JPS6114764A - Insulated gate field effect transistor - Google Patents
Insulated gate field effect transistorInfo
- Publication number
- JPS6114764A JPS6114764A JP59134450A JP13445084A JPS6114764A JP S6114764 A JPS6114764 A JP S6114764A JP 59134450 A JP59134450 A JP 59134450A JP 13445084 A JP13445084 A JP 13445084A JP S6114764 A JPS6114764 A JP S6114764A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- region
- field effect
- effect transistor
- insulated gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/611—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using diodes as protective elements
Landscapes
- Amplifiers (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Protection Of Static Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は絶縁ゲート型電界効果トランジスタ、特にゲー
トの電気的絶縁破壊を防止する保護用ダイオードを内蔵
する絶縁ゲート型電界効果トランジスタに関するもので
ある。絶縁ゲート型電界効果トランジスタはその構造上
、ゲートに高電圧が印加されるとゲート絶縁膜が破壊す
る−1− 07/
′Iことがある。この絶縁破壊現象はゲートに故意に高
電圧を印加した場合に限らず、静宣気の帯電でも生じる
。そこで、絶縁破壊を防止する為の保設用ダイオードが
内蔵されているものがある。第1図は従来の保護用ダイ
オードを内蔵した絶縁ゲート型電界効果トランジスタを
しめず断面構造図である。第11で1はP型の半導体基
体であり、いわゆるnチャネルM OS F’ E 1
’の例である。ゲートi11.fftioはオーミック
用金属12と配線金属により作誇用ダイオードのオーミ
ック電極14に接続される。保両用ダイオードの接合部
はP十領斌の4及びn十領替の5で形成される。このP
+n十接合の降伏電圧はゲートの絶縁破壊′@1圧以下
でなければ意味をなさず、また通常ゲートに印加される
電圧範囲例えばO〜20V以上でないとトランジスター
としての動作ができなくなる。Pn 接合の降伏電圧
は不純物濃度あるいは接合の深さに関係する。従来P
領域4の不純物濃度を制御し、あるいは拡散によりP
及びn 領域が横方向に伸び互いにぶつかり合った時の
不純物濃度が最適となるように領域4及び5の間隔を選
ぶ等の方法で降伏電圧が制御されていた。前記のように
第1図のような従来の絶縁ゲート型電界効果トランジス
タでは次の幼を有していた。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect transistor, and more particularly to an insulated gate field effect transistor incorporating a protection diode for preventing electrical breakdown of the gate. Due to the structure of an insulated gate field effect transistor, when a high voltage is applied to the gate, the gate insulating film is destroyed -1- 07/
'I have something to do. This dielectric breakdown phenomenon occurs not only when a high voltage is intentionally applied to the gate, but also when static air is charged. Therefore, some devices have a built-in diode for protection to prevent dielectric breakdown. FIG. 1 is a schematic cross-sectional view of a conventional insulated gate field effect transistor incorporating a protection diode. In the eleventh column, 1 is a P-type semiconductor substrate, which is a so-called n-channel MOS F' E 1
' is an example. Gate i11. fftio is connected to the ohmic electrode 14 of the active diode by the ohmic metal 12 and wiring metal. The junction of the diode for protection is formed by 4 of P and 5 of n and 10. This P
The breakdown voltage of the +n junction is meaningless unless the dielectric breakdown of the gate is less than 1 voltage, and it cannot function as a transistor unless it is in the voltage range normally applied to the gate, for example, 0 to 20 V or more. The breakdown voltage of a Pn junction is related to the impurity concentration or the depth of the junction. Conventional P
By controlling the impurity concentration in region 4 or by diffusion,
The breakdown voltage was controlled by such methods as selecting the spacing between regions 4 and 5 so that the impurity concentration would be optimal when the and n regions extended laterally and collided with each other. As mentioned above, the conventional insulated gate field effect transistor as shown in FIG. 1 has the following characteristics.
(1)P 領域4の形成が必要で工程数が多くなる。(1) It is necessary to form the P region 4, which increases the number of steps.
(2)P 領域4の不純物濃度制御が必要で高度な技
術が必要な為、高価となり、又歩留も低下させる。(2) Since it is necessary to control the impurity concentration of the P region 4 and requires advanced technology, it becomes expensive and also reduces the yield.
