disease Diseases 0.000 abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052681 coesite Inorganic materials 0.000 abstract description 6
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 6
- 229910052682 stishovite Inorganic materials 0.000 abstract description 6
- 229910052905 tridymite Inorganic materials 0.000 abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 5
- 239000000377 silicon dioxide Substances 0.000 abstract description 5
- 239000012495 reaction gas Substances 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 230000003213 activating effect Effects 0.000 abstract 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 244000281594 Cassia siamea Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
半導体基板上の絶縁層に形成したコンタクトホールを該
基板と密着よく穴埋めする方法として、該基板をプラズ
マエツチングにより活性化した後、選択的に化学気相成
長を行う穴埋め方法。[Detailed Description of the Invention] [Summary] As a method for filling contact holes formed in an insulating layer on a semiconductor substrate with good contact with the substrate, the substrate is activated by plasma etching, and then selective chemical vapor deposition is performed. How to fill in the blanks.
本発明は基板と密着性よくコンタクトホールを穴埋めす
る半導体装置の製造方法に関する。The present invention relates to a method for manufacturing a semiconductor device in which contact holes are filled with good adhesion to a substrate.
LSl、VLSIなどの半導体装置は半導体基板上に絶
縁層を形成した後、写真食刻技術(ホトリソグラフィ或
いは電子線リソグラフィ)を用いて必要位置の絶縁層を
窓開けし、この窓開は部を通して不純物を熱拡散させて
半導体領域を形成するか、或いはイオン注入法により窓
開は部を通して不純物イオンの注入を行うか又は直接に
イオン注入を行って半導体領域が形成される。For semiconductor devices such as LSI and VLSI, after forming an insulating layer on a semiconductor substrate, windows are formed in the insulating layer at necessary positions using photolithography (photolithography or electron beam lithography). A semiconductor region is formed by thermally diffusing impurities, or by implanting impurity ions through the window opening by an ion implantation method, or by directly implanting ions.
次に窓開は部を絶縁被覆した後、必要位置を窓開けして
コンタクトホールを作り、このコンタクトホールを金属
材料で穴埋めして絶縁層の上に電極パターンや配線パタ
ーンを形成し、これにより半導体デバイスが形成されて
いる。Next, after insulating the window opening, open the window at the required position to make a contact hole, fill this contact hole with a metal material, and form an electrode pattern or wiring pattern on the insulating layer. A semiconductor device is formed.
ここで半導体装置は大量の情報を高速処理するために高
集積化が進んでおり、これは基板上の半導体領域や配線
パターンなどを小形化すると共に三次元化することによ
り行われている。Semiconductor devices are becoming highly integrated in order to process large amounts of information at high speed, and this is achieved by downsizing semiconductor regions and wiring patterns on substrates and making them three-dimensional.
例えば基板上に形成されている電極パターンの上に二酸
化硅素(Si02 )や窒化硅素(Si3 N 4)な
どの絶縁物で絶縁して絶縁層を作り、この上に配線パタ
ーンを形成して基板に形成されている半導体領域と配線
接続する場合がある。For example, an insulating layer is created by insulating an electrode pattern formed on a substrate with an insulating material such as silicon dioxide (Si02) or silicon nitride (Si3N4), a wiring pattern is formed on this, and the wiring pattern is attached to the substrate. There is a case where wiring is connected to the formed semiconductor region.
このような場合、絶縁層を基板の半導体領域に達するま
で選択エツチングしてコンタクトホールを作り、これを
アルミニウム(AI)などの金属で穴埋めすることによ
り行われているが、穴が深い場合は穴の底面に沿って一
様に金属層を形成し、半導体領域と密着性の良い接触を
保つことは容易ではない。In such cases, contact holes are created by selectively etching the insulating layer until it reaches the semiconductor region of the substrate, and the holes are filled with metal such as aluminum (AI). However, if the holes are deep, It is not easy to uniformly form a metal layer along the bottom surface of the substrate and maintain good contact with the semiconductor region.
コンタクトホールを穴埋めするには化学気相成長法(C
hemical Vapor Deposition法
略してCVD法)が使用されている。Chemical vapor deposition (C) is used to fill contact holes.
A chemical vapor deposition method (abbreviated as CVD method) is used.
