[go: up one dir, main page]

JPS61204976A - Thin film transistor device and its manufacturing method - Google Patents

Thin film transistor device and its manufacturing method

Info

Publication number
JPS61204976A
JPS61204976A JP60045865A JP4586585A JPS61204976A JP S61204976 A JPS61204976 A JP S61204976A JP 60045865 A JP60045865 A JP 60045865A JP 4586585 A JP4586585 A JP 4586585A JP S61204976 A JPS61204976 A JP S61204976A
Authority
JP
Japan
Prior art keywords
film
source
thin film
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60045865A
Other languages
Japanese (ja)
Other versions
JPH0824185B2 (en
Inventor
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP60045865A priority Critical patent/JPH0824185B2/en
Publication of JPS61204976A publication Critical patent/JPS61204976A/en
Publication of JPH0824185B2 publication Critical patent/JPH0824185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • H10D30/6713Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes

Abstract

PURPOSE:To improve withstanding voltage of a gate, by forming source and drain electrodes by multiple layer films comprising a first conducting film and a low resistance thin semiconductor film on a substrate, and providing the contact between a thin semiconductor film and the source and drain electrodes through the low resistance thin semiconductor film, thereby reducing a leaking current in the reverse direction. CONSTITUTION:A TFT comprises a source electrode 2 and a drain electrode 3, i.e., multiple layer films, which are formed by first conducting films 12 and 13 on an insulating substrate 1 and N<+>a-Si films 22 and 23; an insulating film 7, which covers the side end parts of the multiple layer films and the surface of the substrate 1 between the source and drain electrodes 2 and 3; an a-Si film 4, whose both ends are connected to the N<+>a-Si films 22 and 23; a gate insulating film 5 on the a-Si film 4; and a gate electrode 6. The low resistance thin semiconductor film (e.g., N<+>a-Si film) has, e.g., a hole blocking function. Therefore, a leaking current in the reverse direction can be made small. The presence of the insulating film alleviates the stepped part of the multiple layer films, which are the source and drain electrodes. Thus, the step covering property of the films deposited on the surface can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非晶質シリコン(a−si)や多結晶シリコ
ン(p−si、)等の半導体4喚を用いた薄膜]・ラン
ジスタ(TPT )の特にソース及びドレインCに極の
構造とその製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to thin films using semiconductors such as amorphous silicon (A-SI) and polycrystalline silicon (P-SI). In particular, it relates to the structure of the source and drain C poles of TPT) and its manufacturing method.

〔発明の概要〕[Summary of the invention]

絶縁基少、上に形成された第1導五嗅と低抵抗゛4へ導
体薄1模の多層膜から成るソース及びドレインα極と、
両′;区堪に接する半25体博膜と、半導体博膜おに設
けられたゲート絶縁膜とゲーh*愼とから成る’lll
’Tにおいて、@記多鳩喚の少なく共側面を絶縁膜で破
ってソース及びドレイン電夙と半導体4頃の接触を圓抵
抗半導体博暎のみを介して行なつTFT構造を提供して
いる。それにより、逆方向IJ−り電流の少ない付性が
得られ、かつ前記多層膜による段差が緩和されるためゲ
ートflltIEが同上する。製造においては、前記多
層膜またはその段差を利用して幾面嬉元や全面エッチ前
でセル2アライン的に前記絶縁膜を選択的に除去し、多
1−幌の側面をカバーする前記絶縁膜を残している。
A source and drain α pole consisting of a multilayer film of a thin conductor and a low resistance conductor formed on an insulating base and a first conductor formed thereon;
It consists of a semi-25-body film in contact with the semiconductor film, a gate insulating film provided on the semiconductor film, and a gate.
In 'T, we provide a TFT structure in which the same surface is broken with an insulating film and the contact between the source and drain voltages and the semiconductor 4 is made only through the round resistor semiconductor layer, with less friction. As a result, it is possible to obtain a property with less reverse direction IJ current, and the level difference due to the multilayer film is alleviated, so that the gate flltIE is the same as above. In manufacturing, the insulating film is selectively removed in cell 2 alignment using the multilayer film or its steps before etching the entire surface, and the insulating film covers the sides of the multi-layer roof. is left behind.

〔従来の技術」 TmTは、現在液晶表示装置等に応用されており、その
用途はさらに拡大しつつある。a−siを用いたTPT
について主に述べれば、低堝で堆積できる特徴をもつの
で多くの構造が可能である。
[Prior Art] TmT is currently being applied to liquid crystal display devices and the like, and its uses are expanding further. TPT using a-si
Mainly speaking, many structures are possible because it has the characteristic of being able to be deposited in a low potency.

