JPS61137370A - Manufacturing method of MOS semiconductor device - Google Patents
Manufacturing method of MOS semiconductor deviceInfo
- Publication number
- JPS61137370A JPS61137370A JP59259294A JP25929484A JPS61137370A JP S61137370 A JPS61137370 A JP S61137370A JP 59259294 A JP59259294 A JP 59259294A JP 25929484 A JP25929484 A JP 25929484A JP S61137370 A JPS61137370 A JP S61137370A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- film
- present
- manufacturing
- manufactured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 125000004429 atom Chemical group 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 description 41
- 238000000034 method Methods 0.000 description 39
- 235000012431 wafers Nutrition 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000007796 conventional method Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/681—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
- H10D64/685—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/691—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の技術分野]
この発明は、MOS半導体装置の製造方法に関し、より
詳しくは二重絶縁膜構造のMOS半導体装置の製造方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a MOS semiconductor device, and more particularly to a method for manufacturing a MOS semiconductor device having a double insulating film structure.
[発明の技術的背Wi]
二重絶縁膜構造のMOS半導体装置には、たとえばMA
O8型ゲー上ゲート構造tal−AI 203−8i
O□−8i)のものがあり、この構造のMO3半導体装
置では二つの絶縁膜(AI 203とS + 02 )
の界面に生ずる負電荷を有効に活用することができるた
め5in219!のみを有するMO3半導体装置では実
現困難であったNチャネルのエンハンスメント形MOS
半導体装置を容易に製作することができる。[Technical background of the invention] For example, MA
O8 type upper gate structure tal-AI 203-8i
The MO3 semiconductor device with this structure has two insulating films (AI 203 and S + 02).
Because it is possible to effectively utilize the negative charge generated at the interface of 5in219! N-channel enhancement type MOS, which was difficult to realize with MO3 semiconductor devices that only have
A semiconductor device can be easily manufactured.
従来、MAO3型O3ト構造のMOS半導体装置を製造
する場合、A1□0.膜を形成する方法として、CVD
法、PVD法、AI膜酸化法等が利用されていた。 た
とえば、A1□o3mを形成するためのCVD法として
は、■Al cl 、とCO2とを900℃で反応させ
る方法や、■A1の有機化合物t’あるAI (CO
3H,)、 やAI(CO2H,)、等e 400’C
程度のiir熱分解する方法が知られており、またPV
D法としては、■A I 203をターゲットとして高
周波スパッタを行う方法や、■A1をターゲットとして
酸素雰囲気中で反応性スパッタを行う方法が知られてい
る。 一方、A1膜酸化法としては、■水溶液を用いる
方法や、■酸素プラズマを用いる方法がある。Conventionally, when manufacturing a MOS semiconductor device with a MAO3 type O3 structure, A1□0. CVD as a method of forming a film
method, PVD method, AI film oxidation method, etc. For example, as a CVD method for forming A1□o3m, there is a method in which ■Al cl and CO2 are reacted at 900°C, and ■A method in which an organic compound t' of A1 is reacted with a certain AI (CO
3H,), and AI(CO2H,), etc.e 400'C
Methods of thermal decomposition of IIR are known, and PV
As the D method, two methods are known: (1) performing high-frequency sputtering using A I 203 as a target, and (2) performing reactive sputtering in an oxygen atmosphere using A1 as a target. On the other hand, as the A1 film oxidation method, there are two methods: (1) using an aqueous solution, and (2) a method using oxygen plasma.
[背景技術の問題点]
前記のごとき従来のアルミナ膜形成方法では、ウェハ面
全体にわたって均一な膜厚と均一な膜質とを実現するこ
とが困難であり、従って従来の方法では1ウエハ内の各
素子の性能が均一にならないという問題があった。[Problems in the Background Art] With the conventional alumina film forming method as described above, it is difficult to achieve uniform film thickness and uniform film quality over the entire wafer surface. There was a problem that the performance of the elements was not uniform.
特に、最近ではMOS型半導体装置の高速化及び高集積
化が推進されるとともにウェハも大口径化される情勢に
あり、これに対応して半導体装置の各種の膜形成技術に
対しても一層の精緻化が必要とされるようになっている
が、MAO8構造の半導体装置の場合、前記したように
、従来のアルミナ膜形成方法ではウェハ面全体にわたっ
て均質な膜を形成できないためウェハの大口径化や素子
の高集積化が進めば、素子歩留りは現在よりも更に低下
する恐れがあった。In particular, in recent years, MOS semiconductor devices have become faster and more highly integrated, and wafers are also becoming larger in diameter. However, in the case of semiconductor devices with MAO8 structure, as mentioned above, the conventional alumina film formation method cannot form a uniform film over the entire wafer surface, so it is necessary to increase the diameter of the wafer. As devices become more highly integrated, there is a risk that device yields will drop even further than they currently do.
[発明の目的]
この発明の目的は、膜質及び膜厚が均一な高精度の金属
酸化物膜の形成を実現することによって均一な性能を有
する二重絶縁膜形のMO3半導体装置を高歩留りで製造
することのできるtfr規な半導体装置製造方法を提供
することである。[Objective of the Invention] The object of the present invention is to realize the formation of a highly accurate metal oxide film with uniform film quality and thickness, thereby producing a double insulating film type MO3 semiconductor device with uniform performance at a high yield. An object of the present invention is to provide a method for manufacturing a TFR standard semiconductor device.
[発明の概要1
この発明方法は、Al2O3のごとき金属酸化物の薄膜
を高精度に形成するための手段として膜質及び膜厚の均
一性や膜形成の制御性及び量産性にすぐれているイオン
注入法を採用するとともにイオン注入法の採用によって
生じる素子劣化現象の発生を未然に防止することにより
、膜質及び膜厚が均一な高精度の金属酸化物膜を備えた
二重絶縁膜構造のMO3半導体装置を製造することを特
徴とするものである。[Summary of the Invention 1 This invention method uses ion implantation, which has excellent uniformity of film quality and thickness, controllability of film formation, and mass productivity, as a means for forming thin films of metal oxides such as Al2O3 with high precision. By adopting the ion implantation method and preventing the occurrence of element deterioration phenomena caused by the adoption of the ion implantation method, we have developed an MO3 semiconductor with a double insulating film structure equipped with a highly precise metal oxide film with uniform film quality and thickness. It is characterized by manufacturing a device.
一般にA1等の金属原子を5i02の中にイオン注入す
ると、その侵の熱処理過程において5i02の中で
2Al+2SiO2→A1□Os + S i O+
8 +なる反応が起こって亜酸化シリコンSiOや遊離
シリコンSiが生ずる。 この遊離シリコンは可動イオ
ンとして動作し、また亜酸化シリコンは不安定イオンと
して働くため、MOS構造の素子ではゲート耐圧の悪化
を招くが、本発明の方法ではこのような現象の発生を未
然に防止するために金属原子とともに酸素原子をイオン
注入することによりSiOや3i等の不安定イオンを安
定な5i02に変換させることを機作とするものである
。 すなわち、本発明方法においては、シリコン熱酸化
膜表層にA1等の金属原子と酸素原子とをイオン注入し
た後、該イオン注入部分を熱処理することにより該シリ
コン熱酸化股上に薄い金属酸化物層を形成すると同時に
該シリコン熱酸化膜中に注入した酸素により該シリコン
熱酸化膜中の遊離S:や亜酸化シリコン(Si O)を
酸化して5i02とし、物理的及び化学的に安定せしめ
る。Generally, when metal atoms such as A1 are ion-implanted into 5i02, 2Al+2SiO2 → A1□Os + Si O+ is formed in 5i02 during the invasive heat treatment process.