第3図はシリコン(Si)半導体基板(以下略して基板
)に形成されている半導体領域2に絶縁層3を選択エツ
チングしてコンタクトホール4を作り、これにCVD法
によりAI5を析出させて穴埋めを行った状態を示して
いる。Figure 3 shows that a contact hole 4 is created by selectively etching an insulating layer 3 in a semiconductor region 2 formed on a silicon (Si) semiconductor substrate (hereinafter referred to as the substrate), and then AI5 is deposited in the hole by the CVD method to fill the hole. This shows the state in which the following steps have been performed.
すなわち、絶縁層3に形成されている直径が1μm程度
のコンタクトホール4を穴埋めするのに真空蒸着法やス
パッタ法などの方法を使用すると、蒸発源或いは陰極タ
ーゲットから金属粒子が直線状に飛散するため、コンタ
クトホール4の内部に均一に膜形成させることは不可能
であり、そのために基板上で反応ガスを熱分解させて析
出させるCVO法が用いられている。That is, when a method such as a vacuum evaporation method or a sputtering method is used to fill a contact hole 4 having a diameter of about 1 μm formed in an insulating layer 3, metal particles are scattered in a straight line from an evaporation source or a cathode target. Therefore, it is impossible to uniformly form a film inside the contact hole 4, and for this reason, a CVO method is used in which reactive gas is thermally decomposed on the substrate to deposit it.
然しなから従来のように絶縁層3の厚さが1μm程度で
コンタクトホール4の直径が1μm以上ある場合には差
支えないが、先に記したように三次元の高密度化が行わ
れると、絶縁層3の厚さが2〜3μmにもなり、一方コ
ンタクトホール4の径が1μm程度と狭いので、CVD
法を用いても半導体領域2とコンタクトホールの底部で
充分に接触することは難しく、隙間6などを生じて低抵
抗な導通を得ることは困難となっている。However, there is no problem when the thickness of the insulating layer 3 is about 1 μm and the diameter of the contact hole 4 is 1 μm or more as in the conventional case, but when three-dimensional densification is performed as described above, The thickness of the insulating layer 3 is 2 to 3 μm, and the diameter of the contact hole 4 is narrow, about 1 μm, so CVD
Even if a method is used, it is difficult to make sufficient contact with the semiconductor region 2 at the bottom of the contact hole, and a gap 6 is created, making it difficult to obtain low-resistance conduction.
そこでこのように段差が高く且つ微細なコンタクトホー
ルを穴埋めする技術を確立する必要がある。Therefore, it is necessary to establish a technique for filling such a fine contact hole with a high level difference.
以上説明したように三次元デバイスにおいては高段差の
コンタクトホールを穴埋めし、基板の半導体領域と低抵
抗の導通路を作る必要があるが、コンタクトホールの底
部にCVD膜を如何にして密着して形成するかが問題で
ある。As explained above, in three-dimensional devices, it is necessary to fill contact holes with high height differences and create a low-resistance conductive path with the semiconductor region of the substrate. The question is whether to form one.
上記の問題は半導体領域上の絶縁層に形成した高段差の
コンタクトホールにアルミニウムを選択成長せしめ、該
半導体領域と密着性よく穴埋めを行う方法として、被処
理半導体基板を塩化硼素ガス雰囲気中でプラズマエツチ
ングしてコンタクトホール底部の半導体領域を活性化せ
しめた後、アルミニウムを主構成分とする反応ガスを用
いて化学気相成長を行い、コンタクトホール底部の活性
化領域に選択的にアルミニウムを成長せしめて穴埋めを
行うことを特徴とする半導体装置の製造方法により解決
することができる。The above problem can be solved by selectively growing aluminum into contact holes with high height differences formed in an insulating layer on a semiconductor region, and filling the hole with good adhesion to the semiconductor region. After etching to activate the semiconductor region at the bottom of the contact hole, chemical vapor deposition is performed using a reactive gas containing aluminum as a main component to selectively grow aluminum in the activated region at the bottom of the contact hole. This problem can be solved by a semiconductor device manufacturing method characterized in that the holes are filled by using the same method.