(3)ゲート絶縁耐圧はゲート絶縁膜6の膜厚に依存す
る為、膜厚をかえた機種毎に領域4の形成条件をかえる
必要が生じる。(3) Since the gate dielectric breakdown voltage depends on the thickness of the gate insulating film 6, it is necessary to change the conditions for forming the region 4 for each model with a different film thickness.
本発明は前記の従来型の欠点を解決した絶縁ゲート型電
界効果トランジスタの新規な構造を提供するものであり
、構造及び製造工程を簡単化でき、安価で高信頼度の絶
縁ゲート型電界効果トランジスタを得ることができる。The present invention provides a novel structure of an insulated gate field effect transistor that solves the above-mentioned drawbacks of the conventional type, and provides an inexpensive and highly reliable insulated gate field effect transistor that can simplify the structure and manufacturing process. can be obtained.
以下図面を用いて本発明を詳述する。The present invention will be explained in detail below using the drawings.
〔実施例1〕
第2図は本発明の一例を示す断面構造図であり、第3図
a)〜d)はその概略製造工程を示すものである。第3
図a)は周知の方法例えば、熱酸化−写真処理−エツチ
ングで周辺部に選択的に酸化膜を形成した状態を示して
いる。b)は酸化膜の形成されてなかった部分に周知の
方法でゲート酸化膜を形成したところである。C)はゲ
ート型lto及び本発明の特長である保護用ダイオード
領域上に絶縁膜を介して電気伝導膜を積層した第2ゲー
ト電極16を形成したものである。[Example 1] FIG. 2 is a cross-sectional structural diagram showing an example of the present invention, and FIGS. 3 a) to 3 d) schematically show the manufacturing process thereof. Third
Figure a) shows a state in which an oxide film is selectively formed in the peripheral area by a well-known method such as thermal oxidation, photographic processing, and etching. In b), a gate oxide film was formed by a well-known method on a portion where no oxide film was formed. C) is a gate type ITO and a second gate electrode 16 formed by laminating an electrically conductive film on the protective diode region with an insulating film interposed therebetween, which is a feature of the present invention.
本実施例では通常のCVD法でポリシリコンを全面に形
成し、しかる後通常の写真処理と工。In this example, polysilicon is formed on the entire surface using the usual CVD method, and then is subjected to normal photo processing.
チングで形成した。このポリシリコンをマスクとしてゲ
ート酸化膜をエツチングで除去し、し散性でドレイン2
、ソース3及び保護用ダイオードのn 領域5を形成す
る。このとき、ポリシリコン中にもリンが拡散され、ポ
リシリコンの抵抗イ1^はゲート用電気伝導膜として十
分な抵抗値に下る。その?LA常の方法でオーミック電
極用金属例えばAIを形成すると第2図のごとくなる。It was formed by ching. Using this polysilicon as a mask, the gate oxide film is removed by etching, and the drain 2
, the source 3 and the n-region 5 of the protection diode are formed. At this time, phosphorus is also diffused into the polysilicon, and the resistance I1^ of the polysilicon decreases to a resistance value sufficient for use as an electrically conductive film for a gate. the? When a metal for an ohmic electrode, such as AI, is formed by a conventional LA method, the result is as shown in FIG.
ゲート電極12と保護用ダイオードの電極14とは特に
図示していないが、表面上でAI配線により結合させて
おくと良い、ソース電極13は第2ゲート電極16に電
気的に結合させておくことが必要である。Although the gate electrode 12 and the electrode 14 of the protective diode are not particularly shown, it is preferable to connect them on the surface with AI wiring, and the source electrode 13 should be electrically connected to the second gate electrode 16. is necessary.
本実施例では絶縁膜6(ゲート酸化膜)の厚さを110
0nとしソースを基体1と短絡させた状態でソース・保
護用ダイオード間に電圧を印加し、保護用ダイオードの
降伏電圧を調べたところ約35Vであった。ゲート絶縁
膜6の耐圧は50V以上あることが別途確認されており
。In this example, the thickness of the insulating film 6 (gate oxide film) is 110 mm.
