KR0165372B1 - Contact plug formation method of semiconductor device - Google Patents
Contact plug formation method of semiconductor device Download PDFInfo
- Publication number
- KR0165372B1 KR0165372B1 KR1019950007054A KR19950007054A KR0165372B1 KR 0165372 B1 KR0165372 B1 KR 0165372B1 KR 1019950007054 A KR1019950007054 A KR 1019950007054A KR 19950007054 A KR19950007054 A KR 19950007054A KR 0165372 B1 KR0165372 B1 KR 0165372B1
- Authority
- KR
- South Korea
- Prior art keywords
- film
- titanium nitride
- contact hole
- titanium
- interlayer insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/2855—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76879—Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
신규한 반도체장치의 콘택 플러그 형성방법이 개시되어 있다. 기판상에 층간절연막을 형성한 후, 층간절연막을 식각하여 기판 표면의 일부를 노출시키는 콘택홀을 형성한다. 콘택홀이 형성된 결과물 상에 이온화클러스트빔증착(ICBD) 방법으로 티타늄막을 증착한 후, 질소를 주입하여 콘택홀이 완전히 매몰될 때까지 질화티타늄막을 형성한다. 층간절연막 상부의 질화티타늄막을 식각하여 콘택홀 내의 질화티타늄막을 노출시킨다. 종래의 스퍼터링 방법이나 화학기상증착 방법에 비해 집적도가 증가하고 그레인 사이즈가 큰 양질의 막을 형성할 수 있다.A novel method for forming a contact plug of a semiconductor device is disclosed. After the interlayer insulating film is formed on the substrate, the interlayer insulating film is etched to form a contact hole exposing a part of the surface of the substrate. After depositing a titanium film on the resultant contact hole formed ionization cluster beam deposition (ICBD) method, nitrogen is implanted to form a titanium nitride film until the contact hole is completely buried. The titanium nitride film on the interlayer insulating film is etched to expose the titanium nitride film in the contact hole. Compared with the conventional sputtering method or chemical vapor deposition method, it is possible to form a high quality film having a high degree of integration and a large grain size.
Description
제1a도 내지 제1h도는 본 발명의 일실시예에 의한 반도체장치의 콘택 플러그 형성방법을 설명하기 위한 단면도들.1A to 1H are cross-sectional views illustrating a method for forming a contact plug in a semiconductor device according to an embodiment of the present invention.
제2도는 마이크로파 이온 소오스에 의한 반응성 ICBD장치의 개략도.2 is a schematic diagram of a reactive ICBD device with a microwave ion source.
제3도는 클러스터 빔의 하향 분사가 가능한 소오스 구조의 개략도.3 is a schematic diagram of a source structure capable of downspraying a cluster beam.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
10 : 반도체기판 12 : 절연막10 semiconductor substrate 12 insulating film
14 : 패드전극 16 : 층간절연막14 pad electrode 16 interlayer insulating film
20 : 절연 스페이서 22 : 티타늄막20: insulating spacer 22: titanium film
24 : 티타늄실리사이드층 26 : 질화티타늄막24: titanium silicide layer 26: titanium nitride film
28 : 물질층 30 : 금속 배선층28 material layer 30 metal wiring layer
본 발명은 반도체장치의 콘택 플러그(contact plug) 형성방법에 관한 것으로, 특히 반응성(reactive) 이온화클러스터빔증착(Ionized Cluster Bean Deposition: 이하 ICBD라 한다) 방법에 의한 질화티타늄(TiN)의 콘택 플러그 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a contact plug of a semiconductor device, and in particular, to forming a contact plug of titanium nitride (TiN) by a reactive ionized cluster beam deposition (ICBD) method. It is about a method.
반도체장치의 집적도가 증가함에 따라 콘택홀의 사이즈가 작아지고, 횡방향과 같은 비율로 종방향의 기하학적 사이즈를 축소하기가 어려워져 콘택홀의 어스펙트비(aspect ration)가 증대일로에 있다. 이에 따라, 콘택홀에 금속을 매몰(filling)하는 것이 점점 더 어려운 과제로 부각되고 있다.As the degree of integration of semiconductor devices increases, the size of the contact hole decreases, and it is difficult to reduce the geometrical size in the longitudinal direction at the same ratio as the transverse direction, resulting in an increase in the aspect ratio of the contact hole. Accordingly, filling metal into contact holes has become an increasingly difficult problem.