本発明はCVO法で金属などの導体層を形成する場合に
酸化物などの絶縁層上よりもSi基板上のほうが析出が
起こり易いのを利用し、プラズマエツチングによりコン
タクトホールの底の基板を活性化し、選択的にコンタク
トホールの底からCVD0層成長が起こるようにしたも
のである。The present invention takes advantage of the fact that when a conductive layer of metal or the like is formed using the CVO method, precipitation occurs more easily on a Si substrate than on an insulating layer such as an oxide, and activates the substrate at the bottom of the contact hole by plasma etching. The CVD layer is grown selectively from the bottom of the contact hole.
このような前処理を行って後CVD処理を行えば基板と
の密着性のよい穴埋めが可能となる。If such pretreatment is performed and then CVD treatment is performed, it becomes possible to fill holes with good adhesion to the substrate.
〔実施例〕
第2図は本発明を実施するのに使用したプラズマエツチ
ング兼CvD装置の断面図、また第1図(A)〜(C)
は本発明の詳細な説明する断面図である。[Example] Figure 2 is a sectional view of a plasma etching/CvD apparatus used to carry out the present invention, and Figures 1 (A) to (C)
FIG. 2 is a cross-sectional view illustrating the present invention in detail.
本発明はプラズマエツチングによってコンタクトホール
底部の基板面を活性化し、この活性面にCVD成長が起
こり易い性質を利用するものであるからCVDの析出が
起こるまで活性状態を維持しておくことが必要であり、
そのため同一装置を切り換えてプラズマエツチングとC
VD成長とを引き続いて行う必要がある。The present invention activates the substrate surface at the bottom of the contact hole by plasma etching and utilizes the property that CVD growth easily occurs on this active surface, so it is necessary to maintain the active state until CVD precipitation occurs. can be,
Therefore, we changed the same equipment to perform plasma etching and C.
It is necessary to continue with VD growth.
以下導体としてAlを用いる場合について本発明を説明
する。The present invention will be described below with reference to the case where Al is used as the conductor.
第1図(A)は半導体領域2を備えた基板1の上に熱処
理或いはこれとCVDとの併用により厚さ4〜5μmと
厚いSiO2絶縁層7を形成し、これをリアクティブイ
オンエツチング(Reactive−ionEtchi
ng 略してRIE)などのドライエツチングを施し
て半導体領域2に達するコンタクトホール4を形成した
状態を示す断面図であって、コンタクトホール4の底に
はSi基板が現れているが、このSi基板面は空気に触
れると空気中の酸素(02)により容易に酸化され、S
iO2よりなる厚さ数10人の不動態被膜が表面に形成
されている。In FIG. 1(A), a thick SiO2 insulating layer 7 with a thickness of 4 to 5 μm is formed on a substrate 1 having a semiconductor region 2 by heat treatment or a combination of this and CVD, and this is then etched by reactive ion etching (reactive ion etching). -ionEtchi
ng is a cross-sectional view showing a state in which a contact hole 4 reaching a semiconductor region 2 has been formed by dry etching such as RIE, and a Si substrate is exposed at the bottom of the contact hole 4. When the surface comes into contact with air, it is easily oxidized by oxygen (02) in the air, and S
A passive film made of iO2 and having a thickness of several tens of layers is formed on the surface.
本発明を実施するにはコンタクトホール4の形成が終わ
った基板lを第2図に示すプラズマエツチング兼CVD
装置のサセプタ8の上に載置し、排気系を動作して装置
内を排気した後、シャワー9から塩化硼素(BCI 3
)ガスを供給し、装置内の気圧を0.3〜1.0 T
orrに保持した状態で高周波電源10よりシャワー9
とサセプタ8との間に高周波電界を加えて基板1を2〜
3分に互ってプラズマエツチングを行う。To carry out the present invention, the substrate 1 on which the contact hole 4 has been formed is subjected to plasma etching/CVD as shown in FIG.
After placing the device on the susceptor 8 and operating the exhaust system to exhaust the inside of the device, boron chloride (BCI 3
) Supply gas and reduce the pressure inside the device to 0.3 to 1.0 T.
Shower 9 from high frequency power supply 10 while held at orr.
A high frequency electric field is applied between the substrate 1 and the susceptor 8 to
Plasma etching is performed for 3 minutes at a time.
このプラズマエツチングにより第1図(B)に示すよう
にコンタクトホール4の底の不動態被膜は除去され、半
導体領域2の活性面11が現れる。By this plasma etching, the passive film at the bottom of the contact hole 4 is removed, and the active surface 11 of the semiconductor region 2 is exposed, as shown in FIG. 1(B).
