JPS6135568A - Gate protecting diode - Google Patents
Gate protecting diodeInfo
- Publication number
- JPS6135568A JPS6135568A JP15671484A JP15671484A JPS6135568A JP S6135568 A JPS6135568 A JP S6135568A JP 15671484 A JP15671484 A JP 15671484A JP 15671484 A JP15671484 A JP 15671484A JP S6135568 A JPS6135568 A JP S6135568A
- Authority
- JP
- Japan
- Prior art keywords
- impurity region
- type impurity
- protection diode
- junction
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012535 impurity Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 12
- 239000010410 layer Substances 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 9
- 230000005669 field effect Effects 0.000 claims description 5
- 230000015556 catabolic process Effects 0.000 description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000006378 damage Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- -1 boron ions Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/611—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using diodes as protective elements
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は絶縁ゲート型電界効果半導体装置のゲート保護
ダイオード、例えばMO8型半導体装置のゲート電極を
サージ入力から保護するための保護ダイオードに関する
。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gate protection diode for an insulated gate field effect semiconductor device, such as a protection diode for protecting the gate electrode of an MO8 type semiconductor device from surge input.
絶縁ゲート型電界効果半導体菰直のゲート保護ダイオー
ドを開示したのは特公昭43−455号が最初で、ここ
に冊示されている保護ダイオードは例えば第2図の構造
で一般的に示される。同図において、1はP型シリコン
基板である。該シリコン基板の表層にはN型不鈍物領°
域2が形成されており、両者間の接合が保護ダイオード
を構成している。このN型不純物領域2は配teaを介
して入力パッドに接続され、またシリコン基板1の他の
領域に形成されたM OS l−ランジスタのゲート電
極に接続されている。Japanese Patent Publication No. 43-455 was the first to disclose an insulated gate type field effect semiconductor direct gate protection diode, and the protection diode disclosed therein generally has the structure shown in FIG. 2, for example. In the figure, 1 is a P-type silicon substrate. There is an N-type inert region on the surface layer of the silicon substrate.
A region 2 is formed, and the junction therebetween constitutes a protection diode. This N-type impurity region 2 is connected to an input pad via a wiring tea, and is also connected to a gate electrode of a MOS l-transistor formed in another region of the silicon substrate 1.
このように入力パッドとゲート電極との間に保護ダイオ
ードを介在させたMO8型半導体装置で〜は、保護ダイ
オードの逆方向耐圧よりも大きいサージ電圧が入力され
るとダイオードがアバランシェブレークダウンを起こし
て電流が基板1に流れる。従って、MOSトランジスタ
のゲート電極にはサージ電圧が印加されず、ゲニト破壊
を回避することが可能となる。In the MO8 type semiconductor device in which a protection diode is interposed between the input pad and the gate electrode in this way, if a surge voltage greater than the reverse withstand voltage of the protection diode is input, the diode will cause avalanche breakdown. A current flows through the substrate 1. Therefore, no surge voltage is applied to the gate electrode of the MOS transistor, making it possible to avoid genit breakdown.
ところが、上記第2図の保護ダイオードはプレーナ接合
で構成されるため、シリコン基板1の表面付近におけφ
接合部分、即ち図中X印を付した部分は局部的に逆方向
耐圧が低い(Grove ; P hysics a
nd Tedhnology of 5eaico
nductordevices 、 P、 197 )
。その結果、・ブレー フタラン電流は耐圧の低いこ
の表面部分の接合に集中し、該電流集沖部分ではセカン
ドブレークダウンと呼ばれる熱破壊を生じて接合の永久
破壊を起し易いという問題があった( I E T
rans、 on E 1eCtron D evi
ce 、 LL二胆、 Lp、763〜770及び12
th、 Ann、Proc、 Int、 Re1.
phys、 SVn+D、 1984 1)、p、3
04〜312)。しがも、素子の微細化に伴って拡散層
の深さが浅くなる程、この問題は顕著に現れることにな
る。However, since the protection diode shown in FIG.