A voltage was applied between the source and the protection diode with the source short-circuited to the substrate 1, and the breakdown voltage of the protection diode was examined and found to be about 35V. It has been separately confirmed that the gate insulating film 6 has a breakdown voltage of 50V or more.
またこの種の電界効果トランジスタのゲート印加電圧は
O〜20Vの範囲であり、保護用ダイオードの降伏電圧
としては最適であることが確認された。また、ゲート酸
化膜厚さを80nm及び200nmとしたとき、絶縁耐
圧はそれぞれ40V以上及び100V以上であるのに対
し、係挿用ダイオードの降伏電圧はそれぞれ約32V及
び40Vと自動的に変化することが確認できた。さらに
それぞれの場合の降伏電圧はP型基体1の不純物濃度に
は無関係で第2ゲート電棒16下の絶縁膜6゛の厚みの
みに関係することが確認された。例えば絶縁膜6°(酸
化膜)厚を120nm一定とし、P型基体1の不純物濃
度を約5x10’cI11 ’から2X1o5 ”t
で変えて実験したところ降伏電圧はいずれも約36■で
一定であった。降伏電圧について上述のごとき現象が生
じる理由については次のことが推定される。第4図はこ
れを説明する為、第2図の保護用ダイオード部分を拡大
したものである。Furthermore, it was confirmed that the gate applied voltage of this type of field effect transistor is in the range of 0 to 20 V, which is optimal as the breakdown voltage of the protective diode. Furthermore, when the gate oxide film thickness is 80 nm and 200 nm, the dielectric breakdown voltage is 40 V or more and 100 V or more, respectively, whereas the breakdown voltage of the interlocking diode automatically changes to about 32 V and 40 V, respectively. was confirmed. Furthermore, it has been confirmed that the breakdown voltage in each case has nothing to do with the impurity concentration of the P-type substrate 1 and is related only to the thickness of the insulating film 6' under the second gate electrode 16. For example, if the thickness of the insulating film 6° (oxide film) is constant at 120 nm, the impurity concentration of the P-type substrate 1 is changed from approximately 5x10'cI11' to 2X1o5't.
When experiments were carried out by changing the voltage, the breakdown voltage was constant at about 36 .ANG. The reason why the above-mentioned phenomenon occurs regarding the breakdown voltage is presumed to be as follows. In order to explain this, FIG. 4 is an enlarged view of the protective diode portion of FIG. 2.
ソース・ゲート間に電圧が印加されると保護用ダイオー
ドは逆バイアスされることになり17で示す空乏層が形
成される。空乏層のひろがり幅はプレナ接合の為1表面
近傍で狭くなるが、第2ゲート電極16のある側(4)
では16がソースと短絡されている為アース電位となり
、空乏層のひろがりを押える。その為、第2ゲート電極
16のない場合(I3)よりはるかに空乏層が狭くなり
、より低い電圧で降伏が生じる。この第2ゲート電極が
空乏層のひろがりを押える効果は基体lの不純物浪度で
はなく M OS F E Tのゲート電極によるチャ
ネル形成と同様絶縁膜即ち酸化膜厚1こより決定される
。本発明の現象は上記理由にもとづいていると考えられ
る。第2ゲート電極16は保護用ダイオードのPN接合
を表面に露出する部分全体をおおっても良いが、PN接
合は1ケ所でも弱い所があればその部分から降伏が生じ
る。従って第2ゲート電極16は一部に形成されてあれ
ば良い。When a voltage is applied between the source and the gate, the protective diode is reverse biased and a depletion layer shown at 17 is formed. The width of the depletion layer is narrower near the first surface due to the planar junction, but on the side where the second gate electrode 16 is located (4)
Since 16 is short-circuited with the source, it becomes a ground potential, suppressing the expansion of the depletion layer. Therefore, the depletion layer becomes much narrower than in the case (I3) without the second gate electrode 16, and breakdown occurs at a lower voltage. The effect of this second gate electrode in suppressing the spread of the depletion layer is determined not by the degree of impurity in the substrate 1 but by the thickness of the insulating film, that is, the oxide film, similar to the channel formation by the gate electrode of the MOS FET. It is believed that the phenomenon of the present invention is based on the above reasons. The second gate electrode 16 may cover the entire exposed surface of the PN junction of the protection diode, but if the PN junction has even one weak spot, breakdown will occur from that spot. Therefore, the second gate electrode 16 only needs to be formed in a portion.
〔実施例2〕
縦型MO8FBT(以下vDMO8と略す)に適用した
例を第5図に示す。VDMO8は、〔実施例1〕の基体
領域1に相当する部分が拡散層で形成され、チャネル形
成に必要な低濃度基体領域1と高耐圧化とオーミ、り性
を良くする為の高濃度で深い拡散領域18よりなる。従
来法で保護用ダイオードを形成した場合、高濃度領域1
8内にダイオード用n 領域を形成したのではダイオー
ドの降伏電圧が低すぎ(通常5〜SV)、低濃度のP形
領斌1内に形成するのみでは逆に降伏電圧が高くなりす
ぎて役に立たなくなる(通常50〜100V)。本発明
は低濃度のP型領域1内にn+領穢5を形成するととも
に第2ゲート1t、ff116をもうけることで〔実施
例1〕と同様最適降伏電圧を得ることができた。[Example 2] FIG. 5 shows an example in which the present invention is applied to a vertical MO8FBT (hereinafter abbreviated as vDMO8). In VDMO8, a portion corresponding to the base region 1 of [Example 1] is formed of a diffusion layer, and a low concentration base region 1 necessary for channel formation and a high concentration base region 1 necessary for forming a channel and a high concentration for improving resistance to high voltage and ohmic resistance are formed. It consists of a deep diffusion region 18. When a protective diode is formed using the conventional method, the high concentration region 1
If the n region for the diode is formed within the region 8, the breakdown voltage of the diode will be too low (usually 5 to SV), and if it is formed only within the low concentration P region 1, the breakdown voltage will be too high to be useful. (usually 50-100V). In the present invention, by forming the n+ region 5 in the lightly doped P-type region 1 and providing the second gate itt and ff116, it was possible to obtain the optimum breakdown voltage as in [Embodiment 1].
以上P型基体領域1を用いたnチャオル型について説明
したが、n型基体を用いたPチャネル型に対しても適用
されることは当然である。Although the explanation has been given above regarding the n-channel type using the P-type substrate region 1, it goes without saying that the present invention can also be applied to the P-channel type using the n-type substrate.
即ちいづわの場合も均尋な導電型の変換は本発明の範囲
に含まれる。In other words, uniform conductivity type conversion is also included in the scope of the present invention.
以上のごとく本発明の、!’!!縁ゲートグー界効果ト
ランジスタはゲートの電気的絶縁破壊を有効に防止する
ごとく、保護用ダイオードを内破せしめ、構造及び製造
工程を単純化し、安価で信頼度の高いものを提供でき、
産業上極めて効果大なるものである。As described above, the present invention! '! ! Edge-gate field effect transistors have a protective diode that implodes to effectively prevent electrical breakdown of the gate, simplify the structure and manufacturing process, and provide low-cost and highly reliable transistors.
This is extremely effective in industry.
第1図は従来の絶縁ゲート電界効果トランジスタの断面
構造図、vgz図及び第5図は本発明の実施例の断面構
造図、第3図は第2図の実施例のための製造工程図、第
4図は第2図の保護用ダイオード部分の拡大構造図であ
る。1は牛導体基体、2はドレイン領域、3はソース領
域、4は保護用ダイオードの基体と同一導電型領域、5
は保護用ダイオードの基体と逆導w1型領域、6は主ゲ
ート絶縁膜、6は第2ゲート絶縁膜、7.8及び9はパ
シベーション用絶縁膜、10は主ゲート電極、11.1
2.13.14及び15はオーミ、り用金網、16は第
2ゲート電極、17は空乏層、18は高濃度領域である
。
特許出願人 新電元工業株式会社
’ −37:
D G−9
竿 1 口
第2囚
第5図FIG. 1 is a cross-sectional structural diagram of a conventional insulated gate field effect transistor, a VGZ diagram and FIG. 5 are cross-sectional structural diagrams of an embodiment of the present invention, and FIG. 3 is a manufacturing process diagram for the embodiment of FIG. FIG. 4 is an enlarged structural diagram of the protective diode portion of FIG. 2. 1 is a conductor substrate, 2 is a drain region, 3 is a source region, 4 is a region of the same conductivity type as the substrate of the protection diode, 5
11.1 is the base of the protection diode and the reverse conduction w1 type region, 6 is the main gate insulating film, 6 is the second gate insulating film, 7.8 and 9 are the passivation insulating films, 10 is the main gate electrode, 11.1
2.13.14 and 15 are ohmic wire meshes, 16 is a second gate electrode, 17 is a depletion layer, and 18 is a high concentration region. Patent Applicant Shindengen Kogyo Co., Ltd. -37: D G-9 Rod 1 Mouth 2nd Prisoner Figure 5
Claims (1)
イン及び保護用ダイオードの領域を形成し、該保護用ダ
イオード領域のPN接合が該一表面に露出する部分の少
くとも一部を絶縁膜上に積層した電気伝導膜からなる第
2ゲート電極でおおい、且つ、該第2ゲート電極を該ソ
ース領域と電気的に接続したことを特徴とする絶縁ゲー
ト型電界効果トランジスタ。A source, a drain, and a protective diode region having the same conductivity type are formed on one surface of a semiconductor substrate, and at least a part of the portion of the protective diode region where the PN junction is exposed on the one surface is formed on an insulating film. An insulated gate field effect transistor characterized by being covered with a second gate electrode made of a laminated electrically conductive film, and the second gate electrode is electrically connected to the source region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59134450A JPS6114764A (en) | 1984-06-29 | 1984-06-29 | Insulated gate field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59134450A JPS6114764A (en) | 1984-06-29 | 1984-06-29 | Insulated gate field effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6114764A true JPS6114764A (en) | 1986-01-22 |
JPH043671B2 JPH043671B2 (en) | 1992-01-23 |
Family
ID=15128628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59134450A Granted JPS6114764A (en) | 1984-06-29 | 1984-06-29 | Insulated gate field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6114764A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8294218B2 (en) | 2005-09-15 | 2012-10-23 | Texas Instruments Incorporated | Method of fabricating an integrated circuit with gate self-protection, and an integrated circuit with gate self-protection |
-
1984
- 1984-06-29 JP JP59134450A patent/JPS6114764A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8294218B2 (en) | 2005-09-15 | 2012-10-23 | Texas Instruments Incorporated | Method of fabricating an integrated circuit with gate self-protection, and an integrated circuit with gate self-protection |
Also Published As
Publication number | Publication date |
---|---|
JPH043671B2 (en) | 1992-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4990976A (en) | Semiconductor device including a field effect transistor having a protective diode between source and drain thereof | |
JPS61248555A (en) | Planar semiconductor device having guard construction and manufacture thereof | |
JP2950025B2 (en) | Insulated gate bipolar transistor | |
JPH0770685B2 (en) | Complementary MIS semiconductor integrated circuit | |
JPH0652792B2 (en) | Semiconductor device | |
JP3590207B2 (en) | MOS capacitor | |
US6399989B1 (en) | Radiation hardened silicon-on-insulator (SOI) transistor having a body contact | |
JP2690242B2 (en) | Semiconductor fixed storage device | |
JP2658842B2 (en) | Semiconductor device | |
US6716728B2 (en) | Radiation hardened silicon-on-insulator (SOI) transistor having a body contact | |
JPS6114764A (en) | Insulated gate field effect transistor | |
JPS6123669B2 (en) | ||
JPS63194367A (en) | semiconductor equipment | |
JPH02110976A (en) | Insulated gate semiconductor device | |
JPS6290964A (en) | integrated circuit protection structure | |
JP3334027B2 (en) | High breakdown voltage horizontal semiconductor device | |
JP3217552B2 (en) | Horizontal high voltage semiconductor device | |
JP2508826B2 (en) | Semiconductor device | |
JP2684712B2 (en) | Field effect transistor | |
JP2948256B2 (en) | Method for manufacturing semiconductor memory device | |
JP2601664B2 (en) | Insulated gate field effect semiconductor device | |
JPS6359262B2 (en) | ||
JP3130645B2 (en) | High voltage MOS transistor | |
JP2546179B2 (en) | Semiconductor device | |
JPS627710B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |