[go: up one dir, main page]

JPH02238668A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02238668A
JPH02238668A JP1059102A JP5910289A JPH02238668A JP H02238668 A JPH02238668 A JP H02238668A JP 1059102 A JP1059102 A JP 1059102A JP 5910289 A JP5910289 A JP 5910289A JP H02238668 A JPH02238668 A JP H02238668A
Authority
JP
Japan
Prior art keywords
well
drain
gate
substrate
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1059102A
Other languages
Japanese (ja)
Other versions
JP2676888B2 (en
Inventor
Takumi Miyashita
工 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1059102A priority Critical patent/JP2676888B2/en
Publication of JPH02238668A publication Critical patent/JPH02238668A/en
Application granted granted Critical
Publication of JP2676888B2 publication Critical patent/JP2676888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To suppress gate breakdown of an FET constituting a protective element for preventing electrostatic breakdown of an LSI by connecting the drain of the electrostatic breakdown protective element to an input wiring, the source thereof to a power source wiring, and the gate thereof to a well. CONSTITUTION:A p<-->-type well 13 is formed in an element forming region in a separating oxide film 12 formed on a p<-->-type Si substrate or a p<-->-type epitaxial layer 11. Then, a gates 15, 15A are formed on the well 13 via a gate oxide film 14, and an n<+>-type drain 16, sources 17, 17A are formed to have LDD structure in the well 13, and p<+>-type well contact regions 18, 18A, 22 are formed in the well 13. The gates 15, 15A are connected to the well 13 at a contact hole 24 by a wiring 23 via contact holes 25, 25A. Thus, gate breakdown of an FET, constituting a protective element for preventing electrostatic breakdown of an LSI, can be suppressed.

Description

【発明の詳細な説明】 (概要〕 静電破壊(ESD)保護素子を有する半導体装置に関し
, 素子の微細化に対応して, LSIの静電破壊を防止す
る保護素子を構成するFETのゲート破壊を抑止する構
造を得ることを目的とし (1)一導電型半導体基板内の表層部に該基板より不純
物濃度の高い一導電型ウェルと.該一導電型ウェル内の
表層部にチャネル頭域を隔てて反対導電型のソース及び
ドレインと,該基板表面にゲー1・絶縁膜を介してチャ
ネル領域上にゲートと該一導電型ウェル内の表層部に一
導電型ウェルコンタクト領域と,該基板上に入力端子と
人力回路を接続する入力配線及び電源配線とを有し,該
ドレイン又はソースが該入力配線に,該ソース又はドレ
イン及び該ウェルコンタクト領域が該電源配線V,,(
接地電位)又はVcc (電源電位)に,該ゲートが該
一導電型ウェルにそれぞれ接続されている,或いは (2)上記(1)において,入力配線に接続されたソー
ス又はドレインの中央部の領域が該基板内に端部の領域
が該一導電型ウェル内に形成されている,或いは, (3)上記(2)において,該基板内に,入力配線に接
続されたソース又はドレインの中央部の領域に接して反
対導電型ウェルを有する構成する。
[Detailed Description of the Invention] (Summary) Regarding semiconductor devices having electrostatic discharge damage (ESD) protection elements, in response to the miniaturization of elements, gate destruction of FETs constituting protection elements for preventing electrostatic discharge damage in LSIs has been developed. (1) A well of one conductivity type with a higher impurity concentration than the substrate is formed in the surface layer of a semiconductor substrate of one conductivity type.A channel head area is formed in the surface layer of the well of one conductivity type. A source and a drain of opposite conductivity types separated from each other, a gate on the channel region via a gate insulating film on the surface of the substrate, a well contact region of one conductivity type on the surface layer of the well of the one conductivity type, has an input wiring and a power supply wiring for connecting an input terminal and a human power circuit, the drain or source is connected to the input wiring, and the source or drain and the well contact region are connected to the power supply wiring V,, (
(2) In (1) above, the central region of the source or drain connected to the input wiring; (3) In (2) above, the central part of the source or drain connected to the input wiring is formed in the substrate in the one conductivity type well, or (3) in (2) above, The structure has a well of an opposite conductivity type in contact with the region.