第2図にはその1〜f而例を示した。TF’rは、絶縁
基板1上のソース・ドレイン’If:/72,5と、そ
の上に設けられた半導体薄膜であるa−sl、 : H
映4、ゲート絶縁膜5、ゲートm=6とから成る。
FIG. 2 shows examples 1 to f. TF'r is a source/drain 'If:/72,5 on an insulating substrate 1 and a-sl, which is a semiconductor thin film provided thereon: H
It consists of a gate 4, a gate insulating film 5, and a gate m=6.

ソース・ドレインIt嘔2,5は通常第1導戒i12、
+5と低抵抗半導体博膜であるn”a−01:H[22
,25から成る多層膜で形成され、抵抗化減化と工程の
簡単化を図っている。TPTを液晶表示装置に適用する
場合には、第1導″颯幌12゜15にITO等の透明4
成mを用いることが多い。
Source/drain It 2,5 is usually the first commandment i12,
+5 and n”a-01:H[22
, 25, to reduce resistance and simplify the process. When applying TPT to a liquid crystal display device, a transparent material such as ITO is added to the first conductive layer 12゜15.
It is often used.

または、第2図の様にソース・ドレイン配線62゜55
を設けることがあり、n”a−si 11I!22 、
25を介したり、第1導電幌+2.15と直接接触させ
る。製造工程の簡単化の現め、第14電膜12゜15と
n”a−si膜22,25から成る多層膜は同一形状に
選択エッチされるため、a−81[4はn”a−si模
22,25と接触すると共に、多層膜の側面で第1導逼
114112.lりとも接触する。後者の接触はゲート
成田を瓜にしたとき流れるソース・ドレイン電極間電流
にいわゆる逆方向リーク141の増加の原因になってい
て、オフ特性上好ましくない。一方、前記多層膜の選択
エッチは、n”a−ei噂22,25のエッチ後編14
亀幌12゜15の選択エッチを行なうため、多層膜の側
面は諌、峻、もしくは逆テーパー状になりやすい。この
様な側面をもつソース・ドレイン電憾2,5上にa−s
i嗅4、ゲートe縁1戻5、ゲート戒極6を形成すると
、これらの躾の段差被慢性が充分でないため段着部でゲ
ート曙11メロとa−sig4の短絡、または耐圧不良
を生じてし”まう。その結果、゛rドT装置の製逍歩笛
りが向上しないという問題点があった。
Or, as shown in Figure 2, source/drain wiring 62°55
n”a-si 11I!22,
25 or directly contact the first conductive hood +2.15. In order to simplify the manufacturing process, the multilayer film consisting of the fourteenth electric film 12°15 and the n"a-Si films 22 and 25 is selectively etched into the same shape, so that a-81[4 is n"a- While contacting the Si pattern 22, 25, the first conductor 114112. Contact with everyone. The latter contact is a cause of an increase in so-called reverse leakage 141 in the current flowing between the source and drain electrodes when the gate gate is connected, and is unfavorable in terms of off-state characteristics. On the other hand, the selective etching of the multilayer film is the etch latter part 14 of n"a-ei rumors 22 and 25.
Since selective etching is performed at the angle of 12° and 15°, the side surfaces of the multilayer film tend to have a straight, sharp, or reversely tapered shape. A-s on the source/drain electrodes 2,5 with such sides
When forming i-sig 4, gate e-edge 1 return 5, and gate kai-poku 6, the level difference in these gates is not sufficiently chronic, resulting in a short circuit between gate Akebono 11 and a-sig 4 at the stepped part, or a breakdown voltage failure. As a result, there was a problem in that the performance of the RD T device was not improved.

〔発明が解決しようとする問題点〕 本発明は成上の問題点にべみてなされ、第1の目的は逆
方向リーク″flLω乙の少ないTF″Tを提供するこ
とである。第2の目的はゲート耐圧を改善すること。第
5のト」的は前記目的のための容易な製造方法を提供す
るものである。
[Problems to be Solved by the Invention] The present invention has been made in consideration of the above-mentioned problems, and the first object is to provide a TF''T with less reverse leakage. The second purpose is to improve gate breakdown voltage. The fifth objective is to provide an easy manufacturing method for the above purpose.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明によるTPTは、絶縁基板上に設けられた第1導
眠嗅及び低抵抗半導体薄嗅から成る多層膜で形成された
ソース・ドレイン電極を有し、この多J−瞑の側面とそ
の間の基板表面を絶縁膜で被覆した構造を有している。
The TPT according to the present invention has source/drain electrodes formed of a multilayer film consisting of a first sleep-inducing layer and a low-resistance semiconductor layer provided on an insulating substrate, and a side surface of the multilayer layer and a space between the layers. It has a structure in which the surface of the substrate is covered with an insulating film.

