JPH01280359A - Insulated gate semiconductor device - Google Patents
Insulated gate semiconductor deviceInfo
- Publication number
- JPH01280359A JPH01280359A JP63110105A JP11010588A JPH01280359A JP H01280359 A JPH01280359 A JP H01280359A JP 63110105 A JP63110105 A JP 63110105A JP 11010588 A JP11010588 A JP 11010588A JP H01280359 A JPH01280359 A JP H01280359A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- layer
- conductivity type
- polycrystalline
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/101—Integrated devices comprising main components and built-in components, e.g. IGBT having built-in freewheel diode
- H10D84/141—VDMOS having built-in components
- H10D84/148—VDMOS having built-in components the built-in components being breakdown diodes, e.g. Zener diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/611—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using diodes as protective elements
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、ゲート保護回路を備えた電力用MO3FET
あるいは絶縁ゲート型バイポーラトランジスタ (以下
I GBTと記す)のような絶縁ゲート型半導体装置に
関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a power MO3FET with a gate protection circuit.
Alternatively, the present invention relates to an insulated gate semiconductor device such as an insulated gate bipolar transistor (hereinafter referred to as IGBT).
例えばN型シリコン基体の一面にP層を形成し、さらに
そのP層の中にN型ソース層を形成して基体のNJIと
の間にチャネルが生ずるようその上にゲート酸化膜を介
してゲート電極を備え、主電流はソース層およびP層に
接触するソース電極から基体の他面側のiiに流れる電
力用縦型MO3FETあるいはI GBTを、ゲートへ
の外部サージ電圧の入力による静電破壊から保護するこ
とが要求され、特にカーエレクトロニクスの分野ではゲ
ート保護回路を備えることは必須となっているので、バ
ンク・ツウ・バンクによる保護ダイオードが用いられる
0例えば特開昭58−88461号公報あるいは特開昭
58−87873号公報には基体上に積層した多結晶S
iNなどの半導体層に不純物を導入してバンク・ツウ・
バックダイオードを形成したものが記載され、特開昭5
8−178566号公報あるいは特開昭61−2967
70号公報には基板内に別の領域に不純物を導入してバ
ンク・ツウ・バンクダイオードが内蔵されたものが記載
されている。For example, a P layer is formed on one surface of an N-type silicon substrate, an N-type source layer is further formed in the P layer, and a gate oxide film is placed on top of the P layer to form a channel between the substrate and the NJI. The power vertical MO3FET or IGBT is equipped with an electrode, and the main current flows from the source electrode in contact with the source layer and the P layer to the other side of the substrate. In particular, in the field of car electronics, it is essential to have a gate protection circuit, so bank-to-bank protection diodes are used. Patent Publication No. 58-87873 discloses a polycrystalline S laminated on a substrate.
By introducing impurities into semiconductor layers such as iN, bank-to-bank
A device with a back diode was described, published in Japanese Patent Application Laid-Open No. 5
Publication No. 8-178566 or JP-A-61-2967
No. 70 describes a device in which a bank-to-bank diode is built in by introducing impurities into another region within the substrate.
〔発明が解決しようとする!!l!l)従来のゲート保
護用のダイオードは基板上の半導体層あるいは半導体基
板に不純物を導入してツェナダイオードとして形成され
、そのツェナ電圧は5v以下であるのに通常要求される
IOV以上のブレークダウン電圧を達成するためには、
双方向ともに複数直列したツェナダイオードを形成しな
ければならぬこと、またブレークダウン電圧が単−PN
接合のツェナ電圧の倍数に限定されることなどの欠点が
ある。[Invention tries to solve! ! l! l) Conventional gate protection diodes are formed as Zener diodes by introducing impurities into the semiconductor layer on the substrate or the semiconductor substrate, and the Zener voltage is 5V or less, but the breakdown voltage is usually higher than the required IOV. In order to achieve
It is necessary to form multiple Zener diodes in series in both directions, and the breakdown voltage is single-PN.
Disadvantages include being limited to multiples of the Zener voltage of the junction.
本発明のL[は、上述の欠点を除き、ブレークダウン電
圧の設計の容易なゲート保護回路を備えた絶縁ゲート型
半導体装置を提供することにある。The object of the present invention is to provide an insulated gate semiconductor device having a gate protection circuit whose breakdown voltage can be easily designed, while eliminating the above-mentioned drawbacks.
