JPS6145486B2 - - Google Patents
Info
- Publication number
- JPS6145486B2 JPS6145486B2 JP53105739A JP10573978A JPS6145486B2 JP S6145486 B2 JPS6145486 B2 JP S6145486B2 JP 53105739 A JP53105739 A JP 53105739A JP 10573978 A JP10573978 A JP 10573978A JP S6145486 B2 JPS6145486 B2 JP S6145486B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reactor
- oxygen
- catalyst
- laughing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 57
- 239000003994 anesthetic gas Substances 0.000 claims description 28
- 239000003054 catalyst Substances 0.000 claims description 19
- 235000013842 nitrous oxide Nutrition 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical group [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 239000001272 nitrous oxide Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 206010002091 Anaesthesia Diseases 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 230000037005 anaesthesia Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- OMBRFUXPXNIUCZ-UHFFFAOYSA-N dioxidonitrogen(1+) Chemical compound O=[N+]=O OMBRFUXPXNIUCZ-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- XSKIUFGOTYHDLC-UHFFFAOYSA-N palladium rhodium Chemical compound [Rh].[Pd] XSKIUFGOTYHDLC-UHFFFAOYSA-N 0.000 description 1
- OYJSZRRJQJAOFK-UHFFFAOYSA-N palladium ruthenium Chemical compound [Ru].[Pd] OYJSZRRJQJAOFK-UHFFFAOYSA-N 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】
本発明は余剰麻酔ガス中の笑気ガスの処理方法
および処理装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for treating laughing gas in surplus anesthetic gas.
手術室に漏洩した麻酔ガスを長時間吸入するこ
とにより、そこで働く医師、看護婦らに健康障害
が起ることが知られるようになつた。そのため、
米国National Institnte for Occupational Safety
and Health(NIOSH)は安全規準として手術室
内の麻酔ガスの濃度を、フローセン(1,1,1
―トリフロロ―2―ブロモ―2―クロロエタン)
の場合0.1ppm、笑気ガス(亜酸化窒素、N2O)
場合25ppm以下におさえるよう勧告している。 It has become known that prolonged inhalation of anesthetic gas leaked into operating rooms can cause health problems for doctors and nurses working there. Therefore,
US National Institute for Occupational Safety
and Health (NIOSH) has set the concentration of anesthetic gas in the operating room as a safety standard.
-trifluoro-2-bromo-2-chloroethane)
0.1ppm for laughing gas (nitrous oxide, N2O )
It is recommended that the concentration be kept below 25ppm.
麻酢剤としては、フローセンおよび笑気ガスが
広く使用される。患者への吸気麻酔ガスの組成は
普通フローセンが1%以下であるのに対し、笑気
ガスは50―70%と高濃度であり、残りが酸素であ
る。患者が呼吸したあとの麻酔ガスが余剰麻酔ガ
スとして排生される。余剰麻酔ガスの組成は吸気
麻酔ガスの組成に近く、高濃度の笑気ガスと酸素
を含んでいる。 Frocene and laughing gas are widely used as hemp vinegar. The composition of the anesthetic gas inhaled to the patient is normally less than 1% frosene, whereas laughing gas has a high concentration of 50-70%, with the remainder being oxygen. Anesthetic gas after the patient breathes is discharged as surplus anesthetic gas. The composition of the surplus anesthetic gas is close to that of the inspired anesthetic gas, and contains high concentrations of laughing gas and oxygen.