その上に半導体薄寝、ゲート絶縁膜、ゲート電1執が設
けられるので、半導体薄映は多層膜のうち低抵抗半導体
薄模とのみ接する。
Since a semiconductor thin film, a gate insulating film, and a gate electrode are provided thereon, the semiconductor thin film contacts only the low-resistance semiconductor thin film of the multilayer film.

〔作用〕[Effect]

上記の構造のため、氏抵抗半導体/lφ(例えばn“a
−siI!i)が例えば正孔阻止機能を有するため逆方
向リーク電流が少なくできる。また、IP3縁嘆の存在
がソース・ドレイン電極である多層膜の段差を緩和する
ので、上に堆積する−のステップカバー性を改善できる
Due to the above structure, the resistive semiconductor/lφ (e.g. n“a
-siI! Since i) has, for example, a hole blocking function, the reverse leakage current can be reduced. In addition, the presence of the IP3 edge reduces the step difference in the multilayer film that is the source/drain electrode, so that the step coverage of - deposited thereon can be improved.

〔実施例〕〔Example〕

(a)  実兎例I  TPT断面 (SiN2図)本
発明によるTIFT構造vfr面例を第1図に示した。
(a) Actual Example I TPT cross section (SiN2 diagram) An example of the vfr surface of the TIFT structure according to the present invention is shown in FIG.

TIFTは、絶縁基板1上の第1導電喚12゜15とn
+a−θ1嗅22,25とから成る多層膜であるソース
ta2とドレイン電極5と、多層膜の側面端部とソース
・ドレイン電極2,5間の基板10表面とを被う絶縁膜
7と、n”a−si喚22゜25に両端を接するa−8
1映4と、a−81暎4上のゲート、eegs及びゲー
)$46とから成っている。必要に応じ設けられるソー
ス・ドレイン配線52.55は、この例ではそれぞれの
電極2゜3の第1導電膜12.15に接している。絶縁
基板1としては、ガラス、石英、セラミックス等の絶縁
材料の池(c81や金属等に絶IIR*コートしたもの
が用いられる。第1導tILtllt2.+sには、O
r、W、Mo、Ti等の金蝙、特に高融点金属やその硅
素化物が用いられる他、工To等の透明導区喚も用いら
れるし、これらの多層膜でもよいb絶*喚7は、810
X、5iNX %の他にポリイミド等の有機絶縁膜も用
いられる。n”a−si換22゜25やa−sil14
は、a−si:H合金、a−si:F合金等が用いられ
るが、p−siやビームアニールされた81薄映も適用
できる。n”a−θ1ll122゜25は、pea−s
i@に11きかえることも可Mgである。
TIFT is a first conductive layer 12°15 and n on an insulating substrate 1.
an insulating film 7 that covers the source ta2 and drain electrode 5, which are multilayer films consisting of +a-θ1 electrodes 22 and 25, and the side edges of the multilayer film and the surface of the substrate 10 between the source and drain electrodes 2 and 5; n”a-8 with both ends touching 22゜25
Consists of 1 movie 4, A-81 暎4 on gate, eegs and game) $46. In this example, the source/drain wiring 52.55 provided as necessary is in contact with the first conductive film 12.15 of each electrode 2.3. The insulating substrate 1 is made of an insulating material such as glass, quartz, or ceramics (c81 or metal coated with an absolute IIR* coating).
In addition to metals such as R, W, Mo, and Ti, especially high-melting point metals and their silicides, transparent conductors such as Tonne are also used, and multilayer films of these materials may also be used. ,810
In addition to X, 5iNX%, an organic insulating film such as polyimide may also be used. n”a-si exchange 22°25 and a-sil14
Although a-si:H alloy, a-si:F alloy, etc. are used, p-si and beam annealed 81 thin film are also applicable. n”a-θ1ll122°25 is pea-s
It is also possible to change 11 to i@ for Mg.

以下に本発明を液晶表示装置用TPT基板に適用した場
合の製造方法を説明しつつ、本発明をさらに明らかにし
たい。
The present invention will be further clarified by explaining the manufacturing method when the present invention is applied to a TPT substrate for a liquid crystal display device.