上記の課題の解決のために、本発明は、第−導電形の半
導体基体の一方の表面Iりに第二導電形ウェルが設けら
れ、そのウェルの表面層に形成された第−導電形のソー
ス層と半導体基体の間の第二導電形ウェル部分をチャネ
ル形成領域としてその表面上にゲート絶縁膜を介して比
較的低抵抗の多結晶シリコン層よりなるゲートが設けら
れ、第−導電形ソース層と第二R型彫ウェルにソース電
極が接触するゲート絶縁型半導体装置において、半導体
基体のソース層の存在する領域とゲートパッド′iiM
域の間の絶縁膜上に形成されるゲートの材料と同一の比
較的低抵抗の多結晶シリコン層とその上に積層される逆
導電形の比較的高抵抗の多結晶シリコン層によりなるダ
イオードを少なくとも一対存し、その一対のダイオード
が順方向を逆にして直列にソース電極とゲートバンドと
の間に接続されたものとする。In order to solve the above problems, the present invention provides a well of a second conductivity type on one surface I of a semiconductor substrate of a first conductivity type, and a well of a second conductivity type formed in a surface layer of the well. A gate made of a relatively low resistance polycrystalline silicon layer is provided on the surface of the second conductivity type well portion between the source layer and the semiconductor substrate with a gate insulating film interposed therebetween, and the second conductivity type source is used as a channel formation region. In a gate insulated semiconductor device in which a source electrode is in contact with a layer and a second R-shaped well, a region of a semiconductor substrate where a source layer exists and a gate pad 'iiM
A diode is made of a polycrystalline silicon layer of the same relatively low resistance as the gate material formed on the insulating film between the regions, and a polycrystalline silicon layer of the opposite conductivity type and relatively high resistance laminated on top of it. At least one pair of diodes exists, and the pair of diodes are connected in series between the source electrode and the gate band with their forward directions reversed.
ゲート保護回路のダイオードをゲートと同時に形成され
る比較的低抵抗の多結晶5iJiとその上に積層し任意
の不純物濃度に選定できる比較的高抵抗の多結晶51層
により形成することにより、高いブレークダウン電圧を
有するダイオードによるバンク・°ツウ・バンクダイオ
ードを得ることができる。By forming the diode of the gate protection circuit with a relatively low-resistance polycrystalline 5iJi formed at the same time as the gate, and a relatively high-resistance polycrystalline 51 layer laminated on top of the polycrystalline 5iJi layer formed at the same time as the gate, a relatively high resistance polycrystalline 51 layer can be selected to have an arbitrary impurity concentration. A bank-to-bank diode can be obtained with a diode having a down voltage.
第1図は本発明の一実施例の縦型MOS F ET断面
を示し、この断面は平面図である第2図のA−A線断面
である。シリコン基板はn−Jilとn゛l!11より
なるドレイン層を形成し、n−Jilの上面にはpウェ
ル2が拡散されている。pウェル2にはn゛ソースN3
形成され、ベース層2の間のドレイン層1の露出部とソ
ース層3の間のpウェル2がチャネル形成領域となるよ
う、n゛多結晶St層からなるゲート4がゲート絶縁膜
5を介して設けられる。ゲート4の多結晶s+11には
第2図に示すような窓41が開けられて、その窓の中で
絶縁膜6のコンタクトホール61においてM配線がn0
ソースN3およびpウェルに接触しソース電極7を形成
している。41型MO3FETは、このソース電極7と
nゝ ドレイン[11に接触するドレイン電極71との
間の′r!l流がゲート4に入力される信号により制御
されるものである。ゲート多結晶S1石4の延長部には
絶縁膜6の第2図に示すコンタクトホール62でM配v
A8に接触し、このM配線は延長されてゲートポンディ
ングパッド (ゲートバンド)80を形成する。pウェ
ル2はn−711との間に逆電圧印加時に生ずる空乏層
を拡張して耐圧を高めるためゲートバンド80の下まで
形成されている。このpウェルの延長部21上に絶縁膜
51を介してゲート4と同時にn゛多結晶5IN40が
形成されその上に絶縁g!6のコンタクトホール64で
接触するp形多結晶5iJi9が積層されパターンニン
グされている。n゛多結晶Sij!40とp形多結晶S
i層9からなる二つのPN接合ダイオードのp m 9
は配線71により接続され、一方のn’rfi40はコ
ンタクトホール63でソース電極7の延長部と、他方の
n″】40はコンタクトホール65でゲートパッド80
の延長部と接触している。この結果、二つのPN接合ダ
イオードが逆直列にゲー)WillとソースN +”E
+の間に挿入されることになる。従って、ゲ−トとソー
スの間に印加されるゲート電圧がp形多結晶Si層9の
不純物4度と厚さで決まるPN接合ダイオードのブレー
クダウン電圧に達すると、その電圧の方向に応じて一方
のダイオードがブレークダウンし、ゲートとソースの間
にブレークダウン?it?JLが流れるため、それ以上
の電圧が印加されないのでゲート絶縁膜5の静電破壊か
ら守られる。FIG. 1 shows a cross section of a vertical MOS FET according to an embodiment of the present invention, and this cross section is taken along the line A--A in FIG. 2, which is a plan view. Silicon substrates are n-Jil and n゛l! A drain layer 11 is formed, and a p well 2 is diffused on the upper surface of the n-Jil. P well 2 has n source N3.