(産業上の利用分野〕 本発明は静電破壊保護素子を有する半導体装置に関する
(Industrial Application Field) The present invention relates to a semiconductor device having an electrostatic discharge protection element.

LSIの高集積化,面積及び厚み方向の微細化により,
 ESD保護素子は保護すべき素子とともに破壊電圧V
Bの低下,ゲート酸化膜の耐圧低下により破壊しやすく
なるため, ESD保護素子自身が破壊しに<<,且つ
保護すべき素子の耐圧以下に電圧ストレスを緩和できる
ような保護素子構造が必要となる。
Due to the high integration of LSI and miniaturization in area and thickness direction,
The ESD protection element and the element to be protected have a breakdown voltage of V.
Since the ESD protection element itself becomes easily destroyed due to a decrease in B and a decrease in the withstand voltage of the gate oxide film, a protection element structure is required that prevents the ESD protection element itself from being destroyed and that can reduce the voltage stress to a level below the withstand voltage of the element to be protected. Become.

〔従来の技術〕[Conventional technology]

第6図の等価回路図に示される保護素子を構成するFE
T  T+ のゲート酸化膜の破壊を防くため従来は,
ゲートードレイン間容量Cと1ゲー1・ソース間に挿入
した抵抗Rの積C−17を利用してバット(LSIの入
力端子)より入ってくる電圧ストレスを緩和していた。
FE constituting the protection element shown in the equivalent circuit diagram of Fig. 6
In order to prevent the destruction of the gate oxide film of T T+, conventionally,
The product C-17 of the gate-drain capacitance C and the resistance R inserted between the gate and the source was used to alleviate the voltage stress coming from the bat (the input terminal of the LSI).

第7図(1), (2)は従来例QこよるESC保護素
子の断面図と平面図である。
FIGS. 7(1) and 7(2) are a sectional view and a plan view of an ESC protection element according to conventional example Q.

図において,1は基板, IAは拡散層,2は入力配線
5に接続されるソース/ドレイン電極,3は電源配線6
に接続されるドレイン/ソース電極,4はゲー1〜で,
5はLSIのバッドと人力回路間の入力配線.6は電源
配線(Vcc/Vss) ,抵抗Rを経由して電源配線
6にコンタクトホール7で接続される。
In the figure, 1 is the substrate, IA is the diffusion layer, 2 is the source/drain electrode connected to the input wiring 5, and 3 is the power supply wiring 6.
The drain/source electrode connected to, 4 is the gate 1~,
5 is the input wiring between the LSI pad and the human circuit. 6 is connected to the power supply wiring 6 via a power supply wiring (Vcc/Vss) and a resistor R through a contact hole 7.

又,この素子は基板内に形成されたウェルIB内に形成
される場合もある。
Alternatively, this element may be formed within a well IB formed within the substrate.