(1))  冥捲例2 単位画素断面 (@5図)第5
図(a)は、ガラス・石英等の透明1P3Iij&基板
i上に第電導電暎12.15である透間溝’11111
1!(例えば工To  (L1μ)+02.+05と不
透間溝’4g(例えば金M膜α+μ)I t2.+ +
5tvz層嘆と、n”a−si嘆22,25(例えば5
0()ス)とを堆積した後これらの多rtl tjl 
′(+−ソース電極2、ドレイン電極Sの形状に選択的
に残した1!!l?面である。第S図(b)は、絶縁1
1g!7を全面堆積後、ネガレジスト8をコートし裏面
からt露光し、現像した状態を示す。絶縁膜7は5iO
xfsiNx等のCVD喚が用いられるが表面平坦化の
上では塗布絶縁物(例えばスピンオンジ2スやポリイミ
ド系樹脂)をソース・ドレインvlJ僕の段差以上の厚
みに形成+2、PL−wt(”4−1k11/%:コー
e」に−511(1”S、lj「l’1i4se−(1
>・亨−f+Ii4〜−・光により金属膜112,11
5がマスクとなり、セルファライン的にレジスト8を残
せる。各電極2.5の多1m1lA側面を絶縁膜7で光
分カバーするには、裏面光4光をオーバーにするか、レ
ジスト8が鍵形する扇度でベークするかして、!11”
5L−8111i22,25の表面までレジスト8を拡
げることが菫ましい。第5図(c)は、レジスト8をマ
スクにして11弾7t−選択エッチした状態を示す。絶
縁膜7の端部17は、なだらかに〃ロエすることが有効
で、スパッター、イオンエッチ等が有効である。
(1)) Example 2 Unit pixel cross section (@Figure 5) No. 5
Figure (a) shows a transparent 1P3Iij made of glass, quartz, etc. and a transparent groove '11111 which is the first conductive layer 12.15 on the substrate i.
1! (For example, To (L1μ) +02.+05 and the impermeable groove '4g (for example, gold M film α+μ) I t2.+ +
5 tvz layer complaints and n”a-si complaints 22, 25 (e.g. 5
After depositing 0()s) and these poly rtl tjl
'(+- This is the 1!!l? plane selectively left in the shape of the source electrode 2 and drain electrode S. Figure S (b) shows the insulation 1
1g! 7 is deposited on the entire surface, a negative resist 8 is coated, exposed to light from the back side, and developed. Insulating film 7 is 5iO
CVD process such as 1k11/%: -511 (1"S, lj"l'1i4se-(1
>・Toru −f+Ii4〜−・Metal films 112, 11 by light
5 serves as a mask, and the resist 8 can be left in a self-aligned manner. In order to cover the 1m11A side surface of each electrode 2.5 with the insulating film 7 by the amount of light, either make the back side light 4 over or bake it at a degree that the resist 8 is key-shaped! 11”
It is embarrassing to spread the resist 8 to the surfaces of 5L-8111i22 and 25. FIG. 5(c) shows a state in which 11 bullets 7t-selective etching has been performed using the resist 8 as a mask. It is effective to gently etch the end portion 17 of the insulating film 7, and sputtering, ion etching, etc. are effective.

第5図(d)は、a−sin4、ゲート絶縁膜5、ゲー
ト−極用金属I嬰(例えばl)+6を順次堆積した状態
を示す。a−sin(例、tld’500X)4、ゲー
ト絶縁膜(fjえばSiNx喚α2μ)5はプラズマc
vb号で堆積できるが、a−si映4堆積前にn”a−
si 1122 、259面をHlやA? i%でm浄
化することが室ましい。第slA<θ)は完成したTP
T構造の1例であるが、ゲート成立6を選択エッチで形
成後、次のマスク工程によってゲート絶縁膜5、a−s
in4を選択エッチし、さらに露出したn”a−1、幹
25、金%暎115を除去し7だものである。この最終
工程により、ドレイン電極5の一部であるIToql+
05が透明画素となる。金属t1gl12.IISはn
”a−si 輯22 、 25が充分厚ければ必ずしも
必要ないが、第5図(f)における裏面露光のマスク効
果の向上や、配線抵抗の減少に有効である。  ; fe)  実施例5 ソース・ドレイン電愼の形成(第
4図) 第4図には本発明によるソー・ス・ドレ・イン電極の他
の形成方法を示した。第4図(−)は、絶縁基板l(透
明である必要はない)上に、第1導’1m512.15
とn”a−aim 22 、25の多j−一から成るソ
ース・ドレイン電極2.5を形成した状態を示す。第4
図(f)は、四部により厚く堆積できる絶lk@7をつ
けた状態である。この場合、前述の億布絶縁喚の他にR
?バイアススパッター法による絶縁膜も有効である。次
に、全面についた絶縁11J17の除去の途中でエッチ
を止めることにより、第4図(c)の様に絶縁膜7をソ
ース・ドレイン電極2.3の間に埋めた形状に残すこと
かできる。この後、a−81膜4形成、ゲートMI3縁
腰5形成、ゲー ト′1t、6区6形成を行なえばTP
Tは完成する。
FIG. 5(d) shows a state in which a-sin 4, a gate insulating film 5, and a gate-electrode metal I (for example, l)+6 are deposited in sequence. a-sin (for example, tld'500X) 4, gate insulating film (for example, SiNx α2μ) 5 is plasma
It can be deposited with vb, but n"a- is deposited before a-si film is deposited.
si 1122, 259 side Hl or A? It is desirable to purify m at i%. slA<θ) is the completed TP
As an example of the T structure, after forming the gate formation 6 by selective etching, the gate insulating film 5, a-s, is formed by the next mask process.
In4 is selectively etched, and the exposed n"a-1, trunk 25, and gold layer 115 are removed (7). Through this final step, IToql+, which is a part of the drain electrode 5, is removed.
05 is a transparent pixel. metal t1gl12. IIS is n
Although it is not necessarily necessary if the a-si lines 22 and 25 are sufficiently thick, it is effective in improving the masking effect of the back exposure in FIG. 5(f) and reducing the wiring resistance.;fe) Example 5 Source・Formation of drain electrode (Figure 4) Figure 4 shows another method for forming the source, drain, and in electrodes according to the present invention. Figure 4 (-) shows the insulating substrate l (transparent). (Doesn't have to be) On the 1st lead '1m512.15
This shows the state in which the source/drain electrodes 2.5 are formed of a multiplicity of n"a-aim 22 and 25.
Figure (f) shows a state in which an ink @7 is applied, which allows for thicker deposition on the four parts. In this case, in addition to the above-mentioned Yombu insulation
? An insulating film formed by bias sputtering is also effective. Next, by stopping the etching in the middle of removing the insulating film 11J17 on the entire surface, the insulating film 7 can be left buried between the source and drain electrodes 2.3 as shown in FIG. 4(c). . After this, if a-81 membrane 4 is formed, gate MI3 edge waist 5 is formed, gate '1t, and section 6 is formed, TP is completed.
T is completed.