手術室内の空気を汚染する麻酔ガスには、麻酔
装置の接続部分等から漏洩するものと、余剰麻酔
ガスがあるが、余剰麻酔ガスが大部分である。手
術室内の麻酔ガスを濃度を低下させるため、(1)室
内空気を換気する。(2)余剰麻酔ガス中の麻酔ガス
を活性炭で吸着除去する。(3)余剰麻酔ガスを吸引
排除装置により室外へ排出する等の方法が行なわ
れている。フローセンは活性炭によく吸着される
ので(2)の方法によつて容易に除去することができ
る。一方、笑気ガスは活性炭に吸着される量が少
ないため、(3)の方法によつて室外へ排出している
のが現状である。しかし、このような方法は病院
周辺の環境を汚染することとなり好ましくないの
は明らかである。 Anesthetic gases that contaminate the air in the operating room include those that leak from the connection parts of anesthesia machines and surplus anesthesia gas, but surplus anesthesia gas accounts for the majority. To reduce the concentration of anesthetic gas in the operating room, (1) ventilate the room air; (2) Adsorb and remove the anesthetic gas in the surplus anesthetic gas with activated carbon. (3) Methods such as discharging surplus anesthetic gas outside the room using a suction removal device are used. Since fluorene is well adsorbed on activated carbon, it can be easily removed by method (2). On the other hand, since the amount of laughing gas adsorbed by activated carbon is small, the method (3) is currently used to discharge it outside the room. However, it is clear that such a method is undesirable because it contaminates the environment around the hospital.
本発明者らかこの問題について検討した結果、
特定の物質により余剰麻酔ガス中の笑気ガスを窒
素と酸素に分解できることを見い出し、笑気ガス
を無毒化処理する方法および装置を完成した。す
なわち、本発明の方法は、白金、パラジウム、ロ
ジウム、イリジウム、ルテニウムからなる群より
選ばれる物質のうち少なくともひとつを主成分と
する触媒を、150―550℃の温度において余剰麻酔
ガス中の笑気ガスと接触させ、笑気ガスを窒素と
酸素に分解することを特徴とする余剰麻酔ガスの
処理方法である。また、本発明の装置は、白金、
パラジウム、ロジウム、イリジウム、ルテニウム
の群のうち少なくともひとつを主成分とする触媒
が充填された、笑気ガスを150〜550℃で窒素に分
解するための反応器および分解ガスを排気するた
めのブロワーからなる余剰麻酔ガスの処理装置で
ある。 As a result of the inventors' consideration of this problem,
We discovered that laughing gas in excess anesthetic gas can be decomposed into nitrogen and oxygen using a specific substance, and completed a method and device for detoxifying laughing gas. That is, in the method of the present invention, a catalyst containing at least one substance selected from the group consisting of platinum, palladium, rhodium, iridium, and ruthenium as a main component is exposed to laughing gas in excess anesthetic gas at a temperature of 150 to 550°C. This is a method for processing surplus anesthetic gas, which is characterized by contacting with a gas and decomposing laughing gas into nitrogen and oxygen. Further, the device of the present invention includes platinum,
A reactor filled with a catalyst containing at least one of the group consisting of palladium, rhodium, iridium, and ruthenium as a main component, for decomposing laughing gas into nitrogen at 150 to 550°C, and a blower for exhausting the decomposed gas. This is a surplus anesthetic gas processing device consisting of:
本発明において用いられる触媒は、白金、パラ
ジウム、ロジウム、イリジウム、ルテニウムの群
から選ばれる一成分を主成分とするものである
が、なかでも白金またはパラジウムが好ましい。
これらは一成分で用いられるだけでなく、白金―
パラジウム、パラジウム―ルテニウム、パラジウ
ム―ロジウムの如く、前記の群のなかで二成分
系、さらにはこれら金属の二成分以上の多成分系
を形成して、用いられることもできる。また、本
発明の触媒成分に前記以外の金属で、E.G.
Allison,G.C.BondによるCatalysis Reviews
7,233(1972)に記載されているように、金を
担持させることもできる。0.001〜10重量%の金
を担持させた場合、本発明においては、触媒活性
を高め、触媒の寿命を長くすることができる。ま
た、本発明の触媒は、担体に担持させて用いられ
る。担体としては、アルミナ、シリカ、チタニア
等があげられ、触媒成分の担体への担持力は、
0.01〜10重量%であり、特に0.1〜2重量%が好
ましい。 The catalyst used in the present invention is mainly composed of one component selected from the group consisting of platinum, palladium, rhodium, iridium, and ruthenium, and platinum or palladium is particularly preferred.
These are not only used as one component, but also as platinum-
Among the above metals, a binary system such as palladium, palladium-ruthenium, palladium-rhodium, or even a multicomponent system of two or more of these metals can be formed and used. In addition, metals other than those listed above may be used as the catalyst component of the present invention.