The joint part, that is, the part marked with an X in the figure, has a locally low reverse breakdown voltage (Grove; Physics
nd Tedhnology of 5eaico
ndductordevices, P, 197)
. As a result, the breakout current concentrates at the junctions in this surface area, which has a low withstand voltage, and there is a problem in that the current collectors are prone to thermal breakdown called second breakdown, resulting in permanent breakdown of the junctions. IET
rans, on E 1eCtron D evi
ce, LL bibile, Lp, 763-770 and 12
th, Ann, Proc, Int, Re1.
phys, SVn+D, 1984 1), p, 3
04-312). However, as the depth of the diffusion layer becomes shallower with the miniaturization of elements, this problem becomes more pronounced.
そこで、上記の問題を改善するために第3図〜第5図に
示す構造が従来採用されている。Therefore, in order to improve the above-mentioned problems, the structures shown in FIGS. 3 to 5 have been conventionally adopted.
第3図の構造は、シリコン基板表面におけるN型不純物
領域2の接合上に絶縁113を介して広くオーバーレイ
された電極4を形成し、該電極4に入力と同電位の電圧
を印加するようにしたものである。この構造では電極4
によるフィールドプレート効果で表面付近の空乏層が広
げられる結果、表面付近での電界集゛中が緩和されて接
合の逆方向耐圧が向上することになる( I E3.
Trans、 onE !ectron Dvice、
Lm一旦、 、り、l)、157〜162 )第4図
の構造はN型不鈍物領IP!2の全周囲にN型領域2′
を形成し、ダイオードを構成するN型不純物領域を二重
拡散構造としたものである。In the structure shown in FIG. 3, an electrode 4 is formed which is widely overlaid on the junction of the N-type impurity region 2 on the silicon substrate surface via an insulator 113, and a voltage having the same potential as the input is applied to the electrode 4. This is what I did. In this structure, electrode 4
As a result, the depletion layer near the surface is widened due to the field plate effect caused by the field plate effect, and as a result, the electric field concentration near the surface is relaxed and the reverse breakdown voltage of the junction is improved (I E3.
Trans, onE! ectron Device,
Lm once, , ri, l), 157-162) The structure in Figure 4 is an N-type inert region IP! N-type region 2' around the entire periphery of 2
The N-type impurity region constituting the diode has a double diffusion structure.
このような二重拡散構造ではN−型領域の内部にも空乏
層が広がるため、接合に加わる電界が緩和されて耐圧が
向上する。In such a double diffusion structure, the depletion layer extends inside the N-type region, so the electric field applied to the junction is relaxed and the withstand voltage is improved.
第5図の構造は、第2図の保護ダイオードで最も耐圧の
低い表面付近の接合部分のみをN−/N“の二重拡散構
造どし、耐圧を向上したものである。In the structure shown in FIG. 5, only the junction near the surface where the withstand voltage is the lowest in the protection diode shown in FIG. 2 is made into an N-/N" double diffusion structure to improve the withstand voltage.
第3図〜M5図の構造は、保護ダイオードを構成するブ
レーナ接合の局部的なブし−クダウンと電流集中で生じ
る永久破壊を防止する上で一定の効果を秦するものでは
あるが、何れも次のような問題を内包している。The structures shown in Figures 3 to M5 are effective to a certain extent in preventing permanent damage caused by local block-down and current concentration of the brainer junction constituting the protection diode, but none of them are effective. It includes the following problems:
即ち、これらの構造は保護ダイオードの逆方向耐圧を向
上する結果、所定の電圧以上のサージ入力に対してもブ
レークダウンを生じなくなり、保護ダイオードとしての
本来的な傭、能を果せなくなってしまう。In other words, as a result of these structures improving the reverse withstand voltage of the protection diode, breakdown does not occur even when a surge input of a predetermined voltage or higher occurs, and the protection diode is no longer able to fulfill its original function. .