지금까지는 알루미늄(Al)을 스터퍼링(sputtering) 방법으로 증착한 후 리플로우((reflow)하여 콘택홀을 매몰시키는 방법이 주로 이용되어 왔으나, 어느 정도의 어스펙트비까지 적용할 수 있을지는 미지수이며, 1GB급 DRAM 이상의 고집적 반도체장치에서는 적용하기가 힘들 것으로 예측되고 있다. 또한, 알루미늄은 실리콘과 직접 접촉할 때 힐록(hillock) 등의 계면 반응이 일어나므로 이를 방지하기 위한 버퍼층(buffer layer)으로서 티타늄/질화티타늄층 (Ti/TiN) 을 형성하는 것이 필수적이다. 따라서, 상기 버퍼층 역시 충분한 단차 도포성(step coverage)을 가지도록 증착되어야 하지만, 현재의 스퍼터링 기술로는 힘든 것으로 알려져 있으며 상기 층을 화학기상증착(Chemical Vapor Deposition: 이하 CVD라 한다) 방법으로 형성하는 기술 또한 아직 개발이 미진한 실정이다.Until now, a method of depositing aluminum (Al) by sputtering and then reflowing to bury contact holes has been mainly used, but it is unknown how much aspect ratio can be applied. In addition, aluminum is expected to be difficult to apply in high-density semiconductor devices of 1GB or more DRAM, and aluminum is used as a buffer layer to prevent this since the interface reaction such as hillock occurs when directly contacted with silicon. It is essential to form a titanium nitride layer (Ti / TiN), so that the buffer layer must also be deposited to have sufficient step coverage, but it is known to be difficult with current sputtering techniques and chemically Techniques for forming by chemical vapor deposition (CVD) are still under development.
한편, 상기한 방법을 대체할 방법으로 현재 주목받고 있는 것이 콘택홀 내부만을 텅스텐(W)으로 매몰시켜 평탄화하는 선택적(selective)CVD-W 공정이다. 그러나, 텅스텐에 의한 플러그 형성방법은 공정비용이 고가이며 고밀도의 균일한 막을 형성하기가 어렵다는 단점이 있다.On the other hand, what is currently attracting attention as a method to replace the above-described method is a selective CVD-W process of buried only the inside of the contact hole with tungsten (W) to planarize. However, the method of forming a plug using tungsten has a disadvantage in that the process cost is high and it is difficult to form a uniform film of high density.
따라서 본 발명의 목적은 상기한 종래방법들의 문제점들을 해결할 수 있는 반도체장치의 콘택 플러그 형성밥버을 제공하는데 있다.Accordingly, an object of the present invention is to provide a contact plug forming bobbin of a semiconductor device that can solve the problems of the conventional methods described above.
상기 목적을 달성하기 위하여 본 발명은, 기판 상에 층간절연막을 형성하는 단계: 상기 층간절연막을 식각하여 상기 기판 표면의 일부를 노출시키는 콘택홀을 형성하는 단계: 상기 콘택홀이 형성된 결과물 상에 이온화클러스터빔증착(ICBD)방법으로 티타늄막을 증착하는 단계: 상기 티타늄막이 증착된 겨로가물에 질소를 주입하여 상기 콘택홀이 완전히 매몰될 때까지 질화티타늄막을 형성하는 단계: 및 상기 층간절연막 상부의 질화티타늄막을 식각하여 상기 콘택홀 내의 질화티타늄막을 노출시키는 단계를 구비하는 것을 특징으로 하는 반도체장치의 콘택 플러그 형성방법을 제공한다.In order to achieve the above object, the present invention, forming an interlayer insulating film on a substrate: forming a contact hole to expose a portion of the surface of the substrate by etching the interlayer insulating film: ionization on the resultant formed hole Depositing a titanium film by a cluster beam deposition (ICBD) method: forming a titanium nitride film until the contact hole is completely buried by injecting nitrogen into the titanium nitride-deposited broth; and nitriding on the interlayer insulating film And etching the titanium film to expose the titanium nitride film in the contact hole.
상기 티타늄막을 증착하는 단계에서, 상기 티타뉴막을 가속하여 증착함으로써 상기 노출된 기판과 티타늄막과의 계면을 실리사이드화(silicidation) 시킨다.In the depositing of the titanium film, the titanate film is accelerated and deposited to silicide the interface between the exposed substrate and the titanium film.
상기 질소는 기판 근처에 주입하거나 리모트(remote) 플라즈마 소오스를 이용하여 주입하는 것이 바람직하다.The nitrogen is preferably injected near the substrate or by using a remote plasma source.
본 발명의 바람직한 실시예에 의하면, 상기 층간절연막 상부의 질화티타늄막을 식각하여 상기 콘택홀 내의 질화티타늄막을 노출시키는 단계는, 상기 질화티타늄막이 형성된 결과물 상에 물질층을 형성하는 단계와, 상기 물질층 및 상기 층간절연막 상부의 질화티타늄막을 화학기계폴리싱(Chemical Mechanical Polishing: 이하 CMP라 한다) 방법으로 식각하여 상기 콘택홀 내의 질화티타늄막을 노출시키는 단계로 이루어진다.According to a preferred embodiment of the present invention, etching the titanium nitride film on the interlayer insulating film and exposing the titanium nitride film in the contact hole may include forming a material layer on a resultant product on which the titanium nitride film is formed, and the material layer. And etching the titanium nitride film on the interlayer insulating film by chemical mechanical polishing (hereinafter referred to as CMP) to expose the titanium nitride film in the contact hole.
본 발명의 바람직한 다른 실시예에 의하면, 상기 층간절연막 상부의 질화티타늄막을 식각하여 상기 콘택홀 내의 질화티타늄막을 노출시키는 단계는, 상기 질화티타늄막이 형성된 결과물 상에 물질층을 형성하는 단계: BOE를 사용하는 식각공정으로 물질층을 식각하여 상기 층간절연막 상부의 질화티타늄막을 노출시키는 단계: H2O2를 사용하는 식각공정으로 상기 층간절연막 상부의 질화티타늄막을 제거하는 단계: 및 BOE를 사용하는 식각공정으로 상기 콘택홀의 상부에 남아있는 물질층을 제거하여 상기 콘택홀에 매몰된 질화티타늄막을 노출시키는 단계로 이루어진다.According to another preferred embodiment of the present invention, etching the titanium nitride film on the interlayer insulating film and exposing the titanium nitride film in the contact hole may include forming a material layer on the resultant product on which the titanium nitride film is formed: using BOE Exposing the titanium nitride film on the interlayer insulating film by etching the material layer by an etching process: removing the titanium nitride film on the interlayer insulating film by an etching process using H 2 O 2; and an etching process using BOE By removing the material layer remaining on the upper portion of the contact hole to expose the titanium nitride film buried in the contact hole.
상기 콘택홀 내의 질화티타늄막을 노출시키는 단계후, 상기 결과물상에 금속 배선층을 형성하는 단계를 더 구비할 수 있다. 이때, 상기 금속 배선층은 알루미늄 또는 구리로 형성하는 것이 바람직하다.The method may further include forming a metal wiring layer on the resultant after exposing the titanium nitride film in the contact hole. In this case, the metal wiring layer is preferably formed of aluminum or copper.
본 발명에 의하면, 반응성 ICBD 방법에 의해 질화티타늄막으로 콘택플러그를 형성함으로써 종래의 스퍼터링 방법이나 CVD 방법에 비해 집적도 (packing desnity)가 증가하고 그레인(grain) 사이즈가 큰 양질의 막을 형성할 수 있다.According to the present invention, by forming a contact plug with a titanium nitride film by the reactive ICBD method, it is possible to form a high quality film having a larger grain size and a higher packing desnity than a conventional sputtering method or CVD method. .
이하, 첨부함 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.
먼저, 반응성 ICBD방법으로 질화티타늄(TiN)막을 형성하는 방법에 대해 간단하게 설명한다면, 상기 방법은, 티타늄(Ti) 증기(vapor)를 노즐(nozzle)을 통해 진공 속으로 단열 팽창시켜 클러스터를 형성한 후 상기 클러스터를 이온화 및 가속화시켜 기판 표면에 흡착되어 있는 질소(N2)와 반응시킴으로써 지로하티타늄막을 형성하는 방법이다.First, the method of forming a titanium nitride (TiN) film by the reactive ICBD method will be described briefly. The method insulates and expands a titanium vapor into a vacuum through a nozzle to form a cluster. After that, the cluster is ionized and accelerated to react with nitrogen (N 2 ) adsorbed on the surface of the substrate, thereby forming a ziharotitanium film.
제1a도 내지 제1H도는 본 발명의 일실시예에 의한 반도체장치의 콘택 플러그 형성방법을 설명하기 위한 단면도들이다.1A to 1H are cross-sectional views illustrating a method for forming a contact plug in a semiconductor device according to an embodiment of the present invention.
제1a도는 층간절연막(16) 및 콘택홀(18)을 형성하는 단계를 도시한다. 절연막(12)에 의해 다른 도전성 패턴과 분리되는 패드전극(14)이 형성되어 있는 반도체기판(10)상에 절연물질을 증착하여 층간절연막(16)을 형성한다. 이어서, 사진식각 공정으로 상기 층간절연막(16)을 식각하여 상기 패드전극(14) 표면의 일부를 노출시키는 콘택홀(18)을 형성한다. 다음에 , 상기 콘택홀(18)이 형성된 결과물 상에 절연물질, 예컨대 실리콘질화물을 증착하고 이를 이방성 식각하여 상기 콘택홀(18)의 측벽에 절연 스페이서(20)를 형성한다. 상기 절연 스페이서(20)는 후속의 식각공정에 의해 상기 콘택홀(18)이 식각되는 것을 방지하는 역할을 한다.FIG. 1A shows the steps of forming the interlayer insulating film 16 and the contact hole 18. An interlayer insulating film 16 is formed by depositing an insulating material on the semiconductor substrate 10 on which the pad electrodes 14 are separated by other insulating patterns by the insulating film 12. Subsequently, the interlayer insulating layer 16 is etched by a photolithography process to form a contact hole 18 exposing a part of the surface of the pad electrode 14. Next, an insulating material, for example, silicon nitride, is deposited on the resultant in which the contact hole 18 is formed and anisotropically etched to form an insulating spacer 20 on the sidewall of the contact hole 18. The insulating spacer 20 serves to prevent the contact hole 18 from being etched by a subsequent etching process.
제1b도는 티타늄막(22)을 형성하는 단계를 도시한다. 반응성 ICBD 방법에 의해 상기 결과물 상에 티타늄을 수백Å 두께로 증착하여 티타늄막(22)을 형성한다. 이때, 상기 티타늄을 충분한 가속 에너지, 예컨대 약 5eV의 가속 에너지로 증착하게 되면, 표면 세정(cleaning)효과가 있으면서 동시에 상기 콘택홀(18)에 의해 노출된 패드전극(14)과 티타늄막(22)과의 계면이 실리사이드화되어 매우 얇은 두께, 예컨대 약 100Å 정도 두께의 티타늄실리사이드(TiSi)층이 형성된다. 따라서, 별도의 처리가 없어도 낮은 콘택 저항을 얻을 수 있다. 도한, 이오화된 티타늄의 클러스터가 수 keV의 직진성 가속 에너지를 갖기 때문에, 상기 티타늄막(22)이 콘택홀(18)의 측벽에 증착되지 않고 바닥에서부터 채워질 수 있다.1B shows a step of forming the titanium film 22. The titanium film 22 is formed by depositing titanium to a thickness of several hundred micrometers on the resultant by the reactive ICBD method. At this time, when the titanium is deposited with a sufficient acceleration energy, for example, an acceleration energy of about 5 eV, the pad electrode 14 and the titanium film 22 exposed by the contact hole 18 while having a surface cleaning effect at the same time. The interface with is silicided to form a titanium silicide (TiSi) layer, which is very thin, for example about 100 GPa thick. Therefore, a low contact resistance can be obtained without any treatment. In addition, since the cluster of ionized titanium has a linear acceleration energy of several keV, the titanium film 22 can be filled from the bottom without being deposited on the sidewall of the contact hole 18.
제1c도는 질화티타늄막(26)을 형성하는 단계를 도시한다. 상기 티타늄막(22)이 형성된 결과물 상에 질소를 주입하여 상기 콘택홀(18)이 완전히 매몰될 때까지 연속적으로 질화티타늄막(26)을 증착한다. 이때, 상기 질소의 주입은, 기판 주의에 직접 공급하는 방법이나 리모트 플라즈마 소오스에 의해 래디컬 질소 원자를 분사하는 방법을 사용할 수 있다. 상기 질화티타늄막(26)은 반응성 ICBD 방법에 의해 이온화된 티타늄의 클러스터가 질소와 반응하여 형성되는 것이기 때문에, 상기 티타늄막(22) 상에만 형성되게 된다.FIG. 1C shows the step of forming the titanium nitride film 26. As shown in FIG. Nitrogen is injected into the resultant product on which the titanium film 22 is formed, and the titanium nitride film 26 is continuously deposited until the contact hole 18 is completely buried. In this case, the nitrogen may be injected directly into the substrate, or a method of injecting radical nitrogen atoms by a remote plasma source. The titanium nitride film 26 is formed only on the titanium film 22 because the cluster of titanium ionized by the reactive ICBD method is formed by reaction with nitrogen.
제1d도는 물질층(28)을 형성하는 단계를 도시한다. 상기 질화티타늄막(26)이 형성된 결과물 상에 소정 물질, 예컨대 고온산화물(High Temperature Oxide: HTO)을 상기 콘택홀(18) 상부에 남아 있는 굴곡진 영역이 완전히 채워질 때까지 증착하여 물질층(28)을 형성한다.1d illustrates forming a material layer 28. A material, for example, high temperature oxide (HTO), is deposited on the resultant layer on which the titanium nitride layer 26 is formed until the curved region remaining on the contact hole 18 is completely filled. ).
제1e도는 BOE(Buffered Oxide Etchant)를 사용하는 식각공정으로 상기 층간절연막(16) 상부의 질화티타늄막이 노출되도록 상기 물질츨(28)을 식각하는 단계를 도시한다.FIG. 1E illustrates a step of etching the material particles 28 to expose the titanium nitride film on the interlayer insulating layer 16 by an etching process using a buffered oxide etchant (BOE).
제1f도는 H2O2(과산화수소)를 사용하는 식각공정으로 노출된 상기 층간절연막(16) 상부의 질화티타늄막을 제거하는 단계를 도시한다. 이때, 그 하부의 티타늄막(22)이 함께 제거될 수 있다.FIG. 1F shows a step of removing the titanium nitride film on the interlayer insulating film 16 exposed by the etching process using H 2 O 2 (hydrogen peroxide). At this time, the lower titanium film 22 may be removed together.
제1g도는 BOE를 사용하는 식각공정으로 상기 콘택홀(18)의 상부에 남아있는 물질층(28)을 완전히 제거함으로써, 콘택홀(18) 내의 질화티타늄막(26)을 노출시키는 단계를 도시한다. 그 결과, 상기 콘택홀(18)의 내부에만 질화티타늄 콘택 플러그가 형성된다.FIG. 1g illustrates exposing the titanium nitride film 26 in the contact hole 18 by completely removing the material layer 28 remaining on the contact hole 18 in an etching process using BOE. . As a result, a titanium nitride contact plug is formed only inside the contact hole 18.
제1h도는 상기 결과물 상에 금속, 예컨대 알루미늄이나 구리를 증착하여 금속 배선층(30)을 형성하는 단계를 도시한다.FIG. 1h illustrates the step of depositing a metal, such as aluminum or copper, on the resultant to form the metallization layer 30.
상술한 본 발명의 일실시예에 의한 콘택 플러그 형성방법에 의하면, 제1e도 내지 제1g도의 공정들을 한대의 습식 스테이션(wet station)설비에서 하나의 제조법(recipe)만으로 연속 진행할 수 있으므로, 매우 간단하게 질화티타늄 콘택 플러그를 형성할 수 있다.According to the method for forming a contact plug according to the embodiment of the present invention described above, since the processes of FIGS. 1e to 1g can be continuously performed in one wet station facility using only one recipe, it is very simple. Titanium nitride contact plugs can be formed.
본 발명의 바람직한 다른 실시예에 의하며, 상기 제1d도 내지 제1g도에 설명한 공정들을 모두 생략하고, 층간절연막 상부의 질화티타늄막 및 티타늄막을 CMP방법으로 식각함으로써 콘택홀 내의 질화티타늄막을 노출시킬 수 있다.According to another preferred embodiment of the present invention, all of the processes described in FIGS. 1D to 1G are omitted, and the titanium nitride film in the contact hole may be exposed by etching the titanium nitride film and the titanium film on the interlayer insulating film by the CMP method. have.
제2도는 마이크로파(microwave)이온 소오스에 의한 반응성 ICBD장치의 개략도이다.2 is a schematic diagram of a reactive ICBD device with a microwave ion source.
제2도는 참조하면, 증착될 물질, 즉 티타늄이 액체 상태로 들어있는 도가니(crucible)를 도가니 가열용 전자 발사기(electron emitter for heating crucible) 에서 나오는 E-빔에 의해 가열시키면, 상기 티타늄이 증기 상태로 노즐을 통과하여 진공 속에서 단열 팽창되어 중성 클러스터가 형성된다. 상기 중성 클러스터는 이온화용 전자 발사기(eldctron dmitter for ionization)에서 나오는 또 다른 E-빔에 의해 이온화 클러스터로 변하고, 계속해서 가속 전극(accelerating electrode)에 의해 가속 에너지를 가지고 마이크로파 이온 소오스로부터 기판 표면에 흡착된 질소와 반응함으로써 질화티타늄 박막을 형성한다.Referring to FIG. 2, when the material to be deposited, that is, a crucible containing titanium in liquid state, is heated by an E-beam from a crucible electron emitter for heating crucible, the titanium is vaporized. It passes through the furnace nozzle and is adiabaticly expanded in vacuum to form a neutral cluster. The neutral cluster is transformed into an ionization cluster by another E-beam from an eldctron dmitter for ionization, followed by adsorption from the microwave ion source to the substrate surface with acceleration energy by an accelerating electrode. React with the formed nitrogen to form a titanium nitride thin film.
상기 질소는 분자 상태로 기판 주의에 직접 공급할 수도 있고, 상기 제2도에 도시된 바와 같이, 플라즈마 소오스에 의해 래디컬 원자 상태로 분사되어 공급될 수도 있다.The nitrogen may be supplied directly to the substrate attention in a molecular state, or may be supplied by being injected into the radical atomic state by a plasma source, as shown in FIG.
제3도는 클러스터 빔의 분사가 가능한 소오스 구조의 개략도로서, 도가니(crucible) 및 필라멘트(filament)에 각각 전원단자(feedthrough)를 연결하여 이온화 클러스터 빔을 하향 분사할 수 있는 소오스 구조를 나타낸다.FIG. 3 is a schematic diagram of a source structure capable of spraying a cluster beam, and shows a source structure capable of spraying down an ionized cluster beam by connecting a feedthrough to a crucible and a filament, respectively.
따라서, 상술한 바와 같이 본 발명에 의한 반도체장치의 콘택플러그 형성방법에 의하면, 반응성 ICBD 방법에 의해 질화티타늄 콘택플러그를 형성하기 때문에, 티타늄이 가속 에너지를 가지고 기판에 층돌하므로 기판의 온도를 높이지 않고도 종래의 스퍼터링 방법이나 CVD 방법에 비해 집적도가 증가하고 그레인 사이즈가 큰 양질의 막을 형성할 수 있다.Therefore, as described above, according to the method for forming a contact plug of a semiconductor device according to the present invention, since the titanium nitride contact plug is formed by the reactive ICBD method, since titanium collides with the substrate with acceleration energy, the temperature of the substrate is not increased. Compared with the conventional sputtering or CVD method, it is possible to form a high quality film having a high degree of integration and a large grain size.
또한, 티타늄을 충분한 가속 에너지로 증착하기 때문에, 콘택홀에 의해 노출된 기판과 티타늄막과의 계면에 매우 얇은 실리사이드층이 동시에 형성됨으로써 별도의 공정이 없이 낮은 콘택저항을 얻을 수 있다.In addition, since titanium is deposited with sufficient acceleration energy, a very thin silicide layer is simultaneously formed at the interface between the substrate exposed by the contact hole and the titanium film, thereby obtaining a low contact resistance without a separate process.
그러나, 기판 막질에 따른 증착 선택비가 없다는 점과, 기판의 대구경화에 따른 균일도(uniformity)의 결여 및 상향 증착 방식 등은 향후 해결하여야 할 과제이다.However, there is no deposition selectivity according to the substrate film quality, the lack of uniformity due to the large diameter of the substrate and the upward deposition method are problems to be solved in the future.
본 발명이 상기 실시예에 한정되지 않으며, 많은 변형이 본 발며의 기술적 사상내에서 당분야에서 통상의 지식을 가진 자에 의하여 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical idea of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950007054A KR0165372B1 (en) | 1995-03-30 | 1995-03-30 | Contact plug formation method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950007054A KR0165372B1 (en) | 1995-03-30 | 1995-03-30 | Contact plug formation method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960035825A KR960035825A (en) | 1996-10-28 |
KR0165372B1 true KR0165372B1 (en) | 1999-02-01 |
Family
ID=19410924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019950007054A Expired - Fee Related KR0165372B1 (en) | 1995-03-30 | 1995-03-30 | Contact plug formation method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0165372B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980060529A (en) * | 1996-12-31 | 1998-10-07 | 김영환 | Metal wiring formation method of semiconductor device |
-
1995
- 1995-03-30 KR KR1019950007054A patent/KR0165372B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR960035825A (en) | 1996-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100220935B1 (en) | Metal contact formation method | |
JP2978748B2 (en) | Method for manufacturing semiconductor device | |
US6949450B2 (en) | Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber | |
US6015749A (en) | Method to improve adhesion between copper and titanium nitride, for copper interconnect structures, via the use of an ion implantation procedure | |
US5801098A (en) | Method of decreasing resistivity in an electrically conductive layer | |
US6013574A (en) | Method of forming low resistance contact structures in vias arranged between two levels of interconnect lines | |
US5960320A (en) | Metal wiring layer forming method for semiconductor device | |
US4963511A (en) | Method of reducing tungsten selectivity to a contact sidewall | |
US5918150A (en) | Method for a chemical vapor deposition of copper on an ion prepared conductive surface | |
WO2002046489A1 (en) | Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber | |
US6051492A (en) | Method of manufacturing a wiring layer in semiconductor device | |
US5459100A (en) | Method for forming metal wiring of semiconductor device | |
JPH0917747A (en) | Improved adhesion layer for tungsten deposition | |
KR100259692B1 (en) | Manufacturing method of semiconductor device with buried contact structure | |
EP0435392B1 (en) | Method of manufacturing a semiconductor device with monosilicon regions and polysilicon conductors provided with a metal silicide toplayer | |
US4755482A (en) | Making semiconductor device on insulating substrate by forming conductive layers on both major surfaces | |
JP2002134611A (en) | Method for manufacturing semiconductor device | |
JP2790362B2 (en) | Semiconductor device | |
KR0158441B1 (en) | Method of manufacturing semiconductor device | |
JP2004000006U (en) | Semiconductor device | |
US5462890A (en) | Method for making a tungsten plug of a semiconductor device | |
US20100072622A1 (en) | Method for forming Barrier Layer and the Related Damascene Structure | |
JP2000216240A (en) | Method for producing a contact / via adhesive layer | |
KR0165372B1 (en) | Contact plug formation method of semiconductor device | |
JP2726438B2 (en) | Thin film forming equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19950330 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19950330 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19980429 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980829 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19980916 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19980916 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20010807 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20020807 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20030808 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20040331 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20050802 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20060830 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20060830 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20080809 |