8 + reaction occurs and suboxide silicon SiO and free silicon Si are produced. This free silicon acts as a mobile ion, and silicon suboxide acts as an unstable ion, leading to deterioration of gate breakdown voltage in MOS structure elements, but the method of the present invention prevents such phenomena from occurring. In order to achieve this, the mechanism is to convert unstable ions such as SiO and 3i into stable 5i02 by ion-implanting oxygen atoms together with metal atoms. That is, in the method of the present invention, after ion-implanting metal atoms such as A1 and oxygen atoms into the surface layer of a silicon thermal oxide film, a thin metal oxide layer is formed on the silicon thermal oxide layer by heat-treating the ion-implanted portion. At the same time as the silicon thermal oxide film is formed, free S: and silicon suboxide (SiO) in the silicon thermal oxide film are oxidized to 5i02 by oxygen injected into the silicon thermal oxide film to make it physically and chemically stable.
なオA I 203のほかに、Ti 02 、Ta 2
03、WO2、Zr 02 、Hf 02 、Pb O
等の種々の金属酸化物層もMAO8構造と同じ二重絶縁
膜構造のMOS半導体装置を構成することができ、前記
酸化物の構成金属Ti 、Ta 、W、Zr 、Hr、
pbも本発明方法においてA1の代わりに使用すること
ができる。In addition to A I 203, Ti 02 and Ta 2
03, WO2, Zr 02 , Hf 02 , Pb O
A MOS semiconductor device having the same double insulating film structure as the MAO8 structure can be constructed using various metal oxide layers such as Ti, Ta, W, Zr, Hr, etc.
pb can also be used in place of A1 in the method of the invention.
酸素原子のイオン注入量は金属原子に対する当量であれ
ばよいが、少し過剰である方がよい。The amount of ion implantation of oxygen atoms may be equivalent to that of metal atoms, but it is better to have a slight excess.
[発明の実施例]
以下に添付図面の第1図を参照して本発明方法の一実施
例について説明する。[Embodiment of the Invention] An embodiment of the method of the present invention will be described below with reference to FIG. 1 of the accompanying drawings.
本発明方法の実施に先立って、まず第1図(a)に示す
ようなP型高濃度層から成るチャネルカット領域1Aが
形成されたP型低濃度層の半導体基板1を用意する。
ここに、2はフィールド酸化膜、チャネル予定領域は開
口2aとして露出形成されている。Prior to carrying out the method of the present invention, first, a semiconductor substrate 1 of a P-type low concentration layer on which a channel cut region 1A consisting of a P-type high concentration layer is formed as shown in FIG. 1(a) is prepared.
Here, reference numeral 2 denotes a field oxide film, and a region where a channel is to be formed is exposed as an opening 2a.
次に第1図(b )に示すように該開口2a内に露出し
た半導体基板1の表面に厚さ1200Xのゲート酸化膜
3(熱酸化膜)を形成した後、第1図(C)に矢印で示
すように該ゲート酸化113及び周囲の熱酸化[12中
にA1と酸素とをイオン注入する。 この場合、注入イ
オンがゲート酸化113表層に留まるように加速電圧と
ドーズωとを適切な値に決定する(たとえば、AIは加
速電圧20keV、ドーズ量3X 10” 0111−
2、酸素は加速電圧30keV、 ドーズ@ 5x
10” cr2)。Next, as shown in FIG. 1(b), a gate oxide film 3 (thermal oxide film) with a thickness of 1200× is formed on the surface of the semiconductor substrate 1 exposed in the opening 2a, and then as shown in FIG. 1(C). As shown by arrows, A1 and oxygen are ion-implanted into the gate oxide 113 and the surrounding thermal oxidation layer 12. In this case, the acceleration voltage and dose ω are determined to appropriate values so that the implanted ions remain on the surface layer of the gate oxide 113 (for example, for AI, the acceleration voltage is 20 keV and the dose is 3X 10").
2. Oxygen has an accelerating voltage of 30 keV and a dose of 5x.
10” cr2).