Catalysis Reviews by Allison, GCBond
7 , 233 (1972), gold may also be supported. When 0.001 to 10% by weight of gold is supported, in the present invention, the catalyst activity can be increased and the life of the catalyst can be extended. Further, the catalyst of the present invention is used by being supported on a carrier. Examples of the carrier include alumina, silica, titania, etc., and the ability to support the catalyst component on the carrier is
It is 0.01 to 10% by weight, particularly preferably 0.1 to 2% by weight.
本発明において、余剰麻酔ガスは150〜550℃
で、0.2秒以上処理されることが必要である。150
℃以下では、笑気ガスを窒素と酸素に十分に分解
することが難しくなり、また、550℃以上になる
と、触媒活性の低下が速いので好ましくなく、ま
た、550℃以上の高温を病院等の施設で採用する
ことは安全上からも好ましくない。 In the present invention, the excess anesthetic gas is heated to a temperature of 150 to 550°C.
, it is necessary to process for 0.2 seconds or more. 150
Below 550°C, it becomes difficult to fully decompose laughing gas into nitrogen and oxygen, and above 550°C, the catalytic activity decreases rapidly, which is undesirable. It is not recommended for safety reasons to use it in facilities.
上述のように、本発明の方法で余剰麻酔ガスを
処理すると、笑気ガスは窒素と酸素に分解され、
酸化窒素や過酸化窒素のような副生成物は検出さ
れない。従つて、本発明によつて処理した笑気ガ
スは安全に外気に放出することができる。 As mentioned above, when excess anesthetic gas is treated with the method of the present invention, laughing gas is decomposed into nitrogen and oxygen,
By-products such as nitric oxide and nitrogen peroxide are not detected. Therefore, laughing gas treated according to the present invention can be safely released into the atmosphere.
本発明は、前述のように笑気ガスの他に酸素も
高濃度(22〜75容量%)に含まれている余剰麻酔
ガスを処理するに当り、上記の触媒が極めて有効
であることを見出してなされたものであり、かか
る触媒がこのように酸素を高濃度に含む気体の処
理に有効で、かつ触媒寿命も長く、実用的である
ことは驚くべきことである。 The present invention has discovered that the above catalyst is extremely effective in treating surplus anesthetic gas that contains not only laughing gas but also oxygen at a high concentration (22 to 75% by volume). It is surprising that such a catalyst is effective in treating a gas containing such a high concentration of oxygen, has a long catalyst life, and is practical.
次に本発明の装置について説明する。第1図
は、本発明の装置の概略を示すものである。麻酔
器のポツプ・オブ・バルブより排出される余剰麻
酔ガスは余剰麻酔ガス排出装置によつて空気とと
もに吸引される。この余剰麻酔ガスと空気の混合
気体が150〜550℃に加熱された反応器1に導入さ
れ、その中に含まれる笑気ガス窒素と酸素に分解
される。反応器から排出される高温の気体はブロ
ワー2によつて空気で希釈され、冷却されて外気
に放出される。 Next, the apparatus of the present invention will be explained. FIG. 1 schematically shows the apparatus of the present invention. Excess anesthetic gas discharged from the pop-of-valve of the anesthesia machine is sucked together with air by a surplus anesthetic gas exhaust device. This mixture of excess anesthetic gas and air is introduced into a reactor 1 heated to 150 to 550°C, and decomposed into the laughing gas nitrogen and oxygen contained therein. The high temperature gas discharged from the reactor is diluted with air by the blower 2, cooled and discharged to the outside air.