プラズマエツチング終了の後は第2図の装置において供
給ガスを切り換え、反応ガスとしてトリイソブチルアル
ミニウム(Al (CII2 CI(CH3) 2)3
〕を用い、キャリアガスとしてアルゴン(Ar)を、ま
た分解促進ガスとして水素(H2)をシャワー9から供
給し、排気装置により装置内の真空度を0.3〜1.Q
Torrに保ちながらヒータ12に通電 □し、
基板1の温度を約300℃に加熱することにより(Al
(CH2CH(CH3) z ) 3 )を分解せし
め、基板1の上でCVD反応を起こさせる。After the plasma etching is completed, the supply gas is switched in the apparatus shown in Fig. 2, and triisobutylaluminum (Al (CII2 CI(CH3) 2) 3 is used as the reaction gas.
], argon (Ar) is used as a carrier gas, and hydrogen (H2) is supplied as a decomposition accelerating gas from the shower 9, and the degree of vacuum in the apparatus is maintained at 0.3-1. Q
While maintaining the Torr, energize the heater 12 □,
By heating the substrate 1 to approximately 300°C (Al
(CH2CH(CH3) z ) 3 ) is decomposed and a CVD reaction is caused on the substrate 1.
ここで先に第1図(B)で説明したようにコンタクトホ
ール4の底部は活性化されているためにCVD成長は第
1図(C)に示すようにこの活性面11から優先的に成
長し、コンタクトホール4を埋めて後、Si02絶縁層
7の上にAIの成長が行われることになる。Since the bottom of the contact hole 4 is activated as previously explained with reference to FIG. 1(B), the CVD growth preferentially grows from this active surface 11 as shown in FIG. 1(C). After filling the contact hole 4, AI will be grown on the Si02 insulating layer 7.
以下は従来と同様であって、約1μmの膜厚にまでA1
層5を形成し、これに写真食刻技術を適用して電極や配
線パターンなどの微細パターンを形成すればよい。The following is the same as before, and A1 up to a film thickness of about 1 μm.
The layer 5 may be formed, and a fine pattern such as an electrode or a wiring pattern may be formed thereon by applying a photolithography technique.
このようにコンタクトホール4の底の活性面11から導
電層の成長が起こるようにすることより理想的なコンタ
クトホール4の穴埋めを行うことができる。By allowing the conductive layer to grow from the active surface 11 at the bottom of the contact hole 4 in this manner, the contact hole 4 can be ideally filled.
以上説明したように本発明の実施により、従来のような
隙間の発生はなく、コンタクトホールの低抵抗な穴埋め
が可能となる。As explained above, by carrying out the present invention, there is no generation of gaps as in the conventional method, and contact holes can be filled with low resistance.
第1図(A)〜(C)は本発明の詳細な説明する断面図
で、同図(A)はコンタクトホール形成後、同図(B)
はプラズマエツチング後、同図(C)は選択成長中の状
態図、
第2図はプラズマエツチング兼CVD装置の断面図、
第3図は従来のCVD成長後の断面図、である。
図において、
lは基板、 2は半導体領域、3は絶縁層
、 4はコンタクトホール、5はへ1層、
6は隙間、7はSiO2絶縁層、 9
はシャワー、11は活性面、FIGS. 1(A) to 1(C) are cross-sectional views explaining the present invention in detail, and FIG. 1(A) shows the state after forming the contact hole.