また、第3図や第4図の構−造では未だ表面付近での耐
圧が相対的に低いため、ブレークダウン電流の集中を回
避する上で必ずしも十分とはいえない。Furthermore, in the structures shown in FIGS. 3 and 4, the withstand voltage near the surface is still relatively low, so it is not necessarily sufficient to avoid concentration of breakdown current.
本発明は上記事情に鑑みてなされたもので、絶縁ゲート
型電界効果半導体装置をサージ入力から保護のためにこ
れと同一の半導体基板に果情して形成されるゲート保護
ダイオードであって、ゲート保護の機能を十分に発揮で
きる程度の逆方向耐゛ 圧を有し、且つ基板表面付
近の接合部分で接合の永久破壊を起すような電流集中を
生じることがないゲート保護ダイオードを提供するもの
である。The present invention has been made in view of the above circumstances, and is a gate protection diode formed on the same semiconductor substrate for protecting an insulated gate field effect semiconductor device from surge input. The present invention provides a gate protection diode that has a reverse withstand voltage sufficient to perform its protective function and does not cause current concentration at the junction near the surface of the substrate that would cause permanent breakdown of the junction. be.
上記の目的を達成するためk、本発明ではゲート保護ダ
イオードを構成するブレーナ接合の底面における逆方向
耐圧を表面部分での逆方向耐圧上りも低くし、ブレーク
ダウン電流がプレーナ接合底面の広い面積を通して流れ
るようにして電流集中を防止すると共に、適当な逆方゛
向耐圧を(qるようにした。そのために、保護ダイオー
ドを構成するブレーナ接合の底面に接して基板と同極性
で且つ高濃度の不純物領域を形成した。In order to achieve the above object, the present invention lowers the reverse breakdown voltage at the bottom of the planar junction constituting the gate protection diode, and also reduces the rise in reverse breakdown voltage at the surface, so that the breakdown current passes through a wide area of the bottom of the planar junction. In addition to preventing current concentration, a suitable reverse breakdown voltage was created.For this purpose, a high-concentration diode with the same polarity as the substrate and in contact with the bottom surface of the Brenna junction that constitutes the protection diode was designed to prevent current concentration. An impurity region was formed.
即ち、本発明によるゲート保護ダイオードは、第一導電
型の半導体基板と、該半導体基板の表層に形成された第
二導電型不純物領域と、該第二導電型不純物領域の底面
に接してその下に形成された第一導電型のaa度不純物
領域と、前記第二導電型不純物領域を入力パッドに接続
する配線層と、前記半導体基板の他の領域に形成されて
いる絶縁ゲート型電界効果トランジスタのゲート電極に
前記第二導電型不純物領域を接続・する配線層とを具備
したことを特徴とするものである。That is, the gate protection diode according to the present invention includes a first conductivity type semiconductor substrate, a second conductivity type impurity region formed on the surface layer of the semiconductor substrate, and a second conductivity type impurity region in contact with and below the bottom surface of the second conductivity type impurity region. a first conductivity type AA degree impurity region formed in the first conductivity type impurity region, a wiring layer connecting the second conductivity type impurity region to an input pad, and an insulated gate field effect transistor formed in another region of the semiconductor substrate. The device is characterized in that the gate electrode is provided with a wiring layer that connects and connects the second conductivity type impurity region.
以下に本発明の詳細な説明する。 The present invention will be explained in detail below.
第1図は本発明の一実施例になるゲート保護ダイオード
を示す断面図である。同図において11はP型シリコン
基板、12はN+型不純物領域である。該N+型不純物
領域12の下には−1その底面に接してP+型不純物領
域13が形成されている。該P−“型不純物領域13の
濃度は基板′a度よりも1〜2桁高く設定されている。FIG. 1 is a sectional view showing a gate protection diode according to an embodiment of the present invention. In the figure, 11 is a P-type silicon substrate, and 12 is an N+ type impurity region. A P+ type impurity region 13 is formed below the N+ type impurity region 12 and in contact with the bottom surface thereof. The concentration of the P-type impurity region 13 is set to be one to two orders of magnitude higher than that of the substrate.