本発明の装置に用いられる反応器は、反応器の
使用温度に耐える材質で作られ前記の触媒が充填
されて導入される気体と触媒との接触時間が0.2
秒以上であるように適宜形状、大きさ等が選択さ
れて製作される。特に、粒状の担体に担持された
触媒をステンレス管等に充填した反応器が好まし
く使用できる。また、本発明の装置においては、
第1図に示すように、反応器の前部に反応器に入
る気体をあらかじめ加熱するために予熱器3を置
くことができる。さらにまた、本発明の装置にお
いては、第1図に示すように、エネルギーを有効
に利用するため、反応器から排出される高温の気
体と反応器に導入される気体との間で熱交換でき
るように熱交換器4を置くことができる。また、
本発明においては、フローセンのハロゲンによ
つて触媒が劣化することを防ぐため、余剰麻酔ガ
ス排出装置にフローセンを吸着除去するための活
性炭キヤニスターを組みこむことが望ましい。 The reactor used in the apparatus of the present invention is made of a material that can withstand the operating temperature of the reactor and is filled with the above-mentioned catalyst, so that the contact time between the introduced gas and the catalyst is 0.2
The shape, size, etc. are selected and manufactured as appropriate so that the time is longer than 10 seconds. In particular, a reactor in which a stainless steel tube or the like is filled with a catalyst supported on a granular carrier can be preferably used. Furthermore, in the device of the present invention,
As shown in FIG. 1, a preheater 3 can be placed at the front of the reactor to preheat the gas entering the reactor. Furthermore, in the apparatus of the present invention, as shown in FIG. 1, in order to utilize energy effectively, heat can be exchanged between the high temperature gas discharged from the reactor and the gas introduced into the reactor. The heat exchanger 4 can be placed like this. Furthermore, in the present invention, in order to prevent the catalyst from deteriorating due to the halogen of fluoresne, it is desirable to incorporate an activated carbon canister for adsorbing and removing fluoresne into the surplus anesthetic gas discharge device.
以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.
実施例 1
球状(粒径約2〜4mm)のアルミナ担体・(水
沢化学工業(株)製、商品名Neobeed−C)に白金
0.45重量%を担持させた。この触媒を内径1.5cm
のステンレス管に長さ10cmに充填し反応器とし
た。この反応器を電気炉に入れ430℃に加熱し、
余剰麻酔ガスの一組成である亜酸化窒素と酸素の
混合気体(亜酸化窒素:酸素=50:50容量%)を
予熱器で430℃予熱したのち、反応器の入口より
通じた。反応器の出口から出てきた気体を採取し
ガスクロマトグラフイーで亜酸化窒素の濃度を測
定した結果0容量%であつた。従つて亜酸化窒素
の分解率は100%であつた。Example 1 Platinum on a spherical (particle size approximately 2 to 4 mm) alumina carrier (manufactured by Mizusawa Chemical Industry Co., Ltd., trade name Neobeed-C)
0.45% by weight was supported. This catalyst has an inner diameter of 1.5cm.
A stainless steel tube with a length of 10 cm was filled to form a reactor. This reactor was placed in an electric furnace and heated to 430℃.
A mixed gas of nitrous oxide and oxygen (nitrous oxide:oxygen = 50:50% by volume), which is part of the surplus anesthetic gas, was preheated to 430°C in a preheater and then passed through the inlet of the reactor. The gas coming out from the outlet of the reactor was collected and the concentration of nitrous oxide was measured by gas chromatography, and the result was 0% by volume. Therefore, the decomposition rate of nitrous oxide was 100%.
実施例 2
球状(粒径約2〜4mm)のアルミナ担体(水沢
化学工業(株)製、商品名Neobeed―C)にパラジウ
ム0.33重量%を担持させた。この触媒を内径1.5
cmのステンレス管に長さ10cmに充填し反応器とし
た。この反応器を電気炉に入れ390℃(触媒層の
後方2cmの位置で測定)に加熱し、亜酸化窒素と
酸素の混合気体(亜酸化窒素:酸素=50:50容量
%)を予熱器で390℃に予熱したのち反応器の入
口より通じた。反応器の出口から出てきた気体を
採取し、ガスクロマトグラフイーで亜酸化窒素の
濃度を測定した結果0容量%であつた。従つて亜
酸化窒素の分解率は100%であつた。このとき反
応器から出てきた気体は窒素と酸素の混合気体で
あり、酸化窒素や過酸化窒素は検出されなかつ
た。Example 2 0.33% by weight of palladium was supported on a spherical (particle size: approximately 2 to 4 mm) alumina carrier (manufactured by Mizusawa Chemical Industry Co., Ltd., trade name: Neobeed-C). This catalyst has an inner diameter of 1.5
A reactor was prepared by filling a stainless steel tube with a length of 10 cm. This reactor was placed in an electric furnace and heated to 390°C (measured at a position 2 cm behind the catalyst layer), and a mixed gas of nitrous oxide and oxygen (nitrous oxide:oxygen = 50:50% by volume) was heated in a preheater. After preheating to 390°C, the reactor was opened from the inlet. The gas coming out from the outlet of the reactor was collected, and the concentration of nitrous oxide was measured by gas chromatography, and the result was 0% by volume. Therefore, the decomposition rate of nitrous oxide was 100%. The gas that came out of the reactor at this time was a mixture of nitrogen and oxygen, and no nitrogen oxide or nitrogen peroxide was detected.