2 is a state diagram after plasma etching, FIG. 2C is a state diagram during selective growth, FIG. 2 is a cross-sectional view of the plasma etching/CVD apparatus, and FIG. 3 is a cross-sectional view after conventional CVD growth. In the figure, l is the substrate, 2 is the semiconductor region, 3 is the insulating layer, 4 is the contact hole, 5 is the first layer,
6 is a gap, 7 is a SiO2 insulating layer, 9
is the shower, 11 is the active surface,
Claims (1)
コンタクトホール(4)内に導電層形成金属を選択成長
せしめ、該半導体領域(2)と密着性よく穴埋めを行う
方法として、被処理半導体基板(1)を予めプラズマエ
ッチングしてコンタクトホール(4)底部の半導体領域
(2)を活性化せしめた後、前記導電層形成金属を主構
成分とする反応ガスを用いて化学気相成長を行い、コン
タクトホール(4)底部の活性化領域(2)上に選択的
に導電層を成長せしめる工程を含むことを特徴とする半
導体装置の製造方法。As a method of selectively growing a conductive layer forming metal in a contact hole (4) with a high level difference formed in an insulating layer (7) on a semiconductor region (2), and filling the hole with good adhesion to the semiconductor region (2), After plasma etching the semiconductor substrate (1) to be processed in advance to activate the semiconductor region (2) at the bottom of the contact hole (4), chemical A method for manufacturing a semiconductor device, comprising the step of performing phase growth to selectively grow a conductive layer on an active region (2) at the bottom of a contact hole (4).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15046385A JPS6211227A (en) | 1985-07-09 | 1985-07-09 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15046385A JPS6211227A (en) | 1985-07-09 | 1985-07-09 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6211227A true JPS6211227A (en) | 1987-01-20 |
Family
ID=15497466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15046385A Pending JPS6211227A (en) | 1985-07-09 | 1985-07-09 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6211227A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6333569A (en) * | 1986-07-25 | 1988-02-13 | Nippon Telegr & Teleph Corp <Ntt> | Production of thin metallic film |
US5180687A (en) * | 1989-09-26 | 1993-01-19 | Canon Kabushiki Kaisha | Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride |
US5316972A (en) * | 1989-09-26 | 1994-05-31 | Canon Kabushiki Kaisha | Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device |
US5637534A (en) * | 1992-12-25 | 1997-06-10 | Kawasaki Steel Corporation | Method of manufacturing semiconductor device having multilevel interconnection structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54154291A (en) * | 1978-05-25 | 1979-12-05 | Itt | Method of forming aliminum conductor path |
-
1985
- 1985-07-09 JP JP15046385A patent/JPS6211227A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54154291A (en) * | 1978-05-25 | 1979-12-05 | Itt | Method of forming aliminum conductor path |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6333569A (en) * | 1986-07-25 | 1988-02-13 | Nippon Telegr & Teleph Corp <Ntt> | Production of thin metallic film |
US5180687A (en) * | 1989-09-26 | 1993-01-19 | Canon Kabushiki Kaisha | Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride |
US5316972A (en) * | 1989-09-26 | 1994-05-31 | Canon Kabushiki Kaisha | Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device |
US5637534A (en) * | 1992-12-25 | 1997-06-10 | Kawasaki Steel Corporation | Method of manufacturing semiconductor device having multilevel interconnection structure |
US5952723A (en) * | 1992-12-25 | 1999-09-14 | Kawasaki Steel Corporation | Semiconductor device having a multilevel interconnection structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4617087A (en) | Method for differential selective deposition of metal for fabricating metal contacts in integrated semiconductor circuits | |
JP2978748B2 (en) | Method for manufacturing semiconductor device | |
US5462890A (en) | Method for making a tungsten plug of a semiconductor device | |
JPS6211227A (en) | Manufacture of semiconductor device | |
JPS62179113A (en) | Manufacture of semiconductor device and equipment therefor | |
JPH06140358A (en) | Manufacture of semiconductor device | |
JPS6235539A (en) | Manufacture of semiconductor device | |
JP3002494B2 (en) | Method for manufacturing semiconductor device | |
JP2699611B2 (en) | Thin film formation method | |
JPS61256626A (en) | Thin film selective growth method on the surface of an insulating film | |
JP2616062B2 (en) | Contact hole filling method | |
JPH06120355A (en) | Manufacture of semiconductor device | |
JP2954219B2 (en) | Improved selective CVD applied to semiconductor device manufacturing process | |
JP2694950B2 (en) | Method of forming high melting point metal film | |
JPH07142411A (en) | Method for forming metal thin film in semiconductor device | |
JPH0758712B2 (en) | Wiring formation method | |
JPH03291920A (en) | Method for filling contact hole | |
KR0165372B1 (en) | Contact plug formation method of semiconductor device | |
JP2841457B2 (en) | Method of forming aluminum film | |
EP0345400A1 (en) | Selective CVD for maufacturing semiconductor devices | |
JPH0682641B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH02185023A (en) | Selective vapor growth method | |
JPH03248464A (en) | Contact-buried metal structure and manufacture thereof | |
JPH06224309A (en) | Filling-in method for connecting hole | |
JPH0266940A (en) | Application method for metallic wiring film of semiconductor device |