また、前記N1型領域12は配線層を介して入力パッド
に接続されると共に、基板1の他の領域に形成されたM
OSトランジスタのゲート電極に接続されている。Further, the N1 type region 12 is connected to the input pad via the wiring layer, and the N1 type region 12 is connected to the input pad via the wiring layer, and the M
Connected to the gate electrode of the OS transistor.
そして、前記N型不純物領域12とその周囲のP型領域
との間のブレーナ接合が保護ダイオードを構成しており
、該保護ダイオードは第2図で説明したと同様の入力保
!能を発揮する。The Brehner junction between the N-type impurity region 12 and the surrounding P-type region constitutes a protection diode, and the protection diode has the same input protection function as explained in FIG. Demonstrate one's abilities.
上記実施例のゲート保護ダイオードでは、N+型不純物
領域12のブレーナ接合底面に接してP1型不純物領1
iit13が設けられているため、ブレーナ接合底面部
分の逆方向耐圧が第2図のような通常のブレーナ(構造
の場合より多低くなっている。In the gate protection diode of the above embodiment, the P1 type impurity region 1 is in contact with the bottom surface of the Brainer junction of the N+ type impurity region 12.
Since the IIT 13 is provided, the reverse withstand pressure of the bottom surface of the brainer joint is much lower than that of a normal brainer (structure) as shown in FIG.
このP+型領域13による耐圧低下は該領域13の不純
物濃度によって定まる。そして、既に報告されている種
々のデニタからすれば、上記実施例のようにP+型不純
物領域13の濃度を基板濃度よりも1〜2桁高く設定す
ることによって、接合底面の耐圧を接合表面のブレーク
ダウン耐圧よりも低くすることは十分に可能である。こ
うして上記実施例の保護ダイオードでは接合底面の耐圧
の方が接合表面の耐圧よりも低くなっているから、ブレ
ークダウン電流はブレーナ接合底面の広い面積を通して
流れ、従来のように接合表面の狭い線状領域を通して流
れることはない。従って、サージに印加による接合の永
久破壊は次の理由で顕著に抑制されることになる。The reduction in breakdown voltage caused by this P+ type region 13 is determined by the impurity concentration of the region 13. According to various previously reported devices, by setting the concentration of the P+ type impurity region 13 one to two orders of magnitude higher than the substrate concentration as in the above embodiment, the withstand voltage at the bottom of the junction can be increased to that of the junction surface. It is quite possible to make the breakdown voltage lower than the breakdown voltage. In this way, in the protection diode of the above embodiment, the breakdown voltage at the bottom of the junction is lower than the breakdown voltage at the junction surface, so the breakdown current flows through a wide area at the bottom of the Brenna junction, and instead of flowing through a narrow line on the junction surface as in the conventional case. It does not flow through the realm. Therefore, permanent destruction of the bond due to the application of a surge is significantly suppressed for the following reasons.
一般的に、ブレーナ接合の・表層部分で局部的にブレー
クダウン電流が流れると、該電流で発生しブレークダウ
ン電流で温度が高くなった部分に更に電流が集中するこ
とになる。第1図のような一般的な構造のブレーナ接合
では、この電流集中が接合表面の狭い線状領域に起こる
ため接合破壊が生じ易い。これに対し、上記実施例では
接合底面の広い面積を通してブレークダウン電流が流れ
るから正のフィードバックで接合の熱破壊が生じる際の
電流閾値が大きく、従って同、じサージ電圧が印加され
た場合にも接合の永久破壊は発生し難くなるのである。Generally, when a breakdown current flows locally in the surface layer of a brainer junction, the current will further concentrate in the area where the temperature has increased due to the breakdown current generated by the current. In a brainer joint having a general structure as shown in FIG. 1, this current concentration occurs in a narrow linear region on the joint surface, and therefore joint breakdown is likely to occur. In contrast, in the above embodiment, the breakdown current flows through a wide area of the bottom surface of the junction, so the current threshold at which thermal breakdown of the junction occurs due to positive feedback is large, and therefore even when the same surge voltage is applied. Permanent destruction of the joint becomes less likely to occur.
