[go: up one dir, main page]

JPH01280359A - Insulated gate semiconductor device - Google Patents

Insulated gate semiconductor device

Info

Publication number
JPH01280359A
JPH01280359A JP63110105A JP11010588A JPH01280359A JP H01280359 A JPH01280359 A JP H01280359A JP 63110105 A JP63110105 A JP 63110105A JP 11010588 A JP11010588 A JP 11010588A JP H01280359 A JPH01280359 A JP H01280359A
Authority
JP
Japan
Prior art keywords
gate
layer
conductivity type
polycrystalline
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63110105A
Other languages
Japanese (ja)
Other versions
JPH07105495B2 (en
Inventor
Tatsuhiko Fujihira
龍彦 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63110105A priority Critical patent/JPH07105495B2/en
Priority to EP88121721A priority patent/EP0322860B1/en
Priority to DE3855533T priority patent/DE3855533T2/en
Priority to KR1019880017634A priority patent/KR910009041B1/en
Priority to US07/291,463 priority patent/US5012313A/en
Publication of JPH01280359A publication Critical patent/JPH01280359A/en
Publication of JPH07105495B2 publication Critical patent/JPH07105495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/101Integrated devices comprising main components and built-in components, e.g. IGBT having built-in freewheel diode
    • H10D84/141VDMOS having built-in components
    • H10D84/148VDMOS having built-in components the built-in components being breakdown diodes, e.g. Zener diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • H10D89/601Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
    • H10D89/611Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using diodes as protective elements

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a device having a gate protective circuit whose breakdown voltage can be designed easily by a method wherein a diode of the gate protective circuit is formed of a polycrystalline Si layer, of a comparatively low resistance, formed simultaneously with a gate and of a polycrystalline Si layer, of a comparatively high resistance, laminated on it. CONSTITUTION:A well 2 of a second conductivity type is formed on a surface layer of a semiconductor substrate 1 of a first conductivity type; a part of the well 2 between a source layer 3, or the first conductivity type, formed on the surface layer of the well 2 and the substrate 1 is used as a channel formation region; a gate 4 composed of a polycrystalline Si layer of a comparatively low resistance is formed on its surface via a gate insulating film 5; a source electrode 7 is brought into contact with the source layer 3 and the well 2. In addition, one or more pairs of diodes composed of the following two are formed: polycrystalline Si 40, of a comparatively low resistance, which has been formed on an insulating film 51 between a region where the source layer 3 of the substrate 1 exists and a region of a gate pad 80 and whose material is identical to that of the gate 4, polycrystalline Si 9, of a comparatively high resistance, which has been laminated on it and whose conductivity type is opposite; the pair of diodes are connected in series between the source electrode 7 and the gate pad 80 by reversing a forward direction.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、ゲート保護回路を備えた電力用MO3FET
あるいは絶縁ゲート型バイポーラトランジスタ (以下
I GBTと記す)のような絶縁ゲート型半導体装置に
関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a power MO3FET with a gate protection circuit.
Alternatively, the present invention relates to an insulated gate semiconductor device such as an insulated gate bipolar transistor (hereinafter referred to as IGBT).

〔従来の技術〕[Conventional technology]

例えばN型シリコン基体の一面にP層を形成し、さらに
そのP層の中にN型ソース層を形成して基体のNJIと
の間にチャネルが生ずるようその上にゲート酸化膜を介
してゲート電極を備え、主電流はソース層およびP層に
接触するソース電極から基体の他面側のiiに流れる電
力用縦型MO3FETあるいはI GBTを、ゲートへ
の外部サージ電圧の入力による静電破壊から保護するこ
とが要求され、特にカーエレクトロニクスの分野ではゲ
ート保護回路を備えることは必須となっているので、バ
ンク・ツウ・バンクによる保護ダイオードが用いられる
0例えば特開昭58−88461号公報あるいは特開昭
58−87873号公報には基体上に積層した多結晶S
iNなどの半導体層に不純物を導入してバンク・ツウ・
バックダイオードを形成したものが記載され、特開昭5
8−178566号公報あるいは特開昭61−2967
70号公報には基板内に別の領域に不純物を導入してバ
ンク・ツウ・バンクダイオードが内蔵されたものが記載
されている。
For example, a P layer is formed on one surface of an N-type silicon substrate, an N-type source layer is further formed in the P layer, and a gate oxide film is placed on top of the P layer to form a channel between the substrate and the NJI. The power vertical MO3FET or IGBT is equipped with an electrode, and the main current flows from the source electrode in contact with the source layer and the P layer to the other side of the substrate. In particular, in the field of car electronics, it is essential to have a gate protection circuit, so bank-to-bank protection diodes are used. Patent Publication No. 58-87873 discloses a polycrystalline S laminated on a substrate.
By introducing impurities into semiconductor layers such as iN, bank-to-bank
A device with a back diode was described, published in Japanese Patent Application Laid-Open No. 5
Publication No. 8-178566 or JP-A-61-2967
No. 70 describes a device in which a bank-to-bank diode is built in by introducing impurities into another region within the substrate.

〔発明が解決しようとする!!l!l)従来のゲート保
護用のダイオードは基板上の半導体層あるいは半導体基
板に不純物を導入してツェナダイオードとして形成され
、そのツェナ電圧は5v以下であるのに通常要求される
IOV以上のブレークダウン電圧を達成するためには、
双方向ともに複数直列したツェナダイオードを形成しな
ければならぬこと、またブレークダウン電圧が単−PN
接合のツェナ電圧の倍数に限定されることなどの欠点が
ある。
[Invention tries to solve! ! l! l) Conventional gate protection diodes are formed as Zener diodes by introducing impurities into the semiconductor layer on the substrate or the semiconductor substrate, and the Zener voltage is 5V or less, but the breakdown voltage is usually higher than the required IOV. In order to achieve
It is necessary to form multiple Zener diodes in series in both directions, and the breakdown voltage is single-PN.
Disadvantages include being limited to multiples of the Zener voltage of the junction.

本発明のL[は、上述の欠点を除き、ブレークダウン電
圧の設計の容易なゲート保護回路を備えた絶縁ゲート型
半導体装置を提供することにある。
The object of the present invention is to provide an insulated gate semiconductor device having a gate protection circuit whose breakdown voltage can be easily designed, while eliminating the above-mentioned drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は、第−導電形の半
導体基体の一方の表面Iりに第二導電形ウェルが設けら
れ、そのウェルの表面層に形成された第−導電形のソー
ス層と半導体基体の間の第二導電形ウェル部分をチャネ
ル形成領域としてその表面上にゲート絶縁膜を介して比
較的低抵抗の多結晶シリコン層よりなるゲートが設けら
れ、第−導電形ソース層と第二R型彫ウェルにソース電
極が接触するゲート絶縁型半導体装置において、半導体
基体のソース層の存在する領域とゲートパッド′iiM
域の間の絶縁膜上に形成されるゲートの材料と同一の比
較的低抵抗の多結晶シリコン層とその上に積層される逆
導電形の比較的高抵抗の多結晶シリコン層によりなるダ
イオードを少なくとも一対存し、その一対のダイオード
が順方向を逆にして直列にソース電極とゲートバンドと
の間に接続されたものとする。
In order to solve the above problems, the present invention provides a well of a second conductivity type on one surface I of a semiconductor substrate of a first conductivity type, and a well of a second conductivity type formed in a surface layer of the well. A gate made of a relatively low resistance polycrystalline silicon layer is provided on the surface of the second conductivity type well portion between the source layer and the semiconductor substrate with a gate insulating film interposed therebetween, and the second conductivity type source is used as a channel formation region. In a gate insulated semiconductor device in which a source electrode is in contact with a layer and a second R-shaped well, a region of a semiconductor substrate where a source layer exists and a gate pad 'iiM
A diode is made of a polycrystalline silicon layer of the same relatively low resistance as the gate material formed on the insulating film between the regions, and a polycrystalline silicon layer of the opposite conductivity type and relatively high resistance laminated on top of it. At least one pair of diodes exists, and the pair of diodes are connected in series between the source electrode and the gate band with their forward directions reversed.

〔作用〕[Effect]

ゲート保護回路のダイオードをゲートと同時に形成され
る比較的低抵抗の多結晶5iJiとその上に積層し任意
の不純物濃度に選定できる比較的高抵抗の多結晶51層
により形成することにより、高いブレークダウン電圧を
有するダイオードによるバンク・°ツウ・バンクダイオ
ードを得ることができる。
By forming the diode of the gate protection circuit with a relatively low-resistance polycrystalline 5iJi formed at the same time as the gate, and a relatively high-resistance polycrystalline 51 layer laminated on top of the polycrystalline 5iJi layer formed at the same time as the gate, a relatively high resistance polycrystalline 51 layer can be selected to have an arbitrary impurity concentration. A bank-to-bank diode can be obtained with a diode having a down voltage.

〔実施例〕〔Example〕

第1図は本発明の一実施例の縦型MOS F ET断面
を示し、この断面は平面図である第2図のA−A線断面
である。シリコン基板はn−Jilとn゛l!11より
なるドレイン層を形成し、n−Jilの上面にはpウェ
ル2が拡散されている。pウェル2にはn゛ソースN3
形成され、ベース層2の間のドレイン層1の露出部とソ
ース層3の間のpウェル2がチャネル形成領域となるよ
う、n゛多結晶St層からなるゲート4がゲート絶縁膜
5を介して設けられる。ゲート4の多結晶s+11には
第2図に示すような窓41が開けられて、その窓の中で
絶縁膜6のコンタクトホール61においてM配線がn0
ソースN3およびpウェルに接触しソース電極7を形成
している。41型MO3FETは、このソース電極7と
nゝ ドレイン[11に接触するドレイン電極71との
間の′r!l流がゲート4に入力される信号により制御
されるものである。ゲート多結晶S1石4の延長部には
絶縁膜6の第2図に示すコンタクトホール62でM配v
A8に接触し、このM配線は延長されてゲートポンディ
ングパッド (ゲートバンド)80を形成する。pウェ
ル2はn−711との間に逆電圧印加時に生ずる空乏層
を拡張して耐圧を高めるためゲートバンド80の下まで
形成されている。このpウェルの延長部21上に絶縁膜
51を介してゲート4と同時にn゛多結晶5IN40が
形成されその上に絶縁g!6のコンタクトホール64で
接触するp形多結晶5iJi9が積層されパターンニン
グされている。n゛多結晶Sij!40とp形多結晶S
i層9からなる二つのPN接合ダイオードのp m 9
は配線71により接続され、一方のn’rfi40はコ
ンタクトホール63でソース電極7の延長部と、他方の
n″】40はコンタクトホール65でゲートパッド80
の延長部と接触している。この結果、二つのPN接合ダ
イオードが逆直列にゲー)WillとソースN +”E
+の間に挿入されることになる。従って、ゲ−トとソー
スの間に印加されるゲート電圧がp形多結晶Si層9の
不純物4度と厚さで決まるPN接合ダイオードのブレー
クダウン電圧に達すると、その電圧の方向に応じて一方
のダイオードがブレークダウンし、ゲートとソースの間
にブレークダウン?it?JLが流れるため、それ以上
の電圧が印加されないのでゲート絶縁膜5の静電破壊か
ら守られる。
FIG. 1 shows a cross section of a vertical MOS FET according to an embodiment of the present invention, and this cross section is taken along the line A--A in FIG. 2, which is a plan view. Silicon substrates are n-Jil and n゛l! A drain layer 11 is formed, and a p well 2 is diffused on the upper surface of the n-Jil. P well 2 has n source N3.
A gate 4 made of a polycrystalline St layer is formed through a gate insulating film 5 so that the p-well 2 between the exposed part of the drain layer 1 between the base layer 2 and the source layer 3 becomes a channel formation region. It will be established. A window 41 as shown in FIG. 2 is opened in the polycrystalline s+11 of the gate 4, and the M wiring is connected to n0 in the contact hole 61 of the insulating film 6 within the window.
A source electrode 7 is formed in contact with the source N3 and the p-well. In the 41-type MO3FET, the 'r! 1 flow is controlled by a signal input to gate 4. The extension of the gate polycrystalline S1 stone 4 has a contact hole 62 shown in FIG.
Contacting A8, this M wiring is extended to form a gate bonding pad (gate band) 80. The p-well 2 is formed below the gate band 80 in order to expand the depletion layer generated when a reverse voltage is applied between the p-well 2 and the n-711 to increase the withstand voltage. At the same time as the gate 4, an n' polycrystalline 5IN40 is formed on the extension part 21 of this p-well via an insulating film 51, and an insulating g! P-type polycrystalline crystals 5iJi9 that are in contact with each other through contact holes 64 of No. 6 are stacked and patterned. n゛Polycrystalline Sij! 40 and p-type polycrystalline S
p m 9 of two PN junction diodes consisting of i-layer 9
are connected by a wiring 71, one n'rfi 40 is connected to an extension of the source electrode 7 through a contact hole 63, and the other n'rfi 40 is connected to a gate pad 80 through a contact hole 65.
is in contact with the extension of As a result, two PN junction diodes are connected in anti-series to
It will be inserted between +. Therefore, when the gate voltage applied between the gate and the source reaches the breakdown voltage of the PN junction diode, which is determined by the impurity level and thickness of the p-type polycrystalline Si layer 9, depending on the direction of the voltage, One diode breaks down and breaks down between gate and source? It? Since JL flows, no higher voltage is applied, and the gate insulating film 5 is protected from electrostatic breakdown.

この保護回路は、n−ドレインN1の下にpmを設ける
IGBTにおいても全く同様に形成することができる。
This protection circuit can be formed in exactly the same way in an IGBT in which pm is provided below the n-drain N1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲートと同時に形成する比較的低抵抗
の多結晶Si層とその上に積層する任意の不純物濃度お
よび厚さを有する比較的高抵抗の多結晶S1層とにより
少なくとも一対のダイオードを形成し、バンク・ツウ・
バックダイオードとしてゲート、ソース間に挿入するこ
とにより、IOV以上のブレークダウンを有するダイオ
ードによ冬ゲートへのサージ電圧の入力からの保護が可
能になった。また、ダイオードが半導体基体内に形成さ
れるので、寄生素子が生ずるおそれもなく、ゲート保護
回路を有する電力用縦型MO3FETあるいはI GB
Tとして有効に使用できる。
According to the present invention, at least one pair of diodes can be formed by a relatively low resistance polycrystalline Si layer formed simultaneously with the gate and a relatively high resistance polycrystalline S1 layer having an arbitrary impurity concentration and thickness laminated thereon. form a bank-to-bank
By inserting a back diode between the gate and the source, it is possible to protect the winter gate from surge voltage input using a diode with a breakdown greater than IOV. In addition, since the diode is formed within the semiconductor substrate, there is no risk of parasitic elements being generated, and it can be used in power vertical MO3FETs or IGBs with gate protection circuits.
It can be effectively used as T.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例を示し、第2図は平
面図、第1図はそのA−A線矢視断面図である。 1:n−ドレイン層、2:pウェル、21:prfJ、
3;n゛ソース層4;多結晶Siゲート、40:n”多
結晶SiN、5:ゲート絶縁膜、6:絶縁膜、6L 6
2.63.64.65:コンタクトホール、7:ソース
電極、71ニドレイン電極、8:配線、80:ゲートパ
ッド、9:p多結晶Si層。 1′・−、\
1 and 2 show one embodiment of the present invention, FIG. 2 is a plan view, and FIG. 1 is a sectional view taken along the line A--A. 1: n-drain layer, 2: p well, 21: prfJ,
3; n' source layer 4; polycrystalline Si gate, 40: n'' polycrystalline SiN, 5: gate insulating film, 6: insulating film, 6L 6
2.63.64.65: Contact hole, 7: Source electrode, 71 Ni-drain electrode, 8: Wiring, 80: Gate pad, 9: P polycrystalline Si layer. 1'・-,\

Claims (1)

【特許請求の範囲】[Claims] 1)第一導電形の半導体基体の一方の表面層に第二導電
形ウェルが設けられ、該ウェルの表面層に形成された第
一導電形のソース層と半導体基体の間の第二導電形ウェ
ル部分をチャネル形成領域としてその表面上にゲート絶
縁膜を介して比較的低抵抗の多結晶シリコン層よりなる
ゲートが設けられ、第一導電形ソース層と第二導電形ウ
ェルにソース電極が接触するものにおいて、半導体基体
のソース層の存在する領域とゲートパッド領域の間の絶
縁膜上に形成されるゲートの材料と同一の比較的低抵抗
の多結晶シリコンとその上に積層される逆導電形の比較
的高抵抗の多結晶シリコンよりなるダイオードを少なく
とも一対有し、該一対のダイオードが順方向を逆にして
直列にソース電極とゲートパッドの間に接続されたこと
を特徴とする絶縁ゲート型半導体装置。
1) A second conductivity type well is provided in one surface layer of the first conductivity type semiconductor substrate, and a second conductivity type is provided between the first conductivity type source layer formed in the surface layer of the well and the semiconductor substrate. A gate made of a relatively low-resistance polycrystalline silicon layer is provided on the surface of the well part with a channel formation region via a gate insulating film, and a source electrode is in contact with the first conductivity type source layer and the second conductivity type well. polycrystalline silicon, which has the same relatively low resistance as the gate material, is formed on the insulating film between the region where the source layer of the semiconductor substrate exists and the gate pad region, and the opposite conductive material is laminated thereon. An insulated gate comprising at least one pair of diodes made of relatively high-resistance polycrystalline silicon, the pair of diodes being connected in series between a source electrode and a gate pad with their forward directions reversed. type semiconductor device.
JP63110105A 1987-12-28 1988-05-06 Insulated gate type semiconductor device Expired - Lifetime JPH07105495B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63110105A JPH07105495B2 (en) 1988-05-06 1988-05-06 Insulated gate type semiconductor device
EP88121721A EP0322860B1 (en) 1987-12-28 1988-12-27 Insulated gate semiconductor device
DE3855533T DE3855533T2 (en) 1987-12-28 1988-12-27 Insulated gate semiconductor device
KR1019880017634A KR910009041B1 (en) 1987-12-28 1988-12-28 Insulated Gate Semiconductor Device
US07/291,463 US5012313A (en) 1987-12-28 1988-12-28 Insulated gate semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110105A JPH07105495B2 (en) 1988-05-06 1988-05-06 Insulated gate type semiconductor device

Publications (2)

Publication Number Publication Date
JPH01280359A true JPH01280359A (en) 1989-11-10
JPH07105495B2 JPH07105495B2 (en) 1995-11-13

Family

ID=14527167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110105A Expired - Lifetime JPH07105495B2 (en) 1987-12-28 1988-05-06 Insulated gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPH07105495B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326354A (en) * 2000-03-06 2001-11-22 Rohm Co Ltd Semiconductor device
JP2007299862A (en) * 2006-04-28 2007-11-15 Nissan Motor Co Ltd Semiconductor device and manufacturing method thereof
US7732869B2 (en) 2006-09-28 2010-06-08 Sanyo Electric Co., Ltd. Insulated-gate semiconductor device
US7825474B2 (en) * 2006-09-28 2010-11-02 Sanyo Electric Co., Ltd. Insulated-gate semiconductor device and PN junction diodes
US8106460B2 (en) 2008-04-21 2012-01-31 Sanyo Semiconductor Co., Ltd. Insulated gate semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151051A (en) * 1982-03-03 1983-09-08 Hitachi Ltd Semiconductor device
JPS5947766A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Insulated gate type semiconducor device and manufacture thereof
JPS63104480A (en) * 1986-10-22 1988-05-09 Fuji Electric Co Ltd Conductivity modulated vertical MOSFET

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151051A (en) * 1982-03-03 1983-09-08 Hitachi Ltd Semiconductor device
JPS5947766A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Insulated gate type semiconducor device and manufacture thereof
JPS63104480A (en) * 1986-10-22 1988-05-09 Fuji Electric Co Ltd Conductivity modulated vertical MOSFET

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326354A (en) * 2000-03-06 2001-11-22 Rohm Co Ltd Semiconductor device
JP2007299862A (en) * 2006-04-28 2007-11-15 Nissan Motor Co Ltd Semiconductor device and manufacturing method thereof
US7732869B2 (en) 2006-09-28 2010-06-08 Sanyo Electric Co., Ltd. Insulated-gate semiconductor device
US7825474B2 (en) * 2006-09-28 2010-11-02 Sanyo Electric Co., Ltd. Insulated-gate semiconductor device and PN junction diodes
US8344457B2 (en) 2006-09-28 2013-01-01 Sanyo Semiconductor Co., Ltd. Insulated-gate semiconductor device with protection diode
US8106460B2 (en) 2008-04-21 2012-01-31 Sanyo Semiconductor Co., Ltd. Insulated gate semiconductor device

Also Published As

Publication number Publication date
JPH07105495B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US5610426A (en) Semiconductor integrated circuit device having excellent dual polarity overvoltage protection characteristics
JP3485655B2 (en) Composite MOSFET
JP3911566B2 (en) MOS type semiconductor device
JPH0563949B2 (en)
JP2689703B2 (en) MOS type semiconductor device
WO2019159351A1 (en) Silicon carbide semiconductor device
US3764864A (en) Insulated-gate field-effect transistor with punch-through effect element
CN1127142C (en) Semiconductor device
KR910009041B1 (en) Insulated Gate Semiconductor Device
JPH03180074A (en) semiconductor equipment
JP3155134B2 (en) Semiconductor device
JPH01280359A (en) Insulated gate semiconductor device
JP2906749B2 (en) Gate protection device for semiconductor device
JP2676888B2 (en) Semiconductor device
JP4431761B2 (en) MOS type semiconductor device
US7112828B2 (en) Semiconductor device
JPS59132671A (en) Vertical type metal oxide semiconductor transistor
US3936862A (en) MISFET and method of manufacture
JP2611639B2 (en) Semiconductor device
JPH04363068A (en) semiconductor equipment
JPH01185971A (en) Insulated gate semiconductor device
JPH01189955A (en) semiconductor equipment
JPS6237816B2 (en)
JPS62141754A (en) High voltage semiconductor device
JPH0518467B2 (en)