A gate 4 made of a polycrystalline St layer is formed through a gate insulating film 5 so that the p-well 2 between the exposed part of the drain layer 1 between the base layer 2 and the source layer 3 becomes a channel formation region. It will be established. A window 41 as shown in FIG. 2 is opened in the polycrystalline s+11 of the gate 4, and the M wiring is connected to n0 in the contact hole 61 of the insulating film 6 within the window.
A source electrode 7 is formed in contact with the source N3 and the p-well. In the 41-type MO3FET, the 'r! 1 flow is controlled by a signal input to gate 4. The extension of the gate polycrystalline S1 stone 4 has a contact hole 62 shown in FIG.
Contacting A8, this M wiring is extended to form a gate bonding pad (gate band) 80. The p-well 2 is formed below the gate band 80 in order to expand the depletion layer generated when a reverse voltage is applied between the p-well 2 and the n-711 to increase the withstand voltage. At the same time as the gate 4, an n' polycrystalline 5IN40 is formed on the extension part 21 of this p-well via an insulating film 51, and an insulating g! P-type polycrystalline crystals 5iJi9 that are in contact with each other through contact holes 64 of No. 6 are stacked and patterned. n゛Polycrystalline Sij! 40 and p-type polycrystalline S
p m 9 of two PN junction diodes consisting of i-layer 9
are connected by a wiring 71, one n'rfi 40 is connected to an extension of the source electrode 7 through a contact hole 63, and the other n'rfi 40 is connected to a gate pad 80 through a contact hole 65.
is in contact with the extension of As a result, two PN junction diodes are connected in anti-series to
It will be inserted between +. Therefore, when the gate voltage applied between the gate and the source reaches the breakdown voltage of the PN junction diode, which is determined by the impurity level and thickness of the p-type polycrystalline Si layer 9, depending on the direction of the voltage, One diode breaks down and breaks down between gate and source? It? Since JL flows, no higher voltage is applied, and the gate insulating film 5 is protected from electrostatic breakdown.
この保護回路は、n−ドレインN1の下にpmを設ける
IGBTにおいても全く同様に形成することができる。This protection circuit can be formed in exactly the same way in an IGBT in which pm is provided below the n-drain N1.
本発明によれば、ゲートと同時に形成する比較的低抵抗
の多結晶Si層とその上に積層する任意の不純物濃度お
よび厚さを有する比較的高抵抗の多結晶S1層とにより
少なくとも一対のダイオードを形成し、バンク・ツウ・
バックダイオードとしてゲート、ソース間に挿入するこ
とにより、IOV以上のブレークダウンを有するダイオ
ードによ冬ゲートへのサージ電圧の入力からの保護が可
能になった。また、ダイオードが半導体基体内に形成さ
れるので、寄生素子が生ずるおそれもなく、ゲート保護
回路を有する電力用縦型MO3FETあるいはI GB
Tとして有効に使用できる。According to the present invention, at least one pair of diodes can be formed by a relatively low resistance polycrystalline Si layer formed simultaneously with the gate and a relatively high resistance polycrystalline S1 layer having an arbitrary impurity concentration and thickness laminated thereon. form a bank-to-bank
By inserting a back diode between the gate and the source, it is possible to protect the winter gate from surge voltage input using a diode with a breakdown greater than IOV. In addition, since the diode is formed within the semiconductor substrate, there is no risk of parasitic elements being generated, and it can be used in power vertical MO3FETs or IGBs with gate protection circuits.
It can be effectively used as T.
第1図、第2図は本発明の一実施例を示し、第2図は平
面図、第1図はそのA−A線矢視断面図である。
1:n−ドレイン層、2:pウェル、21:prfJ、
3;n゛ソース層4;多結晶Siゲート、40:n”多
結晶SiN、5:ゲート絶縁膜、6:絶縁膜、6L 6
2.63.64.65:コンタクトホール、7:ソース
電極、71ニドレイン電極、8:配線、80:ゲートパ
ッド、9:p多結晶Si層。
1′・−、\1 and 2 show one embodiment of the present invention, FIG. 2 is a plan view, and FIG. 1 is a sectional view taken along the line A--A. 1: n-drain layer, 2: p well, 21: prfJ,
3; n' source layer 4; polycrystalline Si gate, 40: n'' polycrystalline SiN, 5: gate insulating film, 6: insulating film, 6L 6
2.63.64.65: Contact hole, 7: Source electrode, 71 Ni-drain electrode, 8: Wiring, 80: Gate pad, 9: P polycrystalline Si layer. 1'・-,\
Claims (1)
形ウェルが設けられ、該ウェルの表面層に形成された第
一導電形のソース層と半導体基体の間の第二導電形ウェ
ル部分をチャネル形成領域としてその表面上にゲート絶
縁膜を介して比較的低抵抗の多結晶シリコン層よりなる
ゲートが設けられ、第一導電形ソース層と第二導電形ウ
ェルにソース電極が接触するものにおいて、半導体基体
のソース層の存在する領域とゲートパッド領域の間の絶
縁膜上に形成されるゲートの材料と同一の比較的低抵抗
の多結晶シリコンとその上に積層される逆導電形の比較
的高抵抗の多結晶シリコンよりなるダイオードを少なく
とも一対有し、該一対のダイオードが順方向を逆にして
直列にソース電極とゲートパッドの間に接続されたこと
を特徴とする絶縁ゲート型半導体装置。1) A second conductivity type well is provided in one surface layer of the first conductivity type semiconductor substrate, and a second conductivity type is provided between the first conductivity type source layer formed in the surface layer of the well and the semiconductor substrate. A gate made of a relatively low-resistance polycrystalline silicon layer is provided on the surface of the well part with a channel formation region via a gate insulating film, and a source electrode is in contact with the first conductivity type source layer and the second conductivity type well. polycrystalline silicon, which has the same relatively low resistance as the gate material, is formed on the insulating film between the region where the source layer of the semiconductor substrate exists and the gate pad region, and the opposite conductive material is laminated thereon. An insulated gate comprising at least one pair of diodes made of relatively high-resistance polycrystalline silicon, the pair of diodes being connected in series between a source electrode and a gate pad with their forward directions reversed. type semiconductor device.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63110105A JPH07105495B2 (en) | 1988-05-06 | 1988-05-06 | Insulated gate type semiconductor device |
EP88121721A EP0322860B1 (en) | 1987-12-28 | 1988-12-27 | Insulated gate semiconductor device |
DE3855533T DE3855533T2 (en) | 1987-12-28 | 1988-12-27 | Insulated gate semiconductor device |
KR1019880017634A KR910009041B1 (en) | 1987-12-28 | 1988-12-28 | Insulated Gate Semiconductor Device |
US07/291,463 US5012313A (en) | 1987-12-28 | 1988-12-28 | Insulated gate semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63110105A JPH07105495B2 (en) | 1988-05-06 | 1988-05-06 | Insulated gate type semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01280359A true JPH01280359A (en) | 1989-11-10 |
JPH07105495B2 JPH07105495B2 (en) | 1995-11-13 |
Family
ID=14527167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63110105A Expired - Lifetime JPH07105495B2 (en) | 1987-12-28 | 1988-05-06 | Insulated gate type semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07105495B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001326354A (en) * | 2000-03-06 | 2001-11-22 | Rohm Co Ltd | Semiconductor device |
JP2007299862A (en) * | 2006-04-28 | 2007-11-15 | Nissan Motor Co Ltd | Semiconductor device and manufacturing method thereof |
US7732869B2 (en) | 2006-09-28 | 2010-06-08 | Sanyo Electric Co., Ltd. | Insulated-gate semiconductor device |
US7825474B2 (en) * | 2006-09-28 | 2010-11-02 | Sanyo Electric Co., Ltd. | Insulated-gate semiconductor device and PN junction diodes |
US8106460B2 (en) | 2008-04-21 | 2012-01-31 | Sanyo Semiconductor Co., Ltd. | Insulated gate semiconductor device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151051A (en) * | 1982-03-03 | 1983-09-08 | Hitachi Ltd | Semiconductor device |
JPS5947766A (en) * | 1982-09-10 | 1984-03-17 | Hitachi Ltd | Insulated gate type semiconducor device and manufacture thereof |
JPS63104480A (en) * | 1986-10-22 | 1988-05-09 | Fuji Electric Co Ltd | Conductivity modulated vertical MOSFET |
-
1988
- 1988-05-06 JP JP63110105A patent/JPH07105495B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151051A (en) * | 1982-03-03 | 1983-09-08 | Hitachi Ltd | Semiconductor device |
JPS5947766A (en) * | 1982-09-10 | 1984-03-17 | Hitachi Ltd | Insulated gate type semiconducor device and manufacture thereof |
JPS63104480A (en) * | 1986-10-22 | 1988-05-09 | Fuji Electric Co Ltd | Conductivity modulated vertical MOSFET |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001326354A (en) * | 2000-03-06 | 2001-11-22 | Rohm Co Ltd | Semiconductor device |
JP2007299862A (en) * | 2006-04-28 | 2007-11-15 | Nissan Motor Co Ltd | Semiconductor device and manufacturing method thereof |
US7732869B2 (en) | 2006-09-28 | 2010-06-08 | Sanyo Electric Co., Ltd. | Insulated-gate semiconductor device |
US7825474B2 (en) * | 2006-09-28 | 2010-11-02 | Sanyo Electric Co., Ltd. | Insulated-gate semiconductor device and PN junction diodes |
US8344457B2 (en) | 2006-09-28 | 2013-01-01 | Sanyo Semiconductor Co., Ltd. | Insulated-gate semiconductor device with protection diode |
US8106460B2 (en) | 2008-04-21 | 2012-01-31 | Sanyo Semiconductor Co., Ltd. | Insulated gate semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH07105495B2 (en) | 1995-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5610426A (en) | Semiconductor integrated circuit device having excellent dual polarity overvoltage protection characteristics | |
JP3485655B2 (en) | Composite MOSFET | |
JP3911566B2 (en) | MOS type semiconductor device | |
JPH0563949B2 (en) | ||
JP2689703B2 (en) | MOS type semiconductor device | |
WO2019159351A1 (en) | Silicon carbide semiconductor device | |
US3764864A (en) | Insulated-gate field-effect transistor with punch-through effect element | |
CN1127142C (en) | Semiconductor device | |
KR910009041B1 (en) | Insulated Gate Semiconductor Device | |
JPH03180074A (en) | semiconductor equipment | |
JP3155134B2 (en) | Semiconductor device | |
JPH01280359A (en) | Insulated gate semiconductor device | |
JP2906749B2 (en) | Gate protection device for semiconductor device | |
JP2676888B2 (en) | Semiconductor device | |
JP4431761B2 (en) | MOS type semiconductor device | |
US7112828B2 (en) | Semiconductor device | |
JPS59132671A (en) | Vertical type metal oxide semiconductor transistor | |
US3936862A (en) | MISFET and method of manufacture | |
JP2611639B2 (en) | Semiconductor device | |
JPH04363068A (en) | semiconductor equipment | |
JPH01185971A (en) | Insulated gate semiconductor device | |
JPH01189955A (en) | semiconductor equipment | |
JPS6237816B2 (en) | ||
JPS62141754A (en) | High voltage semiconductor device | |
JPH0518467B2 (en) |