また、上記第1図の実施例では第3図〜第5図の従来例
のような問題も生じない。即ち、第3図〜第5図の構造
ではダイオード全体としての逆耐圧が高くなるため、所
定の電圧よりも高いサージが印加された場合にもブレー
クダウンを起さず。Further, the embodiment shown in FIG. 1 does not have the problems that occur in the conventional example shown in FIGS. 3 to 5. That is, in the structures shown in FIGS. 3 to 5, the reverse breakdown voltage of the diode as a whole is high, so that breakdown does not occur even when a surge higher than a predetermined voltage is applied.
保護ダイオードとしての本来的な搬面を果さなくなる可
能性があるが、上記実施例の場合にはブレーナ接合底面
の逆耐圧を適当な電圧にまで下げているためゲート保護
の機能を十分に発揮させることができるという利点を有
している。Although there is a possibility that it will no longer fulfill its original purpose as a protection diode, in the case of the above example, the reverse withstand voltage at the bottom of the Brenna junction is lowered to an appropriate voltage, so the gate protection function is fully demonstrated. It has the advantage of being able to
次に上記実施例に特徴的な構造を形成するための方法に
ついて説明すると、この構造は例えば第6図(A)〜(
D)に示すようにして形成することができる。まず、同
図(A>に示すようにシリコン基板1.1に選択的に砒
素をイオン注入した後、これを低温で熱拡゛敗すること
により接合の浅いN1型不純物領域12′を形成する(
第6図(B)図示)。次いで該N4型不−純物°領、L
ii!12’のやや下に分布中心がくるような条件でボ
ロンを選択的にイオン注入し、その後高温で熱拡散する
ことにより、第6図(D)に示すように第1図の実施例
に特徴的な構造を形成することができる。Next, a method for forming a structure characteristic of the above embodiment will be explained. This structure is, for example, shown in FIGS.
It can be formed as shown in D). First, as shown in FIG. (
(Illustrated in FIG. 6(B)). Next, the N4 type impurity region, L
ii! By selectively implanting boron ions under conditions such that the center of distribution is located slightly below 12', and then thermally diffusing at high temperatures, the embodiment of FIG. 1 has the characteristics shown in FIG. 6(D). structure can be formed.
第7図は本発明の他の実施例になるゲート保護ダイオー
ドを示す断面図である。この実施例は第4図の従来の構
造に本発明を適用したもので、P9型領域13と接して
いる底面部分を除いて、N1型不純物置域12の周囲が
r4−型領域14で包摂された二重拡散構造なつ゛てい
る。それ以外の構成は第1図の実施例と同じである。こ
の第7図の実施例ではブレーナ接合表層部分の耐圧が第
1図の実施例の場合よりも高いから、P+型不純物領域
13の濃度は第1図の場合よりも低くても、接合成面の
耐圧を接合表層部の耐圧よりも低くして相対的な耐圧条
件を満すことができる。また拡散深度が浅くて接合表層
部のブレークダ、ウン耐圧が低い場合にも、N−型領域
14のm度や形状を変えることで保護ダイオードの逆方
向耐圧を適当な値に設定することができる。FIG. 7 is a sectional view showing a gate protection diode according to another embodiment of the present invention. In this embodiment, the present invention is applied to the conventional structure shown in FIG. It has a double diffusion structure. The rest of the structure is the same as the embodiment shown in FIG. In the embodiment shown in FIG. 7, the withstand voltage at the surface layer of the Brainer junction is higher than that in the embodiment shown in FIG. It is possible to satisfy the relative pressure requirements by lowering the breakdown voltage of the bonded surface layer to be lower than that of the bonded surface layer. Furthermore, even when the diffusion depth is shallow and the breakdown voltage of the junction surface layer is low, the reverse breakdown voltage of the protection diode can be set to an appropriate value by changing the degree and shape of the N-type region 14. .