素子の微細化によりFET T,のゲート破壊耐圧が低
下し,又, FET T,がLDD (Lightly
 DopedDrain)構造である場合は,接合の空
乏層の広がりが大きくなるため容量Cが小さくなる等の
理由で電圧ストレス印加時のゲート電圧の追従が不十分
になり, FET T+は破壊ずるようになる。
Due to the miniaturization of devices, the gate breakdown voltage of FET T is decreasing, and FET T is becoming LDD (Lightly
In the case of a DopedDrain) structure, the depletion layer of the junction expands and the capacitance C decreases, making it insufficient to follow the gate voltage when voltage stress is applied, causing the FET T+ to break down. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は素子の微細化に対応して, LSIの静電破壊
を防止する保護素子を構成するFETのゲート破壊を抑
止する構造を得ることを目的とする。
In response to the miniaturization of elements, the present invention aims to provide a structure that suppresses gate breakdown of an FET that constitutes a protection element that prevents electrostatic discharge breakdown in LSI.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記課題の解決は (1)一導電型半導体基板内の表層部に該基板より不純
物濃度の高い一導電型ウェルと.該一導電型ウェル内の
表層部にチャネル領域を隔てて反対導電型のソース及び
ドレインと,該基板表面にゲート絶縁膜を介してチャネ
ル領域上にゲートと,該一導電型ウェル内の表層部に一
導電型ウェルコンタクト領域と1該基板上に入力端子と
入力回路を接続する入力配線及び電源配線とを有し.該
ドレイン又はソースが該入力配線に,該ソース又はドレ
イン及び該ウェルコンタクI−領域が該電源配線v55
(接地電位)又はVcc (電源電位)に,該ゲートが
該一導電型ウェルにそれぞれ接続されている半導体装置
,或いは, (2)上記(1)において.入力配線に接続されたソー
ス又はドレインの中央部の領域が該基板内に,端部の領
域が該一導電型ウェル内に形成されている半導体装置,
或いは (3)上記(2)において,該基板内に入力配線に接続
されたソース又はドレインの中央部の領域に接して反対
導電型ウェルを有する半導体措装置により達成される。
The above problem can be solved by (1) forming a one-conductivity type well in the surface layer of a one-conductivity type semiconductor substrate with a higher impurity concentration than the substrate; A source and a drain of opposite conductivity types in the surface layer of the well of one conductivity type across a channel region, a gate on the surface of the substrate on the channel region via a gate insulating film, and a surface layer of the well of the one conductivity type. The substrate has one conductivity type well contact region and one input wiring and power supply wiring for connecting an input terminal and an input circuit on the substrate. The drain or source is connected to the input wiring, and the source or drain and the well contact I-region are connected to the power supply wiring v55.
(2) In (1) above. a semiconductor device in which a central region of a source or drain connected to an input wiring is formed in the substrate, and an end region is formed in the one conductivity type well;
Alternatively, (3) in (2) above, this can be achieved by a semiconductor device having a well of an opposite conductivity type in the substrate and in contact with the central region of the source or drain connected to the input wiring.

(作用〕 本発明は低濃度基板内に基板と同一導電型で基板より不
純物濃度の高いウェルをつくり,ここに保護素子を形成
し,保護素子を構成ずろFETのゲートをウェルに接続
し, LSIの入力配線に電圧ストレスを印加した時の
ドレイン接合のブレークダウン(アハランシエ)電流を
その逃げ先である基板にウェルより流すことにより,ゲ
ートにかかる電圧を低下させるようにゲートをバイアス
して,ゲート破壊を防止するようにしたものである。
(Function) The present invention creates a well in a low-concentration substrate that has the same conductivity type as the substrate and has a higher impurity concentration than the substrate, forms a protection element here, connects the gate of the FET to the well, and connects the protection element to the well. When a voltage stress is applied to the input wiring of the gate, the breakdown (aharancier) current of the drain junction flows through the well to the substrate where it escapes, thereby biasing the gate so as to reduce the voltage applied to the gate. This is to prevent destruction.

又,ブレークダウン電流をドレインよりウェル深部に向
かって斜めに流れる構造にして基板内の熱発生位置を分
散し,ドレイン接合の2次破壊を防止するようにした。
In addition, a structure is adopted in which the breakdown current flows diagonally from the drain toward the deep part of the well, thereby distributing heat generation locations within the substrate and preventing secondary breakdown of the drain junction.

(実施例〕 第1図(1), (2)は本発明の第1の実施例による
ESD保護素子の断面図と平面図である。
(Embodiment) FIGS. 1(1) and 1(2) are a sectional view and a plan view of an ESD protection element according to a first embodiment of the present invention.

図において,  p−型のSi基板又はp″−型のエビ
層11上に形成された分離酸化膜12内の素子形成領域
に, p−型のウェル13が形成される。
In the figure, a p-type well 13 is formed in an element formation region within an isolation oxide film 12 formed on a p-type Si substrate or a p''-type shrimp layer 11.

該ウェル13上にゲート酸化膜14を介してゲートL5
. 15Aが形成される。
A gate L5 is formed on the well 13 via the gate oxide film 14.
.. 15A is formed.