第1図は余剰麻酔ガスの処理装置の概略図であ
り、
1…反応器、2…ブロワー、3…予熱器、4…
熱交換器を表わす。
FIG. 1 is a schematic diagram of a surplus anesthetic gas processing device, which includes: 1...reactor, 2...blower, 3...preheater, 4...
Represents a heat exchanger.
Claims (1)
ウム、ロジウム、イリジウム、ルテニウムの群の
うち少なくともひとつを主成分とする触媒と150
〜550℃の温度において接触させ、笑気ガスを窒
素と酸素に分解することを特徴とする余剰麻酔ガ
スの処理方法。 2 白金、パラジウム、ロジウム、イリジウム、
ルテニウムの群のうち少なくともひとつを主成分
とする触媒が充填された、笑気ガスを150〜550℃
で窒素と酸素に分解するための反応器、および分
解ガスを排気するためのブロワーからなる余剰麻
酔ガスの処理方法。[Scope of Claims] 1. 150.
A method for processing surplus anesthetic gas, which comprises contacting at a temperature of ~550°C to decompose laughing gas into nitrogen and oxygen. 2 Platinum, palladium, rhodium, iridium,
Laughing gas filled with a catalyst containing at least one of the ruthenium group as a main component at 150-550℃
A method for processing surplus anesthetic gas consisting of a reactor for decomposing it into nitrogen and oxygen, and a blower for exhausting the decomposed gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10573978A JPS5531463A (en) | 1978-08-29 | 1978-08-29 | Treatment method and apparatus for excess anesthetic gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10573978A JPS5531463A (en) | 1978-08-29 | 1978-08-29 | Treatment method and apparatus for excess anesthetic gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5531463A JPS5531463A (en) | 1980-03-05 |
JPS6145486B2 true JPS6145486B2 (en) | 1986-10-08 |
Family
ID=14415632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10573978A Granted JPS5531463A (en) | 1978-08-29 | 1978-08-29 | Treatment method and apparatus for excess anesthetic gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5531463A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6846471B2 (en) | 2000-09-08 | 2005-01-25 | Showa Denko K.K. | Catalyst for decomposing nitrous oxide, process for producing the same and method for decomposing nitrous oxide |
US7235222B2 (en) | 2000-09-27 | 2007-06-26 | Showa Denko K.K. | Process for treating waste anesthetic gas |
EP3546330A1 (en) | 2018-03-30 | 2019-10-02 | Honda Motor Co., Ltd. | System to recover vaporized fuel from the tank of a saddled vehicle |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS637826A (en) * | 1986-06-30 | 1988-01-13 | Ebara Res Co Ltd | Removing method for nitrous oxide in gas mixture |
CA2049528A1 (en) * | 1990-09-13 | 1992-03-14 | Heinrich Aichinger | The catilytic decomposition of dinitrogen monoxide which is pure or present in gas mixtures |
DE4128629A1 (en) * | 1991-08-29 | 1993-03-04 | Basf Ag | SILVER-CONTAINING CARRIER CATALYST AND METHOD FOR THE CATALYTIC DECOMPOSITION OF NITROGEN MONOXIDE |
DE102004024026A1 (en) | 2004-03-11 | 2005-09-29 | W.C. Heraeus Gmbh | Catalyst for decomposition of nitrous oxide under conditions of Ostwald process, comprises carrier material, and coating of rhodium, rhodium oxide, or palladium-rhodium alloy |
US20050202966A1 (en) | 2004-03-11 | 2005-09-15 | W.C. Heraeus Gmbh | Catalyst for the decomposition of N2O in the Ostwald process |
DE102007057109A1 (en) | 2007-11-26 | 2009-05-28 | W.C. Heraeus Gmbh | Decomposition of nitrous oxide in oxygen-containing gases with moisture content |
DE102009037882A1 (en) | 2009-01-13 | 2010-07-15 | Linde Aktiengesellschaft | Apparatus and process for the decomposition of nitrous oxide in an adiabatic fixed bed reactor |
MX2012013191A (en) * | 2010-05-19 | 2013-01-22 | Shell Int Research | A process for removing nitrous oxide from a gas stream. |
-
1978
- 1978-08-29 JP JP10573978A patent/JPS5531463A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6846471B2 (en) | 2000-09-08 | 2005-01-25 | Showa Denko K.K. | Catalyst for decomposing nitrous oxide, process for producing the same and method for decomposing nitrous oxide |
EP2241369A1 (en) | 2000-09-08 | 2010-10-20 | Showa Denko K.K. | Catalyst and method for decomposing nitrous oxide and process for producing the catalyst |
EP2241368A1 (en) | 2000-09-08 | 2010-10-20 | Showa Denko K.K. | Catalyst and method for decomposing nitrous oxide and process for producing the catalyst |
US7235222B2 (en) | 2000-09-27 | 2007-06-26 | Showa Denko K.K. | Process for treating waste anesthetic gas |
US7597858B2 (en) | 2000-09-27 | 2009-10-06 | Showa Denko K.K. | Process and apparatus for treating waste anesthetic gas |
EP3546330A1 (en) | 2018-03-30 | 2019-10-02 | Honda Motor Co., Ltd. | System to recover vaporized fuel from the tank of a saddled vehicle |
Also Published As
Publication number | Publication date |
---|---|
JPS5531463A (en) | 1980-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6145486B2 (en) | ||
EA199800183A1 (en) | METHOD OF FORMATION OF A RESPIRATORY GAS MIXTURE AND APPARATUS FOR ITS IMPLEMENTATION | |
JP4931406B2 (en) | Method and apparatus for processing gas containing nitrous oxide | |
WO1993015824A1 (en) | A process for the conversion of n2o | |
US20060008401A1 (en) | Decomposition catalyst for nitrous oxide, process for producing the same and process for decomposing nitrous oxide | |
JP5405779B2 (en) | Exhalation gas processing equipment | |
JPS6145487B2 (en) | ||
JP7474301B2 (en) | Apparatus for the catalytic decomposition of nitrous oxide in a gas stream. | |
JPS6227844B2 (en) | ||
EP0129406A3 (en) | Breathing apparatus | |
JPS5935247Y2 (en) | Equipment for decomposing laughing gas in surplus anesthetic gas | |
JP3308365B2 (en) | How to remove nitrogen trifluoride gas | |
JP3798822B2 (en) | Method and apparatus for removing nitrogen trifluoride | |
JPH07116466A (en) | Method for decomposing fluorine-based etching gas or cleaning gas | |
JPH0847533A (en) | Method for eliminating harm of nox-containing exhalation gas | |
CN117379652A (en) | Anesthesia waste gas treatment method for anesthesia room | |
JPH07155541A (en) | Harmful effect removing agent for gaseous nitrogen trifluoride | |
JPH07171343A (en) | Removal of harmful substance from nitrogen trifluoride gas | |
JPH04122419A (en) | Organic halide compound decomposing method and decomposing catalyst | |
JPH07100130B2 (en) | Gas purification method | |
JPS60212227A (en) | Oxygen adsorbing activated carbon | |
JPH04260486A (en) | Treatment of waste refuse containing liquid crystal substance | |
JP2000189755A (en) | Treating agent for organic silane waste gas and treating method of the same | |
JPH09877A (en) | Treatment agent of nitrogen trifluoride gas | |
JPH03207426A (en) | Method for detoxicating organic semiconductor exhaust gas |