第8図は本発明を第5図の従来の構造に適用した更に5
jJ′の実施例を示す断面図で、N+型不純物領域12
の表層部分周囲にのみN−型領域14′を形成したもの
である。この実施例でも第7図の実施例と同様の効果が
得られ、特にP+型不純物領域13の濃度は第7図の場
合よりも更に低くてすむ。 −
なお、上記の実施例は何れもP型基板を用いているが、
本発明のゲート保護ダイオードはN型基板を用いて同様
に構成できることはいうまでもない。FIG. 8 shows a further structure in which the present invention is applied to the conventional structure shown in FIG.
jJ' is a cross-sectional view showing an embodiment of N+ type impurity region 12.
An N-type region 14' is formed only around the surface layer. This embodiment also provides the same effect as the embodiment shown in FIG. 7, and in particular, the concentration of the P+ type impurity region 13 can be lower than that in the case shown in FIG. - Although the above embodiments all use a P-type substrate,
It goes without saying that the gate protection diode of the present invention can be similarly constructed using an N-type substrate.
第1図は本発明の一実施例になるゲート保護ダイオード
を示す断面図、第2図はゲート保護ダイオードの最も基
本的な(を造を示す断面図、第3図〜第5図は夫々第2
図の構造を改良した従来のゲート保護ダイオードを示す
断面図、第6図t (A )〜(D)は電1区の実施例
に特徴的な構造を°形成する方法の一例を示す説明図、
第7図および第8図は夫々本発明の池の実施例に、なる
ゲート保護ダイオードの断面図である。
11・・・P型シリコン基板、12.12’・・・N+
型不純物領域、13・・・P+型不純物領域、14゜1
4′・・・N−型不純物領域。
出願人代理人 弁理士 鈴江武彦
第1図
一
第。図 is図
第6図
1NINilil
illiHFIG. 1 is a sectional view showing a gate protection diode according to an embodiment of the present invention, FIG. 2 is a sectional view showing the most basic structure of a gate protection diode, and FIGS. 2
A cross-sectional view showing a conventional gate protection diode with an improved structure shown in the figure, and FIGS. ,
7 and 8 are cross-sectional views of gate protection diodes according to embodiments of the present invention, respectively. 11...P-type silicon substrate, 12.12'...N+
Type impurity region, 13...P+ type impurity region, 14°1
4'...N-type impurity region. Applicant's agent Patent attorney Takehiko Suzue Figure 1, Figure 1. Figure isFigure 6Figure 1NINilil illiH
Claims (1)
成された第二導電型不純物領域と、該第二導電型不純物
領域の底面に接してその下に形成された第一導電型の高
濃度不純物領域と、前記第二導電型不純物領域を入力パ
ッドに接続する配線層と、前記半導体基板の他の領域に
形成されている絶縁ゲート型電界効果トランジスタのゲ
ート電極に前記第二導電型不純物領域を接続する配線層
とを具備したことを特徴とするゲート保護ダイオード。A first conductivity type semiconductor substrate, a second conductivity type impurity region formed on the surface layer of the semiconductor substrate, and a first conductivity type impurity region formed below and in contact with the bottom surface of the second conductivity type impurity region. The second conductivity type impurity is applied to a concentrated impurity region, a wiring layer connecting the second conductivity type impurity region to an input pad, and a gate electrode of an insulated gate field effect transistor formed in another region of the semiconductor substrate. A gate protection diode characterized by comprising a wiring layer connecting regions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15671484A JPS6135568A (en) | 1984-07-27 | 1984-07-27 | Gate protecting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15671484A JPS6135568A (en) | 1984-07-27 | 1984-07-27 | Gate protecting diode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6135568A true JPS6135568A (en) | 1986-02-20 |
Family
ID=15633730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15671484A Pending JPS6135568A (en) | 1984-07-27 | 1984-07-27 | Gate protecting diode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6135568A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03129779A (en) * | 1989-07-12 | 1991-06-03 | Fuji Electric Co Ltd | High voltage semiconductor device |
DE10343681A1 (en) * | 2003-09-18 | 2005-05-12 | Atmel Germany Gmbh | Semiconductor structure and its use, in particular for limiting overvoltages |
EP1734161A2 (en) | 2005-06-02 | 2006-12-20 | Kabushiki Kaisha Toyota Jidoshokki | Fiber bundle guiding device in spinning machine, and draft machine of spinning frame |
US8907424B2 (en) | 2012-04-10 | 2014-12-09 | Mitsubishi Electric Corporation | Protection diode |
-
1984
- 1984-07-27 JP JP15671484A patent/JPS6135568A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03129779A (en) * | 1989-07-12 | 1991-06-03 | Fuji Electric Co Ltd | High voltage semiconductor device |
DE10343681A1 (en) * | 2003-09-18 | 2005-05-12 | Atmel Germany Gmbh | Semiconductor structure and its use, in particular for limiting overvoltages |
US7009256B2 (en) | 2003-09-18 | 2006-03-07 | Atmel Germany Gmbh | Semiconductor over-voltage protection structure for integrated circuit and for diode |
DE10343681B4 (en) * | 2003-09-18 | 2007-08-09 | Atmel Germany Gmbh | Semiconductor structure and its use, in particular for limiting overvoltages |
EP1734161A2 (en) | 2005-06-02 | 2006-12-20 | Kabushiki Kaisha Toyota Jidoshokki | Fiber bundle guiding device in spinning machine, and draft machine of spinning frame |
US8907424B2 (en) | 2012-04-10 | 2014-12-09 | Mitsubishi Electric Corporation | Protection diode |
US9202908B2 (en) | 2012-04-10 | 2015-12-01 | Mitsubishi Electric Corporation | Protection diode |
US9202907B2 (en) | 2012-04-10 | 2015-12-01 | Mitsubishi Electric Corporation | Protection diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02275675A (en) | MOS type semiconductor device | |
JPH04767A (en) | MOS type semiconductor device | |
JPS5998557A (en) | Mos transistor | |
JP3404036B2 (en) | PISO electrostatic discharge protection device | |
JPS6135568A (en) | Gate protecting diode | |
JP3389782B2 (en) | Semiconductor device | |
JPH02238668A (en) | Semiconductor device | |
JPH0393265A (en) | Semiconductor integrated circuit | |
US5521413A (en) | Semiconductor device having a solid metal wiring with a contact portion for improved protection | |
JPH01280359A (en) | Insulated gate semiconductor device | |
JPS6047470A (en) | Semiconductor device | |
JPS6290964A (en) | integrated circuit protection structure | |
JPH0235778A (en) | semiconductor equipment | |
JPS58210677A (en) | Field effect transistor | |
JPS59132673A (en) | MOS transistor | |
JPH0258864A (en) | Semiconductor device | |
JPH0410228B2 (en) | ||
JPH0330476A (en) | Mis transistor and protective circuit provided therewith | |
JPS62279675A (en) | Protective circuit for semiconductor integrated circuit | |
JPH0434963A (en) | Semiconductor device | |
JPH08204175A (en) | Vertical MOS transistor | |
JPH04350974A (en) | Semiconductor device | |
JP2949769B2 (en) | Semiconductor input protection device | |
JPS61274343A (en) | Semiconductor device | |
JPS6114764A (en) | Insulated gate field effect transistor |