しかる後、N、雰囲気中で1000℃、10分間の熱処
理を行うと、第1図(d )に示すようにゲート酸化l
113及びフィールド酸化1m2の表面に厚さ約400
人の薄いAl2O5躾4が形成される。 この場合、前
記したように遊離SiやSiO等が生じないようにA1
に対して過剰な量の酸素がイオン注入されているので遊
離3iやSiOは生成しない。 またA1の注入深さや
分布も極めて均一に制御できるため、AI 203 I
Iの膜厚や膜質は膜全体にわたって極めて均一にするこ
とができる。After that, heat treatment is performed at 1000°C for 10 minutes in a nitrogen atmosphere, and gate oxidation occurs as shown in Figure 1(d).
113 and field oxidation on the surface of 1 m2 with a thickness of about 400
A thin layer of Al2O5 is formed. In this case, as mentioned above, A1
Free 3i and SiO are not generated because an excessive amount of oxygen is ion-implanted. In addition, since the implantation depth and distribution of A1 can be controlled extremely uniformly, AI 203 I
The film thickness and film quality of I can be made extremely uniform over the entire film.
以上のごとき本発明方法の主要工程を終了した後、AI
203膜4の上に厚さ400Xの多結晶シリコン躾を
堆積し、更に該多結晶シリコン膜の上にレジストパター
ンを形成する。 そしてこのレジストパターンをマスク
として該多結晶シリコン膜を選択的にエツチングすると
同時にA1□03膜4を選択的にエツチングすることに
よって、第1図(e ”)に示すように多結晶シリコン
から成るゲート電極5とその直下に位置する同形のA1
□0ilit4aを形成する。 ついで該ゲート電極5
をマスクとしてその周囲のゲート酸化膜3を通して半導
体基板1中にN型不純物をイオン注入した後、熱処理を
行うことによって第1図<e >に示すように該ゲート
電極5を隔ててN型高濃度層のソース領域1Bとドレイ
ン領域1Cとを形成する。 そして更に、第1図(f)
に示すようにゲート電極5の上にゲート保!!116を
形成した後、ソース電極7とドレイン電極8とを形成し
て、Nチャネルエンハンスメント形二重絶縁膜構造のM
OS半導体装置の主要部を完成させる。After completing the main steps of the method of the present invention as described above, the AI
A polycrystalline silicon film having a thickness of 400× is deposited on the 203 film 4, and a resist pattern is further formed on the polycrystalline silicon film. Using this resist pattern as a mask, the polycrystalline silicon film is selectively etched, and at the same time the A1□03 film 4 is selectively etched, thereby forming a gate made of polycrystalline silicon as shown in FIG. 1(e''). Electrode 5 and A1 of the same shape located directly below it
□0ilit4a is formed. Then the gate electrode 5
After ion-implanting an N-type impurity into the semiconductor substrate 1 through the surrounding gate oxide film 3 using as a mask, heat treatment is performed to form an N-type impurity across the gate electrode 5 as shown in FIG. A source region 1B and a drain region 1C of the concentration layer are formed. Furthermore, Fig. 1(f)
As shown in FIG. ! After forming 116, a source electrode 7 and a drain electrode 8 are formed to form the M of the N-channel enhancement type double insulating film structure.
The main part of the OS semiconductor device is completed.
第2図は、本発明方法で製造したMAO8構造の半導体
装置のウェハ内しきい値電圧V thの分布と、従来の
方法で製造したMAO3構造の半導体装置のウェハ内し
きい値電圧v thの分布とを比較表示したグラフであ
る。 第2因において、横軸はウエノ)の中心からの半
径方向距離R(ell)、縦軸はウェハ内の素子のしき
い値電圧■い(A−B・U)であり、実線の曲線A、及
び丸印の点は本発明方法で製造された半導体装置のV
thの値、点線の曲線B、及びX印の点は従来方法で製
造された半導体装置のV bhの値である。FIG. 2 shows the distribution of the in-wafer threshold voltage V th of the MAO8 structure semiconductor device manufactured by the method of the present invention and the in-wafer threshold voltage V th of the MAO3 structure semiconductor device manufactured by the conventional method. This is a graph comparing and displaying the distribution. In the second factor, the horizontal axis is the radial distance R(ell) from the center of the wafer, the vertical axis is the threshold voltage (A-B・U) of the elements in the wafer, and the solid curve A , and the circled points indicate the V of the semiconductor device manufactured by the method of the present invention.
The value of th, the dotted curve B, and the point marked with an X are the values of V bh of the semiconductor device manufactured by the conventional method.
第2図に示した結果から、従来方法で製造された半導体
装置の■いは同一ウェハ内において±12%のばらつき
があるが、本発明の方法で製造した場合、同一ウェハ内
の各素子のV +、hのばらつきは±5%であることが
わかった。 すなわち、本発明方法によれば、同一のウ
ェハ内ではほぼ均一な素子が得られることがわかる。From the results shown in FIG. 2, it can be seen that semiconductor devices manufactured using the conventional method have a variation of ±12% within the same wafer, but when manufactured using the method of the present invention, each element within the same wafer varies. The variation in V+,h was found to be ±5%. That is, it can be seen that according to the method of the present invention, substantially uniform elements can be obtained within the same wafer.
第3図は、本発明方法で製造したMAO8構造の半導体
装置のブロービングテストの結果(合格率)と従来方法
で製造したMAO8構造の半導体装置のブロービングテ
ストの結果(合格率)とを所定の期間にわたって比較表
示したグラフである第3図において横軸は製造月、縦軸
はブロービングテスト合格率εの%、丸印及び実線の曲
線A2は本発明方法で製造された素子の値、×印及び点
線の曲線B、は従来方法で製造された素子の値である。FIG. 3 shows the results of a blowing test (pass rate) for a semiconductor device with an MAO8 structure manufactured by the method of the present invention and the results (pass rate) of a semiconductor device with an MAO8 structure manufactured by a conventional method. In FIG. 3, which is a graph showing a comparative display over a period of The x mark and the dotted curve B are the values of the element manufactured by the conventional method.
第3図から明らかなように、本発明方法で製造された素
子は従来方法で製造された素子よりも常に合格率が高く
、従って本発明方法による場合、従来方法よりも平均で
歩留りが1%以上改善されることがわかった。As is clear from FIG. 3, devices manufactured by the method of the present invention always have a higher pass rate than devices manufactured by the conventional method. Therefore, the method of the present invention has an average yield of 1% higher than the conventional method. It was found that this could be improved.
なお、A1の代わりにTi、7a1W、Zl’。Note that Ti, 7a1W, and Zl' are used instead of A1.
Hf、Pb等の金属を用いても同じ結果が得られること
が明らかになっている。It has become clear that the same results can be obtained using metals such as Hf and Pb.
[発明の効果]
以上に説明したように、本発明方法によれば、1ウエハ
内の素子の性能を均一化することができるとともに素子
歩留りを大幅に改善することができ、その結果、ウェハ
の大口径化や素子の高集積化が進展したとしても著しい
歩留り低下を招くことなく高性能の二重絶縁膜形MOS
半導体装置を製造することができる。[Effects of the Invention] As explained above, according to the method of the present invention, it is possible to equalize the performance of devices within one wafer and to significantly improve the device yield. High performance double insulating film type MOS without significant yield deterioration even as the diameter increases and device integration progresses.
Semiconductor devices can be manufactured.
第1図は本発明方法の工程の一実施例を説明するための
素子断面図、第2図は本発明方法で製造した同一ウエバ
内半導体素子のしきいIfi W圧V thの該ウェハ
内分布と従来方法で製造した同一ウエバ内半導体素子の
しきい値電圧の該ウェハ内分布とを比較表示したグラフ
、第3図は本発明方法で製造した半導体装置のブロービ
ングテストの合格率と従来方法で製造した半導体装置の
同合格率とを所定の期間にわたって比較表示したグラフ
である。
1・・・半導体基板、 2・・・フィールド酸化膜、3
・・・ゲート酸化膜、 4・・・A1□o3膜、 4a
・・・AI 203層、 5・・・ゲート電極、 6・
・・ゲート保護膜、 7・・・ソース電極、 8・・・
ドレイン電極、 1A・・・チャネルカット領域、 1
B・・・ソース領域、 1C・・・ドレイン領域。
特許出願人 株式会社 東 芝
第1 図FIG. 1 is a cross-sectional view of a device for explaining one embodiment of the process of the method of the present invention, and FIG. 2 is a distribution of the threshold Ifi W pressure V th within the wafer of semiconductor devices manufactured by the method of the present invention within the same wafer. A graph comparing and showing the distribution of threshold voltage within the same wafer of semiconductor devices manufactured by the conventional method and the distribution of the threshold voltage within the same wafer, and FIG. 3 shows the passing rate of the blowing test of the semiconductor device manufactured by the method of the present invention and the conventional method 3 is a graph comparing and displaying the pass rate of semiconductor devices manufactured in 2008 over a predetermined period of time. 1... Semiconductor substrate, 2... Field oxide film, 3
...Gate oxide film, 4...A1□o3 film, 4a
...AI 203 layer, 5...gate electrode, 6.
...Gate protective film, 7...Source electrode, 8...
Drain electrode, 1A...channel cut region, 1
B...source region, 1C...drain region. Patent applicant: Toshiba Corporation Figure 1
Claims (1)
た酸化膜にAl、Ti、Ta、W、Zr、Hf、Pbの
うち少なくとも1種の金属原子と酸素原子とをイオン注
入した後、熱処理を行うことにより該酸化膜上層部に該
金属原子の酸化物層を形成し、更に該酸化物層の上にゲ
ート電極を形成することを特徴とするMOS半導体装置
の製造方法。1. After ion-implanting at least one metal atom among Al, Ti, Ta, W, Zr, Hf, and Pb and oxygen atoms into an oxide film formed on a 1-conductivity type or 2-conductivity type semiconductor substrate, heat treatment is performed. A method of manufacturing a MOS semiconductor device, comprising forming an oxide layer of the metal atoms on the upper layer of the oxide film, and further forming a gate electrode on the oxide layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59259294A JPS61137370A (en) | 1984-12-10 | 1984-12-10 | Manufacturing method of MOS semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59259294A JPS61137370A (en) | 1984-12-10 | 1984-12-10 | Manufacturing method of MOS semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61137370A true JPS61137370A (en) | 1986-06-25 |
Family
ID=17332077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59259294A Pending JPS61137370A (en) | 1984-12-10 | 1984-12-10 | Manufacturing method of MOS semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61137370A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08288507A (en) * | 1995-04-20 | 1996-11-01 | Nec Corp | Semiconductor device and manufacturing method thereof |
EP0962986A2 (en) * | 1998-05-28 | 1999-12-08 | Lucent Technologies Inc. | MOS transistors with improved gate dielectrics |
KR20020003029A (en) * | 2000-06-30 | 2002-01-10 | 박종섭 | Method for making a semi-conductor device |
WO2002001622A3 (en) * | 2000-06-26 | 2002-04-11 | Univ North Carolina State | Novel non-crystalline oxides for use in microelectronic, optical, and other applications |
WO2002063668A1 (en) * | 2001-02-06 | 2002-08-15 | Matsushita Electric Industrial Co., Ltd. | Method of forming insulating film and method of producing semiconductor device |
JP2006332179A (en) * | 2005-05-24 | 2006-12-07 | Renesas Technology Corp | Semiconductor device and manufacturing method thereof |
JP2009529789A (en) * | 2006-03-09 | 2009-08-20 | アプライド マテリアルズ インコーポレイテッド | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
-
1984
- 1984-12-10 JP JP59259294A patent/JPS61137370A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08288507A (en) * | 1995-04-20 | 1996-11-01 | Nec Corp | Semiconductor device and manufacturing method thereof |
EP0962986A2 (en) * | 1998-05-28 | 1999-12-08 | Lucent Technologies Inc. | MOS transistors with improved gate dielectrics |
EP0962986A3 (en) * | 1998-05-28 | 2000-12-27 | Lucent Technologies Inc. | MOS transistors with improved gate dielectrics |
WO2002001622A3 (en) * | 2000-06-26 | 2002-04-11 | Univ North Carolina State | Novel non-crystalline oxides for use in microelectronic, optical, and other applications |
KR20020003029A (en) * | 2000-06-30 | 2002-01-10 | 박종섭 | Method for making a semi-conductor device |
JP2002314074A (en) * | 2001-02-06 | 2002-10-25 | Matsushita Electric Ind Co Ltd | Method for forming insulating film and method for manufacturing semiconductor device |
WO2002063668A1 (en) * | 2001-02-06 | 2002-08-15 | Matsushita Electric Industrial Co., Ltd. | Method of forming insulating film and method of producing semiconductor device |
US6734069B2 (en) | 2001-02-06 | 2004-05-11 | Matsushita Electric Industrial Co., Ltd. | Method of forming a high dielectric constant insulating film and method of producing semiconductor device using the same |
JP2006332179A (en) * | 2005-05-24 | 2006-12-07 | Renesas Technology Corp | Semiconductor device and manufacturing method thereof |
KR101237153B1 (en) * | 2005-05-24 | 2013-02-25 | 르네사스 일렉트로닉스 가부시키가이샤 | Semiconductor device and manufacturing method thereof |
US8501558B2 (en) | 2005-05-24 | 2013-08-06 | Renesas Electronics Corporation | Semiconductor device and manufacturing method of the same |
US8823110B2 (en) | 2005-05-24 | 2014-09-02 | Renesas Electronics Corporation | Semiconductor device and manufacturing method of the same |
JP2009529789A (en) * | 2006-03-09 | 2009-08-20 | アプライド マテリアルズ インコーポレイテッド | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0336499A1 (en) | Method of manufacturing a semiconductor device having an SOI structure | |
JPS61190984A (en) | Formation of high melting point metal silicide layer | |
JPS61137370A (en) | Manufacturing method of MOS semiconductor device | |
CA1237537A (en) | Method of making mosfets using silicate glass layer as gate edge masking for ion implantation | |
JPS60113472A (en) | Manufacturing method of semiconductor device | |
JPS63205944A (en) | MOS integrated circuit manufacturing method | |
JP3091800B2 (en) | Method for manufacturing SOI substrate | |
JPS6132576A (en) | Semiconductor device | |
JPS6197975A (en) | Manufacturing method of semiconductor device | |
JP3578345B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JPH06283421A (en) | Soi substrate and manufacturing method thereof | |
JP3153885B2 (en) | Glass substrate and manufacturing method thereof | |
JPH0529343A (en) | Manufacture of fine semiconductor device | |
JP2638285B2 (en) | Method for manufacturing semiconductor device | |
JPH069201B2 (en) | Electrodes and wiring for semiconductor devices | |
JPH0391245A (en) | Thin-film semiconductor device and manufacture thereof | |
JPS62104078A (en) | Manufacture of semiconductor integrated circuit device | |
JPS6197974A (en) | Manufacturing method of semiconductor device | |
JPS62145821A (en) | Manufacture of semiconductor device | |
JPH03190221A (en) | Manufacture of semiconductor device | |
JPS59178721A (en) | Processing of compound semiconductor substrate | |
JPH09107101A (en) | Method for manufacturing semiconductor device | |
JPH01232718A (en) | Manufacture of semiconductor device | |
JPH02109337A (en) | Manufacturing method of semiconductor device | |
JPS61284919A (en) | Method for ion implantation |