この例の応用としては、第4図(f)の状態にさらにレ
ジスト等をコートして表面を平坦化して、レジスト及び
絶縁膜7に対しほぼ同じエッチ速度でドライエッチ等で
全面エッチすることも行なえる。
As an application of this example, it is also possible to further coat a resist or the like in the state shown in FIG. 4(f) to flatten the surface, and then etch the entire surface by dry etching or the like at approximately the same etch rate for the resist and the insulating film 7. I can do it.

(d、)  実施例4 ソース・ドレイン丸物の形成(
第5図) 第5図には、絶縁膜7に感光性絶縁膜を用いた例を示し
た。第5図Ca)には、透明絶縁基板1に、■’rol
oz、+05、金属暎112.+15、+1”a−s 
i fil! 22 、 25から成るソース・ドレイ
ン電極2.5を形成後、感光性絶縁膜(例えばネガ型ポ
リイミド系樹脂)7を全面コートした状態を示す。この
状態で基板長面から光蕗光し、現像することによって第
5図(f)の様にソース・ドレイン電極2.5の11面
を被った絶縁膜7を形成することができる。この4会も
、オーバー4光が望ましい。また、絶縁s7の鵡部17
をさらになだらかにするため、酸素プラズマ等によるエ
ッチ、イオンエッチ、スパッタエッチ等が有効である。
(d,) Example 4 Formation of source/drain round objects (
FIG. 5) FIG. 5 shows an example in which a photosensitive insulating film is used as the insulating film 7. In Fig. 5 Ca), ■'rol is placed on the transparent insulating substrate 1.
oz, +05, metal 112. +15, +1”a-s
ifil! After forming source/drain electrodes 2.5 consisting of 22 and 25, the entire surface is coated with a photosensitive insulating film (for example, negative type polyimide resin) 7. In this state, by exposing the substrate to light from the long surface and developing it, an insulating film 7 covering 11 surfaces of the source/drain electrodes 2.5 can be formed as shown in FIG. 5(f). For these 4 events as well, over 4 light is desirable. In addition, the part 17 of the insulation s7
In order to further smoothen the surface area, etching using oxygen plasma, ion etching, sputter etching, etc. are effective.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明は簡単な工程で逆方向IJ−りt流
の減少、平坦化によるゲート耐圧同上が図れる。本発明
は主にソース・ドレイン電極構造とその製法にあるので
、ソース・ドレイン電極形成後a−si、ゲート絶縁膜
、ゲートwL極を形成する構造・製法のTPTにすべて
適用できる。本発明においては、絶縁膜7の選択形成が
セルファライン的にできるので、大面積TPT装置、微
細TPT装置等に適用でき、特性向上と歩留り向上が行
なえる。
As described above, the present invention can reduce the reverse IJ-ret flow and increase the gate breakdown voltage by flattening the gate through simple steps. Since the present invention mainly relates to the source/drain electrode structure and its manufacturing method, it is applicable to all TPT structures and manufacturing methods in which A-SI, gate insulating film, and gate wL pole are formed after forming the source/drain electrodes. In the present invention, since the insulating film 7 can be selectively formed in a self-aligned manner, it can be applied to large-area TPT devices, fine TPT devices, etc., and the characteristics and yield can be improved.

主にa−siを半導体薄寝に用いる例を述べてきたが、
p−81、ビームアニールされた半導体薄鳴、さらにs
iに限らず他の半導体薄喚に適用できる。
We have mainly described examples of using a-si for semiconductor thinning, but
p-81, beam annealed semiconductor tint, and s
It can be applied not only to i but also to other semiconductor thin films.

本発明によるTPTはさらに、ソース・ドレイン′を極
が平坦化しやすいので、半導体薄映が赦+oX〜数+o
aXと極めて薄い場合に有効で、丁蝉/7−1!−7し
 L−北1/l” 点1八mu :e 央1aJ h 
<−im 7− r  l−a:できる。
Furthermore, since the TPT according to the present invention can easily flatten the source/drain' poles, semiconductor thin reflection can be avoided.
Effective when extremely thin as aX, Dingsemi/7-1! -7shi L-north 1/l” point 18mu :e center 1aJ h
<-im 7- r l-a: I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるTPTの断面図、第2図は従来の
TUFTの断面図、第3図(8)〜(θ)は本発明の実
―例を単位画素形成について説明するための工程順断面
図、第4図(a) −(c)及び第5図(a)及びjb
)はそれぞれソース・ドレイン電極構造の形成方法の実
施例の工程順の断面図である。 し・・基板 2・・・ソースrt億 S・・・ドレイン
電極4・・・a−si、噂 5・・・ゲート絶縁膜 6
・・・ゲートル極 7・・・絶縁m+2.sΔ・・・第
1導′屯喚22、 25−−−o”ts−st幌102
.  +05−1T。 112.115・・・金属寝 以   上 出願人 セイコー区子工業株式会社 本発明(′−よるTFTのめh狛図 ¥y1図 従来のTFTIQMf1図 第2図
FIG. 1 is a sectional view of a TPT according to the present invention, FIG. 2 is a sectional view of a conventional TUFT, and FIG. Forward sectional views, Figs. 4(a)-(c) and Figs. 5(a) and jb
) are cross-sectional views showing the steps of an embodiment of a method for forming a source/drain electrode structure. ...Substrate 2...Source rtB S...Drain electrode 4...A-SI, rumor 5...Gate insulating film 6
...Gaiter pole 7...Insulation m+2. sΔ...1st conductor 22, 25--o"ts-st hood 102
.. +05-1T. 112.115... Metal layer or more Applicant: Seiko Kuko Kogyo Co., Ltd. The present invention ('-TFT Meh Koma diagram ¥y1 diagram Conventional TFTIQMf1 diagram Figure 2

Claims (7)

【特許請求の範囲】[Claims] (1)絶縁基板と、該基板上で互いに離間して形成され
たソース電極及びドレイン電極と、前記ソース及びドレ
イン電極に両端を接する半導体薄膜と、該薄膜上に設け
られたゲート絶縁膜と、該絶縁膜上に設けられたゲート
電極とから少なく共成る薄膜トランジスタにおいて 前記ソース及びドレイン電極が前記基板側から第1導電
膜、低抵抗半導体薄膜から成る多層膜であり 前記ソース及びドレイン電極の間の前記基板表面と前記
ソース及びドレイン電極である多層膜の少なく共側面を
被覆する絶縁を設け、 前記半導体薄膜と前記ソース及びドレイン電極との接触
は前記低抵抗半導体薄膜を介してなされることを特徴と
する薄膜トランジスタ装置。
(1) an insulating substrate, a source electrode and a drain electrode formed apart from each other on the substrate, a semiconductor thin film whose ends are in contact with the source and drain electrodes, and a gate insulating film provided on the thin film; In a thin film transistor consisting of at least a gate electrode provided on the insulating film, the source and drain electrodes are a multilayer film consisting of a first conductive film and a low-resistance semiconductor thin film from the substrate side; Insulation is provided to cover at least the same side surface of the substrate surface and the multilayer film that is the source and drain electrodes, and the semiconductor thin film and the source and drain electrodes are contacted through the low resistance semiconductor thin film. thin film transistor device.
(2)前記第1導電膜の少なく共一部が透明導電膜であ
ることを特徴とする特許請求の範囲第1項記載の薄膜ト
ランジスタ装置。
(2) The thin film transistor device according to claim 1, wherein at least a common portion of the first conductive film is a transparent conductive film.
(3)前記絶縁膜が塗布絶縁膜であり、前記ソース及び
ドレイン電極である多層膜の段差を緩和していることを
特徴とする特許請求の範囲第1項または第2項記載の薄
膜トランジスタ装置。
(3) The thin film transistor device according to claim 1 or 2, wherein the insulating film is a coated insulating film, and the step difference in the multilayer film serving as the source and drain electrodes is alleviated.
(4)(a)絶縁基板上に第1導電膜、低抵抗半導体薄
膜を順次堆積し多層膜とする第1工程 (b)前記多層膜をソース及びドレイン電極形状に島状
領域に選択形成する第2工程 (c)全面に絶縁膜を堆積する第3工程 (d)前記多層膜または多層膜の段差を利用して、前記
多層膜上の前記絶縁膜を除去し、前記基板上及び前記多
層膜の側面を被う如く前記絶縁膜を残す第4工程 (e)半導体薄膜、ゲート絶縁膜、ゲート電極を順次形
成する第5工程 より少なく共成る薄膜トランジスタ装置の製造方法。
(4) (a) First step of sequentially depositing a first conductive film and a low-resistance semiconductor thin film on an insulating substrate to form a multilayer film (b) Selectively forming the multilayer film in island-like regions in the shape of source and drain electrodes Second step (c) Depositing an insulating film on the entire surface. Third step (d) Using the multilayer film or steps of the multilayer film, remove the insulating film on the multilayer film, and remove the insulating film on the substrate and the multilayer film. A method for manufacturing a thin film transistor device comprising a fourth step (e) in which the insulating film is left so as to cover the side surfaces of the film; and a fifth step (e) in which a semiconductor thin film, a gate insulating film, and a gate electrode are sequentially formed.
(5)前記基板が透明であり、前記第4工程が前記多層
膜をマスクとして用いた基板裏面よりの光露光を利用す
ることを特徴とする特許請求の範囲第4項記載の薄膜ト
ランジスタ装置の製造方法。
(5) Manufacturing the thin film transistor device according to claim 4, wherein the substrate is transparent, and the fourth step utilizes light exposure from the back side of the substrate using the multilayer film as a mask. Method.
(6)前記第3工程において、前記絶縁膜が塗布により
堆積されることを特徴とする特許請求の範囲第4項また
は第5項記載の薄膜トランジスタ装置の製造方法。
(6) The method for manufacturing a thin film transistor device according to claim 4 or 5, wherein in the third step, the insulating film is deposited by coating.
(7)前記第4工程が、前記多層膜の段差によつて生じ
る前記基板上と前記多層膜上の前記絶縁膜の厚さの差を
利用し、前記絶縁膜の全面エッチによることを特徴とす
る特許請求の範囲第6項記載の薄膜トランジスタ装置の
製造方法。
(7) The fourth step is characterized in that the entire surface of the insulating film is etched by utilizing a difference in thickness between the insulating film on the substrate and the multilayer film caused by a step difference in the multilayer film. A method for manufacturing a thin film transistor device according to claim 6.
JP60045865A 1985-03-08 1985-03-08 Thin film transistor device and manufacturing method thereof Expired - Lifetime JPH0824185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045865A JPH0824185B2 (en) 1985-03-08 1985-03-08 Thin film transistor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045865A JPH0824185B2 (en) 1985-03-08 1985-03-08 Thin film transistor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61204976A true JPS61204976A (en) 1986-09-11
JPH0824185B2 JPH0824185B2 (en) 1996-03-06

Family

ID=12731103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045865A Expired - Lifetime JPH0824185B2 (en) 1985-03-08 1985-03-08 Thin film transistor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0824185B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216372A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd A-si thin film transistor
EP0365036A2 (en) * 1988-10-21 1990-04-25 General Electric Company Thin film transistor and crossover structure for liquid crystal displays and method of making
JPH0595117A (en) * 1991-10-01 1993-04-16 Nec Corp Thin film transistor and manufacturing method thereof
JPH06342909A (en) * 1990-08-29 1994-12-13 Internatl Business Mach Corp <Ibm> Thin-film transistor and its manufacture
US5614731A (en) * 1993-03-15 1997-03-25 Kabushiki Kaisha Toshiba Thin-film transistor element having a structure promoting reduction of light-induced leakage current
WO2011111503A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2011111505A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2011233873A (en) * 2010-04-09 2011-11-17 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US20120034743A1 (en) * 2010-08-05 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
EP2634812A1 (en) * 2012-02-29 2013-09-04 Samsung Electronics Co., Ltd Transistor, Method Of Manufacturing The Same And Electronic Device Including Transistor
JP2016066807A (en) * 2010-03-12 2016-04-28 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
JP2018014373A (en) * 2016-07-19 2018-01-25 株式会社リコー Field-effect transistor, method for manufacturing the same, display element, display device, and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141581A (en) * 1978-04-26 1979-11-02 Matsushita Electric Ind Co Ltd Thin film transistor
JPS5936944A (en) * 1982-08-25 1984-02-29 Fujitsu Ltd Multilayer wiring formation method
JPS59225569A (en) * 1983-06-06 1984-12-18 Fujitsu Ltd Manufacture of self-aligning thin film transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141581A (en) * 1978-04-26 1979-11-02 Matsushita Electric Ind Co Ltd Thin film transistor
JPS5936944A (en) * 1982-08-25 1984-02-29 Fujitsu Ltd Multilayer wiring formation method
JPS59225569A (en) * 1983-06-06 1984-12-18 Fujitsu Ltd Manufacture of self-aligning thin film transistor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216372A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd A-si thin film transistor
EP0365036A2 (en) * 1988-10-21 1990-04-25 General Electric Company Thin film transistor and crossover structure for liquid crystal displays and method of making
JPH06342909A (en) * 1990-08-29 1994-12-13 Internatl Business Mach Corp <Ibm> Thin-film transistor and its manufacture
JPH0595117A (en) * 1991-10-01 1993-04-16 Nec Corp Thin film transistor and manufacturing method thereof
US5614731A (en) * 1993-03-15 1997-03-25 Kabushiki Kaisha Toshiba Thin-film transistor element having a structure promoting reduction of light-induced leakage current
KR20130029058A (en) * 2010-03-08 2013-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
JP2015073136A (en) * 2010-03-08 2015-04-16 株式会社半導体エネルギー研究所 Processing device and cpu
JP2011211183A (en) * 2010-03-08 2011-10-20 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2011211185A (en) * 2010-03-08 2011-10-20 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
DE112011100841B4 (en) 2010-03-08 2021-11-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US10749033B2 (en) 2010-03-08 2020-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2012227550A (en) * 2010-03-08 2012-11-15 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method for the same
WO2011111503A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN106449649B (en) * 2010-03-08 2019-09-27 株式会社半导体能源研究所 Semiconductor device and method of manufacturing the same
US9852108B2 (en) 2010-03-08 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Processor including first transistor and second transistor
CN106449649A (en) * 2010-03-08 2017-02-22 株式会社半导体能源研究所 Semiconductor device and method for manufacturing semiconductor device
WO2011111505A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2016012735A (en) * 2010-03-08 2016-01-21 株式会社半導体エネルギー研究所 Semiconductor device
JP2016066807A (en) * 2010-03-12 2016-04-28 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
US9917109B2 (en) 2010-03-12 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9006732B2 (en) 2010-04-09 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP2011233873A (en) * 2010-04-09 2011-11-17 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US8778729B2 (en) * 2010-08-05 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US20120034743A1 (en) * 2010-08-05 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9184300B2 (en) 2012-02-29 2015-11-10 Samsung Electronics Co., Ltd. Transistor, method of manufacturing the same, and electronic device including transistor
EP2634812A1 (en) * 2012-02-29 2013-09-04 Samsung Electronics Co., Ltd Transistor, Method Of Manufacturing The Same And Electronic Device Including Transistor
JP2018014373A (en) * 2016-07-19 2018-01-25 株式会社リコー Field-effect transistor, method for manufacturing the same, display element, display device, and system

Also Published As

Publication number Publication date
JPH0824185B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
TWI311815B (en) Thin film transistor array panel and manufacturing method thereof
US7608494B2 (en) Thin film transistor array panel and a method for manufacturing the same
KR100303446B1 (en) Manufacturing method of thin film transistor substrate for liquid crystal display device
CN109065551B (en) Manufacturing method of TFT array substrate and TFT array substrate
US6465285B2 (en) Liquid crystal device, liquid crystal display panel and method for manufacturing the same
JPS61204976A (en) Thin film transistor device and its manufacturing method
TW200810129A (en) Active matrix TFT array substrate and method of manufacturing the same
US10833104B2 (en) Array substrate and its fabricating method, display device
WO2017215109A1 (en) Double-gate electrode oxide thin-film transistor and preparation method therefor
CN109346482A (en) Thin film transistor array substrate, method for manufacturing the same, and display panel
WO2019161617A1 (en) Array substrate and manufacturing method for array substrate
JPS61225869A (en) Thin film transistor device and manufacture thereof
JPS6132471A (en) thin film transistor
JP3349356B2 (en) Thin film transistor and method of manufacturing the same
WO2013181902A1 (en) Thin film transistor and manufacturing method thereof, array substrate, and display device
JP2730129B2 (en) Thin film transistor
JPS6273669A (en) Method for manufacturing thin film transistor device
JPH059941B2 (en)
TW400653B (en) Thin film transistor, LCD having thin film transistors, and method for making TFT array board
JPH06101478B2 (en) Thin film transistor and manufacturing method thereof
CN209747524U (en) Thin Film Transistors and Display Panels
CN114447119A (en) TFT substrate and manufacturing method thereof
JPH10173195A (en) Thin film transistor and its manufacturing method
JPH0691105B2 (en) Method of manufacturing thin film transistor
JP3419073B2 (en) Thin film transistor, method of manufacturing the same, and active matrix liquid crystal display device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term