該ウェル13内にn+型のトレイン16,ソース171
7AがLDD構造で形成される。
In the well 13, an n+ type train 16 and a source 171 are provided.
7A is formed with an LDD structure.

該ウェル13内にp+型のウェルコンタクト領域18,
 18A , 22が形成される。
A p+ type well contact region 18 within the well 13,
18A, 22 are formed.

ゲート15. 15八はそれぞれコンタクトホーノレ2
525Aを経由して配線23により,コンタクトホール
24でウェル13に接続される。
Gate 15. 158 are each contact hole 2
It is connected to the well 13 through the contact hole 24 via the wiring 23 via 525A.

図示されないが第7図の従来例と同様にしてドレイン電
極19はLSIの入力配線に接続され,ソース電極20
. 20A及びウェルコンタクト電極2121Aば電源
配線VSSに接続される。
Although not shown, the drain electrode 19 is connected to the input wiring of the LSI in the same way as in the conventional example shown in FIG.
.. 20A and well contact electrode 2121A are connected to power supply wiring VSS.

第2図(1), (2)は本発明の第2の実施例による
ESD保護素子の断面図と平面図である。
FIGS. 2(1) and 2(2) are a sectional view and a plan view of an ESD protection element according to a second embodiment of the present invention.

第1図との相違点は,ウェル131がドレイン16の下
側で方形状に欠如している構造になっていることである
The difference from FIG. 1 is that the well 131 has a rectangular shape missing below the drain 16.

この構造の特徴は次の第3図の構造で説明するよ・うに
ドレイン接合の中心部を離れた位置で先にブレークダウ
ンを生ずるため発熱位置の分散がはかれる。
The feature of this structure is that breakdown occurs first at a position away from the center of the drain junction, as will be explained with reference to the structure shown in FIG. 3 below, so that heat generation positions are distributed.

第3図(+), (2)は本発明の第3の実施例による
ESD保護素子の断面図と平面図である。
FIGS. 3(+) and 3(2) are a sectional view and a plan view of an ESD protection element according to a third embodiment of the present invention.

第2図との相違点は,ドレイン16の下側にウェル13
1 と周辺部が重なるようにn一型のウェル26が形成
されたことである。
The difference from FIG. 2 is that there is a well 13 below the drain 16.
The n-type well 26 was formed so that the peripheral portion overlapped with the n-type well 26.

この構造の特徴はn一型のウェル26により,第2図の
構造より更乙こ発熱位置が分散される点である。
A feature of this structure is that the n-type well 26 disperses the heat generating positions more widely than the structure shown in FIG.

ここで,点線はドレイン電極19に電圧ストレスを印加
した時の空乏層の広がりを示す。
Here, the dotted line indicates the expansion of the depletion layer when voltage stress is applied to the drain electrode 19.

いま,この実施例において1正の電圧ストレスをドレイ
ン電極19に印加した場合を考える。
Now, consider the case where a positive voltage stress of 1 is applied to the drain electrode 19 in this embodiment.

このとき電流はドレイン16からソース17. 17A
に水平方向に流れるとともに,ドレイン接合のブレーク
ダウンにより深さ方向にも流れる。ドレイン電極19の
直下は低濃度の基板又はエビ層であるためブレークダウ
ンは起きないで,少し離れた位置,即ちドレイン16の
周辺部(A部)で起きる。このため,熱の発生位置が右
方に分散され接合が2次破壊に至ることを防止する。
At this time, the current flows from the drain 16 to the source 17. 17A
In addition to flowing horizontally, it also flows in the depth direction due to breakdown of the drain junction. Since the substrate or shrimp layer has a low concentration directly under the drain electrode 19, breakdown does not occur, but occurs at a slightly distant position, that is, the peripheral area (A part) of the drain 16. Therefore, the heat generation position is dispersed to the right, thereby preventing the joint from suffering secondary failure.

又,このときウェルコンタクト碩域22は,上記ブレー
クダウン電流によりゲートは負にハイアスされ,ゲート
破壊に至らない電圧になる。
Also, at this time, the gate of the well contact subregion 22 is biased to a negative voltage due to the breakdown current, resulting in a voltage that does not lead to gate breakdown.

この効果を第5図を用いて説明する。This effect will be explained using FIG. 5.

第5図は第3図に示されるドレイン電極19の中心より
右方向への距離に対する各部の電位と発熱量の関係を示
す回である。
FIG. 5 shows the relationship between the potential of each part and the amount of heat generated with respect to the distance to the right from the center of the drain electrode 19 shown in FIG.

図は第3図(2)のa−b間の電位と発熱量分布が示さ
れている。
The figure shows the potential and calorific value distribution between a and b in FIG. 3(2).

ここで,■は基板表面近傍,■は基板深部(ウェル13
1内)の値を示す。又各位置 aはドレイン電極19の中心 Cはトレイン電極19の右端 dはウェルの左端付近, eはゲートの左端 bはウェルコンタクト電極21の左端 である。
Here, ■ is near the substrate surface, and ■ is deep in the substrate (well 13).
1). Further, at each position a, the center C of the drain electrode 19, the right end d of the train electrode 19 is near the left end of the well, and the left end b of the gate e is the left end of the well contact electrode 21.

又,各部の電圧 VBはドレイン接合の アハランシエブレークダウン電圧, vB′ はドレイン側ゲート端の ゲーテッド接合のブレークダウン電圧 V,はゲー1・に印加される電圧 である。Also, the voltage of each part VB is the drain junction Aharancier breakdown voltage, vB' is the drain side gate end Breakdown voltage of gated junction V, is the voltage applied to the gate 1. It is.

前記のようにブレークダウン電流は基板断面を斜めに流
れるため,深部の熱発生のピークは右にずれている。
As mentioned above, the breakdown current flows diagonally across the cross section of the substrate, so the peak of heat generation in the deep part is shifted to the right.

この例は,第2,または第3の実施例と従来例とを組み
合わせてより完全な保護素子が得られるようにしたもの
である。
In this example, a more complete protection element is obtained by combining the second or third embodiment and the conventional example.

図においてA−A線より上側は本発明,下側は従来素子
を表し,コンタクトホール27は人力回路へ接続する。
In the figure, the part above the line A--A represents the present invention, and the part below represents the conventional element, and the contact hole 27 is connected to the human power circuit.

実施例ではnチャネル素子について説明したが,pチャ
ネル素子に対しては各部の導電型を反対にし,電源配線
はVCCを用いればよい。
In the embodiment, an n-channel device has been described, but for a p-channel device, the conductivity type of each part may be reversed, and VCC may be used as the power supply wiring.

又,各実施例の構造を繰り返し/鏡像反転繰り返し/リ
ング状に形成してもよい。
Further, the structure of each embodiment may be formed into a repeating/repetitive mirror image/ring shape.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば,素子の微細化に対
応して, LSIの静電破壊を防止する保護素子を構成
するFETのゲート破壊を抑止する構造が得られた。
As explained above, according to the present invention, in response to the miniaturization of elements, a structure has been obtained that suppresses gate breakdown of an FET that constitutes a protection element that prevents electrostatic discharge breakdown in LSI.

本発明は基板内に両導電型のウェルを有するツインタブ
CMOS等のMIS FETを使用したLSIの他に,
バイポーラ素子の保護にも使用できる。
In addition to LSIs using MIS FETs such as twin-tub CMOS that have wells of both conductivity types in the substrate, the present invention
It can also be used to protect bipolar devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1). (2)は本発明の第1の実施例による
ESD保護素子の断面図と平面図 第2図(1), (2)は本発明の第2の実施例による
ESD保護素子の断面図と平面図 第3図(1). (2)は本発明の第3の実施例による
ESD保護素子の断面図と平面図 第5図はドレイン電極の中心より右方向への距離に対す
る各部の電位と発熱量の関係を示す図第6図は等価回路
図 第7図(+), (2)は従来例によるESD保護素子
の断面図と平面図である。 図において 11はp一型Si基板又はp一型エビ層,12は分離酸
化膜 13, 131はp一型ウェル, 14はゲート酸化膜 15. 15Aはゲート 16はn゛型ドレイン搏 17. 17A はソース 1.8, 18A , 22はp゛型ウェルコンタクト
領域19はドレイン電極 20. 2OA はソース電極 2L 21A はウェルコンタクト電極23は配線 24, 25, 25A , 27はコンタクトホール
5はLSIのパッドと入力回路間の入力配線6は電源配
線(Vcc/Vss)
Figure 1 (1). (2) is a cross-sectional view and a plan view of an ESD protection element according to a first embodiment of the present invention. Figure 2 (1) is a cross-sectional view and a plan view of an ESD protection element according to a second embodiment of the present invention. Figure 3 (1). (2) is a cross-sectional view and a plan view of the ESD protection element according to the third embodiment of the present invention. FIG. 5 is a diagram showing the relationship between the potential of each part and the amount of heat generated with respect to the distance to the right from the center of the drain electrode. The figure is an equivalent circuit diagram (+), and FIG. 7 (2) is a cross-sectional view and a plan view of a conventional ESD protection element. In the figure, 11 is a p-type Si substrate or a p-type shrimp layer, 12 is an isolation oxide film 13, 131 is a p-type well, 14 is a gate oxide film 15. 15A has a gate 16 and an n-type drain 17. 17A is the source 1.8, 18A is the p-type well contact region 19, and the drain electrode 20. 2OA is the source electrode 2L 21A is the well contact electrode 23 is the wiring 24, 25, 25A, 27 is the contact hole 5 is the input wiring 6 between the LSI pad and the input circuit is the power supply wiring (Vcc/Vss)

Claims (3)

【特許請求の範囲】[Claims] (1)一導電型半導体基板内の表層部に該基板より不純
物濃度の高い一導電型ウェルと、 該一導電型ウェル内の表層部にチャネル領域を隔てて反
対導電型のソース及びドレインと、該基板表面にゲート
絶縁膜を介してチャネル領域上にゲートと、 該一導電型ウェル内の表層部に一導電型ウェルコンタク
ト領域と、 該基板上に入力端子と入力回路を接続する入力配線及び
電源配線とを有し、 該ドレイン又はソースが該入力配線に、該ソース又はド
レイン及び該ウェルコンタクト領域が該電源配線Vss
(接地電位)又はVcc(電源電位)に、該ゲートが該
一導電型ウェルにそれぞれ接続されていることを特徴と
する半導体装置。
(1) A well of one conductivity type having a higher impurity concentration than the substrate in a surface layer of a semiconductor substrate of one conductivity type, and a source and a drain of opposite conductivity type separated by a channel region in the surface layer of the well of one conductivity type; a gate on the channel region on the surface of the substrate via a gate insulating film; a well contact region of one conductivity type on the surface layer of the well of one conductivity type; and input wiring connecting the input terminal and the input circuit on the substrate; a power supply wiring, the drain or source is connected to the input wiring, and the source or drain and the well contact region are connected to the power supply wiring Vss.
1. A semiconductor device, wherein the gate is connected to the well of one conductivity type to a ground potential (ground potential) or Vcc (power supply potential).
(2)請求項1の半導体装置において、入力配線に接続
されたソース又はドレインの中央部の領域が該基板内に
、端部の領域が該一導電型ウェル内に形成されているこ
とを特徴とする半導体装置。
(2) The semiconductor device according to claim 1, wherein a central region of the source or drain connected to the input wiring is formed in the substrate, and an end region is formed in the one conductivity type well. semiconductor device.
(3)請求項2の半導体装置において、該基板内に、入
力配線に接続されたソース又はドレインの中央部の領域
に接して反対導電型ウェルを有することを特徴とする半
導体装置。
(3) The semiconductor device according to claim 2, wherein the substrate has a well of an opposite conductivity type in contact with a central region of the source or drain connected to the input wiring.
JP1059102A 1989-03-10 1989-03-10 Semiconductor device Expired - Fee Related JP2676888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059102A JP2676888B2 (en) 1989-03-10 1989-03-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059102A JP2676888B2 (en) 1989-03-10 1989-03-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH02238668A true JPH02238668A (en) 1990-09-20
JP2676888B2 JP2676888B2 (en) 1997-11-17

Family

ID=13103628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059102A Expired - Fee Related JP2676888B2 (en) 1989-03-10 1989-03-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2676888B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229635A (en) * 1991-08-21 1993-07-20 Vlsi Technology, Inc. ESD protection circuit and method for power-down application
US5589790A (en) * 1995-06-30 1996-12-31 Intel Corporation Input structure for receiving high voltage signals on a low voltage integrated circuit device
EP0917200A1 (en) * 1997-11-12 1999-05-19 Nec Corporation Semiconductor device, electrostatic discharge protection device, and dielectric breakdown preventing method
US6043538A (en) * 1993-09-30 2000-03-28 Intel Corporation Device structure for high voltage tolerant transistor on a 3.3 volt process
JP2004031804A (en) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
WO2009037808A1 (en) * 2007-09-18 2009-03-26 Panasonic Corporation Semiconductor integrated circuit
US7561853B2 (en) 2004-01-16 2009-07-14 Eudyna Devices Inc. Radio frequency switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771179A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Input protective circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771179A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Input protective circuit device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229635A (en) * 1991-08-21 1993-07-20 Vlsi Technology, Inc. ESD protection circuit and method for power-down application
US6043538A (en) * 1993-09-30 2000-03-28 Intel Corporation Device structure for high voltage tolerant transistor on a 3.3 volt process
US5589790A (en) * 1995-06-30 1996-12-31 Intel Corporation Input structure for receiving high voltage signals on a low voltage integrated circuit device
EP0917200A1 (en) * 1997-11-12 1999-05-19 Nec Corporation Semiconductor device, electrostatic discharge protection device, and dielectric breakdown preventing method
US6281553B1 (en) 1997-11-12 2001-08-28 Nec Corporation Semiconductor device, electrostatic discharge protection device, and dielectric breakdown preventing method
JP2004031804A (en) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP4677166B2 (en) * 2002-06-27 2011-04-27 三洋電機株式会社 Semiconductor device and manufacturing method thereof
US7561853B2 (en) 2004-01-16 2009-07-14 Eudyna Devices Inc. Radio frequency switch
WO2009037808A1 (en) * 2007-09-18 2009-03-26 Panasonic Corporation Semiconductor integrated circuit

Also Published As

Publication number Publication date
JP2676888B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JP4017187B2 (en) Electrostatic discharge protection circuit
JP3075892B2 (en) Semiconductor device
JP2633746B2 (en) Semiconductor device
JP2959528B2 (en) Protection circuit
JPS6278869A (en) ESD protection device
JPH0837284A (en) Semiconductor integrated circuit device
JP3537035B2 (en) Silicon-on-insulator network
JPH02238668A (en) Semiconductor device
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
JPH05503400A (en) PISO electrostatic discharge protection device
JP3283736B2 (en) Semiconductor integrated circuit device
JP3446569B2 (en) Semiconductor device
JPH02146773A (en) Semiconductor device
JP2538312B2 (en) Semiconductor integrated circuit
JPH06112422A (en) Semiconductor integrated circuit device
JPH0532908B2 (en)
JPH0235778A (en) semiconductor equipment
JPS6112693Y2 (en)
JPH0468575A (en) Electrostatic breakdown protective element of semiconductor integrated circuit
JP4174836B2 (en) Semiconductor device
JP3493713B2 (en) Semiconductor device
JPS62279675A (en) Protective circuit for semiconductor integrated circuit
JPH0434963A (en) Semiconductor device
JPH01273346A (en) Semiconductor device
JPH0242759A (en) Semiconductor input protective circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees