JPS61122547A - Measuring method of light absorption characteristic of thin film - Google Patents
Measuring method of light absorption characteristic of thin filmInfo
- Publication number
- JPS61122547A JPS61122547A JP24318584A JP24318584A JPS61122547A JP S61122547 A JPS61122547 A JP S61122547A JP 24318584 A JP24318584 A JP 24318584A JP 24318584 A JP24318584 A JP 24318584A JP S61122547 A JPS61122547 A JP S61122547A
- Authority
- JP
- Japan
- Prior art keywords
- light
- thin film
- liquid
- film
- excitation light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 44
- 230000031700 light absorption Effects 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 48
- 239000007788 liquid Substances 0.000 claims abstract description 123
- 239000000523 sample Substances 0.000 claims abstract description 80
- 230000005284 excitation Effects 0.000 claims description 72
- 238000005259 measurement Methods 0.000 claims description 47
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 239000010408 film Substances 0.000 abstract description 75
- 230000010287 polarization Effects 0.000 abstract 2
- 241001237728 Precis Species 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 14
- 230000001186 cumulative effect Effects 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 7
- 239000006096 absorbing agent Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011896 sensitive detection Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010067482 No adverse event Diseases 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004867 photoacoustic spectroscopy Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/171—Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8422—Investigating thin films, e.g. matrix isolation method
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は、特に液面上に展開された薄膜の特性を光学的
に測定する方法に関するもので、更に詳しくは、6I膜
の種々の特性分析の基礎となる光吸収特性の測定方法に
関する0本発明は1例えば単分子累積膜の形成に際し、
累積すべく液面上に展開された単分子膜の特性分析等に
利用されるものである。 。Detailed Description of the Invention [Industrial Application Field 1] The present invention particularly relates to a method for optically measuring the characteristics of a thin film developed on a liquid surface. The present invention relates to a method for measuring light absorption characteristics that is the basis of analysis.1 For example, when forming a monomolecular cumulative film,
It is used to analyze the characteristics of monomolecular films spread on the liquid surface for accumulation. .
[従来の技術]
従来、ある試料の光吸収特性を測定する方法としては、
透過率又は反射率から光吸収特性を求める方法がある。[Prior art] Conventionally, the method for measuring the light absorption characteristics of a certain sample is as follows:
There is a method of determining light absorption characteristics from transmittance or reflectance.
しかし、試料に光が照射された場合、透過光1反射光の
他に散乱光があり、更に高精度を期すためには光の吸収
成分を直接測定する方法が光吸収特性評価上重要となる
。However, when a sample is irradiated with light, there is scattered light in addition to the transmitted light and reflected light, and in order to achieve even higher accuracy, it is important to directly measure the absorption component of light in evaluating light absorption characteristics. .
光の吸収成分を直接測定する方法としては、断続的に光
を照射すると、試料に吸収された光エネルギーが無輻射
緩和過程により、断続的に熱に変換されることを利用し
た測定法である光音響分光法(Photoacougt
ic Spectrogcopy: PAS)や光熱
輻射分光法(Photothermal Radiom
etry: PTR)がある。A method for directly measuring the absorption component of light is a measurement method that utilizes the fact that when a sample is irradiated with light intermittently, the light energy absorbed by the sample is intermittently converted into heat through a non-radiative relaxation process. Photoacoustic spectroscopy
ic Spectrogcopy (PAS) and Photothermal Radiation Spectroscopy (PAS)
etry: PTR).
PAS法は、検出器の種類によりマイクロホン法と圧電
素子法に分けられるが、マイクロホン法では試料を密閉
した試料室にいれる必要があり、圧電素子法では検出器
と試料の配置が問題となり、いずれも液面上に展開され
た薄膜の測定には不向きである。また、PTR法は、赤
外線検出器を用いていることから、水蒸気等の大気変動
の影響を受けやすいという欠点がある。The PAS method can be divided into the microphone method and the piezoelectric element method depending on the type of detector, but the microphone method requires the sample to be placed in a sealed sample chamber, while the piezoelectric element method poses problems with the placement of the detector and sample, and eventually It is also unsuitable for measuring thin films spread on the liquid surface. Furthermore, since the PTR method uses an infrared detector, it has the disadvantage of being susceptible to atmospheric changes such as water vapor.
一方、やはり光の吸収成分を直接測定する方法として、
光熱偏向分光法(PhatotherwalDefle
ction 5pectroscopy: PDS
)と言われる方法がある。このPDS法は、試料の光吸
収による発熱と共に試料内及び試料近傍に温度分布が生
じて屈折率が変化し、これによってそこに入射する光が
偏向することを利用したものである。即ち、試料の測定
部位に、光吸収されたときに発熱による温度分布を生じ
させて屈折率を変化させる励起光と、これによる偏向量
を測定するためのプローブ光とを照射し、励起光の波長
とプローブ光の偏向量とから試料の光吸収特性を測定す
るものである。この方法は、試料と検出系が独立に設定
でき、現場での計測や遠隔計測に適しており、本発明の
基本原理もこのPDS法による。On the other hand, as a method to directly measure the absorption component of light,
Photothermal deflection spectroscopy
ction 5pectroscopy: PDS
) There is a way to say. This PDS method utilizes the fact that as heat is generated due to absorption of light by the sample, a temperature distribution occurs within the sample and in the vicinity of the sample, causing a change in the refractive index, which deflects the light incident thereon. That is, the measurement site of the sample is irradiated with excitation light that generates a temperature distribution due to heat generation when the light is absorbed and changes the refractive index, and probe light that measures the amount of deflection caused by the excitation light. The light absorption characteristics of the sample are measured from the wavelength and the amount of deflection of the probe light. This method allows the sample and detection system to be set independently and is suitable for on-site measurement and remote measurement, and the basic principle of the present invention is also based on this PDS method.
上記PDS法は、励起光とプローブ光の配2によって、
横方向(transverse) fflと縦方向号(
callinear )型の二通りがあり、いずれも上
述のように試料の励起光吸収量に応じたプローブ光の偏
向量を測定するもので、検出器としては位置敏感検出器
(pso)を用いることが多い。The PDS method described above is based on the arrangement of excitation light and probe light.
transverse ffl and vertical direction (
There are two types (callinear) type, and as mentioned above, both measure the amount of deflection of the probe light according to the amount of excitation light absorbed by the sample, and a position sensitive detector (PSO) can be used as the detector. many.
第9図(a)は縦方向型の例で、励起光源10より出た
励起光11は、チョッパー12で断続光となり。FIG. 9(a) shows an example of a vertical type, in which excitation light 11 emitted from an excitation light source 10 is turned into intermittent light by a chopper 12.
レンズ34で集束されて試料4′に照射される。プロー
ブ光源5より出たプローブ光6は、レンズ3≦及びミラ
ー等の光路調整器18で励起光11が照射されている試
料4′の領域を通過して検出器7へと至り、点線で示さ
れるように偏向したときの偏向量が測定される。第9図
(b)は横方向型の例で、プローブ光5が試料4′の表
面に平行に照射される点が縦方向型と相違するだけで他
は同様である。The light is focused by a lens 34 and irradiated onto the sample 4'. The probe light 6 emitted from the probe light source 5 passes through the region of the sample 4' that is irradiated with the excitation light 11 by the lens 3≦ and the optical path adjuster 18 such as a mirror, and reaches the detector 7, as shown by the dotted line. The amount of deflection when the beam is deflected is measured. FIG. 9(b) shows an example of the horizontal type, which is the same as the vertical type except that the probe light 5 is irradiated parallel to the surface of the sample 4'.
このPDS法の理論的取扱いは、試料内の熱伝導方程式
を解けばよく、偏向角φとして測定される偏向量は、励
起光強度、屈折率の温度係数(EnlつT)、プローブ
光の通過する債城での温度勾配(つ丁1つり等に比例す
ることになる。試料の光吸収係数に比例する項は(つT
1つりに含まれる。また(an/& )は、試料によっ
ては正負いずれかの値をとり得、このことは偏向角も正
負両方の場合があることを示している。The theoretical treatment of this PDS method is to solve the heat conduction equation within the sample, and the amount of deflection measured as the deflection angle φ is determined by the intensity of the excitation light, the temperature coefficient of refractive index (T), The term proportional to the light absorption coefficient of the sample is (T).
Included in one. Further, (an/&) can take either a positive or negative value depending on the sample, which indicates that the deflection angle can also be positive or negative.
しかしながら、このPDS法をそのまま液面上に展開さ
れた薄膜についての測定に適用すると、試料たる薄膜が
極めて薄いものであるため、次のような不都合を生ずる
。ここで液面上に展開された薄膜とは1例えば単分子膜
のように、液面上に浮きも沈みもせ、ずに広げられた薄
い膜をいう。However, if this PDS method is directly applied to the measurement of a thin film spread on a liquid surface, the following problems will occur because the thin film that is the sample is extremely thin. Here, the thin film spread on the liquid surface refers to a thin film, such as a monomolecular film, that is spread out on the liquid surface without floating or sinking.
液面上に展開された薄膜の場合、照射される励起光の薄
膜通過領域が短いため、励起光が液面に達する前の外環
境による影響1例えば空気中の粉塵やゆらぎの影響を受
けやすい、また、励起光が薄膜到達後の不要な反射光や
透過光の影響もS/N比を低下させる原因となり1M度
及び感度のよい測定が困難となる。特に、液面上の気相
に特殊な気体を用いて液面上の薄膜と相互作用を利用す
る系においては、励起光が通過する気体領域をできるだ
け短かくする必要があるが、実現が困難である。In the case of a thin film spread on the liquid surface, the area through which the excitation light irradiates the thin film is short, so the excitation light is susceptible to the effects of the external environment before it reaches the liquid surface.1For example, it is susceptible to the effects of dust and fluctuations in the air. In addition, the influence of unnecessary reflected light and transmitted light after the excitation light reaches the thin film also causes a decrease in the S/N ratio, making it difficult to perform measurements with 1M degrees and high sensitivity. In particular, in systems that use a special gas in the gas phase above the liquid surface and utilize interaction with a thin film on the liquid surface, it is necessary to make the gas region through which the excitation light passes as short as possible, but this is difficult to achieve. It is.
[発明が解決しようとする問題点]
本発明は、液面に展開された薄I11..いう極めて薄
く特異な環境下にある試料について、その光吸収特性を
精度及び感度よく測定できるようにすることをその解決
すべき問題点とするものである。[Problems to be Solved by the Invention] The present invention solves the problem of thin I11. .. The problem to be solved is to be able to measure the light absorption characteristics of extremely thin samples under unique environments with high precision and sensitivity.
[問題点を解決するための手段]
本発明において上記問題点を解決するために講じられた
手段は、液面とに展開された薄膜の測定部位に断続的に
励起光を照射しつつこの測定部位又はその近傍にプロー
ブ光を照射し、このプローブ光の偏向量から光吸収特性
を測定するに際し、前記励起光を、第一の測定部位の液
面で全反射される入射角で液体側から照射すると共に、
この反射光を液面下で少なくとも第二の測定部位の液面
で全反射される角度に反射させる薄膜の光吸収特性測定
方法とすることである。[Means for Solving the Problems] The means taken to solve the above problems in the present invention is to perform the measurement while intermittently irradiating excitation light onto the measurement site of the thin film developed on the liquid surface. When irradiating probe light onto a site or its vicinity and measuring light absorption characteristics from the amount of deflection of this probe light, the excitation light is directed from the liquid side at an incident angle that is totally reflected by the liquid surface of the first measurement site. Along with irradiating
The object of the present invention is to provide a method for measuring light absorption characteristics of a thin film in which this reflected light is reflected below the liquid surface at an angle at which it is totally reflected by the liquid surface of at least a second measurement site.
[作 用]
励起光が試料たる薄膜に吸収されると、励起光の照射時
と非照射時とでは測定部位及びその近傍の屈折率が変化
するので、これをプローブ光の偏向量として検出するこ
とによって光吸収特性を測定することができる。この原
理自体は従来のPOS法と同様である。[Function] When the excitation light is absorbed by the thin film that is the sample, the refractive index of the measurement site and its vicinity changes between when the excitation light is irradiated and when it is not irradiated, so this is detected as the amount of deflection of the probe light. By this, the light absorption characteristics can be measured. This principle itself is similar to the conventional POS method.
ところで1本発明では、試料が液面上に展開されたNF
Mであり、しかも励起光は、薄膜が展開している液面で
全反射されるよう液体側から照射されるものである。励
起光は液体内を通って薄膜に照射されるので、空気中を
通って照射されるときのように空気中の粉塵やゆらぎの
影響を受けることがない、薄膜へ照射された励起光は、
液面で全反射され、液面上の気相へと抜ける透過光は、
会友射時のエバネ7セント波としての波長オーダー以下
のごくわずかのものであるので、透過光が測定値に影響
を及ぼす心配もない、また、励起光は、液面で規則的に
反射されることになるため、不規則な反射光による悪影
響も生じないものである。更に、励起光が液面と液面下
の間で多重反射され、複数の測定部位に励起光が照射さ
れることになり、プローブ光の偏向される領域が増大さ
れるため、ブロー光の偏向角が大きくなって高感度な検
出を行うことが1きる。By the way, in the present invention, the sample is an NF developed on the liquid surface.
M, and the excitation light is irradiated from the liquid side so that it is totally reflected on the liquid surface on which the thin film is developed. Since the excitation light passes through the liquid and irradiates the thin film, the excitation light irradiated onto the thin film is not affected by dust or fluctuations in the air, unlike when it is irradiated through the air.
The transmitted light that is totally reflected at the liquid surface and passes into the gas phase above the liquid surface is
Since it is very small, on the order of the wavelength of the Evanescent 7 cent wave during irradiation, there is no need to worry about the transmitted light affecting the measured value, and the excitation light is regularly reflected on the liquid surface. Therefore, there will be no adverse effects caused by irregularly reflected light. Furthermore, the excitation light is multiple-reflected between the liquid surface and below the liquid surface, and multiple measurement sites are irradiated with the excitation light, increasing the area where the probe light is deflected. The angle becomes larger, making it possible to perform highly sensitive detection.
[実施例] 第1図においてlは液体2を収容した液槽で。[Example] In Fig. 1, l is a liquid tank containing liquid 2.
その液面3上には試料たる薄膜4が展開されている0図
示される薄#f4は、単分子膜を模式的に表わしたもの
である。A thin film 4 as a sample is developed on the liquid surface 3. The thin film #f4 shown in the figure schematically represents a monomolecular film.
液槽lの側方にはプローブ光[5が設けられている。こ
のプローブ光源5からは、液面3直下で液面3と平行方
向にプローブ光6が照射されるものである。また、プロ
ーブ光[5と液/falを挟んで相対向する位置には、
送られて来るプローブ光6の位置を検出する検出器7が
設けられている。A probe light [5] is provided on the side of the liquid tank l. The probe light source 5 emits probe light 6 directly below the liquid surface 3 in a direction parallel to the liquid surface 3. In addition, at positions opposite to each other across the probe light [5 and liquid/fal,
A detector 7 is provided to detect the position of the probe light 6 sent.
この検出器7の信号は、ドライバー8を介してロックイ
ンアンプ9へ送られるようになっている。The signal from this detector 7 is sent to a lock-in amplifier 9 via a driver 8.
プローブ光源5のやや下方には励起光源1oが設けられ
ている。励起光源10は、薄WA4が展開されている液
面3で全反射される角度で、液体2側から励起光11を
薄膜4に向けて照射するものである。液槽1に入る前の
励起光11の光路に沿った位置に、励起光11を断続光
として照射するためのチ、ツバ−12が設けられている
。液面3下のプローブ光6光路のやや下方には、液面3
と平行に鏡面13が設けられており、液面3で全反射さ
れた励起光11を更に反射し、液面3と鏡面13間で励
起光11を多重反射して、IiI膜4の複数の測定部位
に励起光11を照射できるようになっている。また、励
起光源lOから照射されて液面3と鏡面13間で多重反
射された励起光11が液槽lから出た位置には、この励
起光11を吸収するための吸収体14が設けられている
。An excitation light source 1o is provided slightly below the probe light source 5. The excitation light source 10 irradiates excitation light 11 toward the thin film 4 from the liquid 2 side at an angle at which it is totally reflected by the liquid surface 3 on which the thin WA 4 is developed. A collar 12 is provided at a position along the optical path of the excitation light 11 before entering the liquid tank 1 for irradiating the excitation light 11 as intermittent light. Slightly below the optical path of the probe light 6 below the liquid level 3 is the liquid level 3.
A mirror surface 13 is provided in parallel with , which further reflects the excitation light 11 that has been totally reflected on the liquid surface 3 , multiple-reflects the excitation light 11 between the liquid surface 3 and the mirror surface 13 , and causes multiple reflections of the IiI film 4 . Excitation light 11 can be irradiated onto the measurement site. Further, an absorber 14 for absorbing the excitation light 11 is provided at a position where the excitation light 11 emitted from the excitation light source 1O and multiple-reflected between the liquid surface 3 and the mirror surface 13 exits the liquid tank l. ing.
チョッパー12はロックインアンプ9に接続されていて
、チョッパー12から送られる励起光11の断続状態を
示す信号を参照信号として、検出器7かもの信号を同期
検出できるようになっている。プローブ光源5.励起光
源lO,チョ7パー12及びロックインアンプ9は、各
々測定制御器15に接続されている。測、定制御器15
は、プローブ光6及び励起光11の光路及び波長並びに
チョッパー12による励起光!!の断続間隔を制御する
と共に、ロックインアンプ9からの信号によって光吸収
特性を算出するものである。The chopper 12 is connected to a lock-in amplifier 9, and the signals of all the detectors 7 can be synchronously detected using a signal indicating the intermittent state of the excitation light 11 sent from the chopper 12 as a reference signal. Probe light source5. The excitation light source lO, the chopper 12, and the lock-in amplifier 9 are each connected to a measurement controller 15. Measurement and measurement controller 15
are the optical path and wavelength of the probe light 6 and the excitation light 11, and the excitation light by the chopper 12! ! In addition to controlling the intermittent interval of the lock-in amplifier 9, the light absorption characteristics are calculated based on the signal from the lock-in amplifier 9.
尚、液槽1は、少なくともプローブ光6及び励起光11
の光路となる部分に透明な窓を設けておけば、ことさら
全体を透明とする必要はない、また、液体2は、励起光
11について吸収の小さいものであればプローブ光6へ
多少直接影響を与えるものであっても測定にさほど悪影
響はないが、透明であることが好ましい。Note that the liquid tank 1 receives at least the probe light 6 and the excitation light 11.
If a transparent window is provided in the part that becomes the optical path, it is not necessary to make the entire part transparent.Also, if the liquid 2 has a small absorption of the excitation light 11, it may have some direct influence on the probe light 6. Although it does not adversely affect the measurement so much, it is preferable that it be transparent.
まず、励起光源1oより出射された励起光11は、チョ
ッパー12により断続光に変調され、液mlの液面3上
に展開されている薄!4の第一の測定部位を液面3下よ
り照射する。このとき、励起光11は、入射角が液体2
の臨界角より大きくなるように入射され、液面3で全反
射され、更に鏡面13で反射され、これを繰返して第二
、第三・・・・・・の測定部位を照射した後液体z内を
通過して液槽1の外へ出る。液面3上の気相には、全反
射の時のエバネ、゛セント波として、波長オーダー以下
のごくわずかな光がしみ出すだけである。液槽1から出
た励起光11は、吸収体14により吸収され、不要な光
がカットされる。断続励起光11が全反射される各測定
部位上の領域では、液面3上の薄!lI4が光を吸収し
、無放射輻射過程により、断続的に熱を発生し、そのた
め、近傍の屈折率変化が断続的に生じることになる。。First, the excitation light 11 emitted from the excitation light source 1o is modulated into intermittent light by the chopper 12, and is spread on the liquid surface 3 of the liquid ml. The first measurement site of 4 is irradiated from below the liquid level 3. At this time, the excitation light 11 has an incident angle of 2
It is incident on the liquid z so that it is larger than the critical angle of z, is totally reflected on the liquid surface 3, is further reflected on the mirror surface 13, and after repeating this process and irradiating the second, third, and so on measurement sites, the liquid z It passes through the inside and exits the liquid tank 1. Only a very small amount of light, on the order of a wavelength, seeps into the gas phase above the liquid surface 3 as evanescent or centrifugal waves during total reflection. Excitation light 11 emitted from liquid tank 1 is absorbed by absorber 14, and unnecessary light is cut off. In the area on each measurement site where the intermittent excitation light 11 is totally reflected, a thin! lI4 absorbs light and generates heat intermittently through a non-radiative radiation process, resulting in an intermittently changing refractive index in the vicinity. .
一方、プローブ光源5から出射されるプローブ光6は、
液面3直下を液面3と平行に通るため。On the other hand, the probe light 6 emitted from the probe light source 5 is
Because it passes parallel to liquid level 3 directly below liquid level 3.
上記励起光11の照射によって断続的に屈折率が変化す
る領域を通過することになる。この屈折率の断続的変化
を生じる各測定部位近傍を、プローブ光源5から出射さ
れたプローブ光6が通過すると、変化した屈折率分布に
応じて、点線で示されるように光路が偏向することにな
る。It passes through a region where the refractive index changes intermittently due to the irradiation of the excitation light 11. When the probe light 6 emitted from the probe light source 5 passes through the vicinity of each measurement site where the refractive index changes intermittently, the optical path is deflected as shown by the dotted line according to the changed refractive index distribution. Become.
検出器7は、継続してプローブ光6を受け、プローブ光
6の受光位置をドライバー8を介してロックインアンプ
9へ送る。ロックインアンプ9は、この検出器7からの
信号を受けると同時にチョッパー12からの信号を受け
ており、両信号を同期させることによって、励起光11
照射時のプローブ光6の受光位置信号と、励起光!!非
照射時のプローブ光6の受光位置信号とをS/N比良く
区分けして測定制御器15へ送る。測定制御器15は、
この送られて来た信号に基づき、その時の励起光11の
波長についてのプローブ光6の偏向量を求め、これに基
づいて光吸収特性を算出する。また、励起光11の波長
を順次変えながら同様の測定を行えば、薄膜4の分光吸
収特性を得ることができる。The detector 7 continuously receives the probe light 6 and sends the receiving position of the probe light 6 to the lock-in amplifier 9 via the driver 8. The lock-in amplifier 9 receives the signal from the chopper 12 at the same time it receives the signal from the detector 7, and by synchronizing both signals, the excitation light 11
Light reception position signal of probe light 6 during irradiation and excitation light! ! The light reception position signal of the probe light 6 during non-irradiation is divided into sections with a good S/N ratio and sent to the measurement controller 15. The measurement controller 15 is
Based on this sent signal, the amount of deflection of the probe light 6 with respect to the wavelength of the excitation light 11 at that time is determined, and the light absorption characteristics are calculated based on this. Furthermore, by performing similar measurements while sequentially changing the wavelength of the excitation light 11, the spectral absorption characteristics of the thin film 4 can be obtained.
この測定に際して、測定部位は、測定制御4115で励
起光11の光路を調節することで自由に選択でき、また
液面3の位置に応じてやはり測定制御器15でプローブ
光6の光路を調節して正確を期すことができる。また、
プローブ光源5、励起光源lO及びチ璽フパー12に必
要な調節を全て測定制御器I5で自動的に行うようにし
、操作を簡略化することも可能である。In this measurement, the measurement site can be freely selected by adjusting the optical path of the excitation light 11 with the measurement control 4115, and the optical path of the probe light 6 can also be adjusted with the measurement controller 15 depending on the position of the liquid level 3. to ensure accuracy. Also,
It is also possible to automatically make all necessary adjustments to the probe light source 5, excitation light source 1O, and tipper 12 by the measurement controller I5, thereby simplifying the operation.
入射角θ、鏡面13と液面3の距離d、反射領域を文と
すれば、励起光照射回数Nは次式のような関係がある。Assuming that the angle of incidence θ, the distance d between the mirror surface 13 and the liquid surface 3, and the reflection area are as follows, the number of times N of excitation light irradiation is expressed by the following equation.
即ち、N=jL/(2dtanθ)の関係が成立し1例
えば、交=30m園、d −0,5■箇。That is, the relationship N=jL/(2dtanθ) is established.For example, intersection=30m, d−0,5×.
θ−eo”とすればN″418となり、感度を約18倍
上げることができる。If it is θ-eo'', it becomes N''418, which makes it possible to increase the sensitivity by about 18 times.
励起光11の測定部位における光量分布、液体2の熱に
よる屈折率変化の特性、プローブ光6の入射ビーム位置
及びその時の偏向量から薄$4によって吸収された光エ
ネルギーが求まる。従って、励起光11の薄膜4への照
射エネルギーをフォトセンサー等でモニターしておけば
1両者から薄膜4の絶対的な光吸収特性が得られる。そ
して、励起光11の波長を変化させることにより、絶対
的分光吸収特性が得られる。また、励起光11の各波長
における相対強度を予め求め、波長に対応したプローブ
光6の偏向量を求めるだけでも、相対的な分光吸収特性
を得ることができる。光吸収特性の相対値、絶対値は、
0定の目的に応じ適宜選択すればよい。The light energy absorbed by the thin beam 4 is determined from the light intensity distribution of the excitation light 11 at the measurement site, the characteristics of the refractive index change due to heat of the liquid 2, the incident beam position of the probe light 6, and the amount of deflection at that time. Therefore, by monitoring the irradiation energy of the excitation light 11 onto the thin film 4 using a photosensor or the like, the absolute light absorption characteristics of the thin film 4 can be obtained from both. Then, by changing the wavelength of the excitation light 11, absolute spectral absorption characteristics can be obtained. Further, the relative spectral absorption characteristics can be obtained by simply determining the relative intensity of the excitation light 11 at each wavelength in advance and determining the amount of deflection of the probe light 6 corresponding to the wavelength. The relative value and absolute value of the light absorption characteristics are
It may be selected as appropriate depending on the purpose of the zero constant.
プローブ光6は、第2図に示されるように、励起光11
と共に測定部位で全反射させるようにしてもよい、この
ようにすると、液体2の大きな屈折率変化を生ずる部分
を通過させることができ、高感度の測定ができる利点が
ある。The probe light 6 is coupled to the excitation light 11 as shown in FIG.
At the same time, the light may be totally reflected at the measurement site. In this case, it is possible to pass through a portion of the liquid 2 where a large change in refractive index occurs, and there is an advantage that highly sensitive measurement can be performed.
プローブ光6は、第3図に示されるように、液面3近く
の気相中を通過させ、気相部の屈折率変化の影響下に置
くこともできる。このようにすると、プローブ光6と励
起光11が全く交差しなり)ので、プローブ光6に対し
て励起光11が交差することによって及ぼす影響を除去
することができる。As shown in FIG. 3, the probe light 6 can also be passed through a gas phase near the liquid surface 3 and placed under the influence of a change in the refractive index of the gas phase. In this case, the probe light 6 and the excitation light 11 do not intersect at all), so the influence of the excitation light 11 intersecting the probe light 6 can be eliminated.
第4図に示されるように、薄$4が展開されている液面
3の一部を仕切枠1Bで仕切り、薄M44の無い液面3
′を形成し、この液面3′を参照液面として測定するこ
ともできる。即ち、プローブ光源5から出射されたプロ
ーブ光6及び励起光源10から出射されてチオツバ−1
2を経た励起光11を、例えばビームスプリッタ−やハ
ーフミラ−等の光路分割手段!?で分割した後、ミラー
等の光路FA整手段18を用いて液面3と3′に同時に
プローブ光6と励起光11を送る。そして、液面3.3
′に対応するプローブ光6の偏向量を各々の検出器7で
検知し、両者の差から測定を行うものである。このよう
にすると、薄84の有無による差が測定でき、他の影響
を相殺することができるめで、高精度の測定が可能とな
る。As shown in FIG. 4, a part of the liquid surface 3 where thin M44 is deployed is partitioned off by a partition frame 1B, and a liquid surface 3 without thin M44 is separated.
It is also possible to form a liquid level 3' and measure this liquid level 3' as a reference liquid level. That is, the probe light 6 emitted from the probe light source 5 and the thiobium 1 emitted from the excitation light source 10
2, the excitation light 11 is passed through optical path splitting means such as a beam splitter or a half mirror! ? After the light is divided by , the probe light 6 and the excitation light 11 are simultaneously sent to the liquid surfaces 3 and 3' using an optical path FA adjusting means 18 such as a mirror. And liquid level 3.3
The amount of deflection of the probe light 6 corresponding to ' is detected by each detector 7, and measurement is performed based on the difference between the two. In this way, the difference due to the presence or absence of the thin film 84 can be measured, and other influences can be canceled out, making it possible to perform highly accurate measurements.
更に、第5図に示されるように、プローブ光6を、液面
3付近に設けた、例えばニオブ酸リチウム結晶、酸化チ
タン結晶、二酸化ケイ素結晶、ガラス、プラスチック等
の屈折率変化の大きな媒体ls中に通すこともできる。Furthermore, as shown in FIG. 5, the probe light 6 is applied to a medium ls with a large refractive index change, such as a lithium niobate crystal, a titanium oxide crystal, a silicon dioxide crystal, a glass, or a plastic, which is provided near the liquid surface 3. You can also pass it inside.
即ち、液面3上の薄膜4の光吸収によって発生した熱を
、薄膜4近傍に液面3と平行に配置した熱屈折率変化の
大きな媒体13に作用させて屈折率変化に変換し、その
媒体lS中をプローブ光6を通過させ、プローブ光6の
偏向量を拡大し、高感度検出を図ることができる。That is, the heat generated by light absorption by the thin film 4 on the liquid surface 3 is applied to a medium 13 with a large thermal refractive index change placed near the thin film 4 in parallel to the liquid surface 3, and converted into a refractive index change. By passing the probe light 6 through the medium IS, the amount of deflection of the probe light 6 can be expanded, and highly sensitive detection can be achieved.
本発明による光吸収特性の測定は、液槽lt−第6図及
び第7図に示されるようなものとして、単分子累積膜の
取得時に利用すると有益である。The measurement of light absorption properties according to the present invention is useful when obtaining a monomolecular cumulative film as shown in FIGS. 6 and 7 in a liquid bath lt.
発明者にちなんでラングミュア・ブロジz’lト法と呼
ばれる単分子膜累積法(以下LB法という。The monolayer accumulation method (hereinafter referred to as the LB method) is called the Langmuir-Blogid method after the inventor.
新実験化学講座18巻438頁〜507頁丸善参照)に
おいては、液面3上に形成した単分子膜を基板20の表
面上に移し取り、1枚ずつ重ねて超薄膜を作るため、液
面3上の薄膜の特性が重要である。 LB法により基板
20上に移し取った累積膜の構造や分子配向が液面3上
の展開単分子膜の状態を基にしていることは轟然である
が、その状態がそのまま基板20上に移されているかど
うかには問題がある0本発明は、液面3上に展開された
単分子膜がそのままの状態で基板20上に移し取れるか
どうかを分析するのに利用できるものである。以下に。In the New Experimental Chemistry Course Vol. 18, pp. 438-507 Maruzen), the monomolecular film formed on the liquid level 3 is transferred onto the surface of the substrate 20 and layered one by one to form an ultra-thin film. The characteristics of the thin film above 3 are important. It is obvious that the structure and molecular orientation of the cumulative film transferred onto the substrate 20 by the LB method are based on the state of the developed monomolecular film on the liquid surface 3, but it is clear that the structure and molecular orientation of the cumulative film transferred onto the substrate 20 by the LB method are based on the state of the developed monomolecular film on the liquid surface 3. The present invention can be used to analyze whether a monomolecular film developed on the liquid surface 3 can be transferred onto the substrate 20 as it is. less than.
単分子累積膜を得るための液槽l及びその手順を説明す
る。The liquid tank I and its procedure for obtaining a monomolecular cumulative film will be explained.
第6図及び第7図に示されるように、液体2が収容され
た浅くて広い角型の液槽1の内側に、例えばポリプロピ
レン製等の内枠21が水平に釣ってあり、水面3.3′
を仕切っている。液体2としては、通常純水が用いられ
る。内枠21の内側には1例えばやはりポリプロピレン
製等の成膜枠22が浮かべられている。成膜枠22は1
幅が内枠21の内幅より僅かに短かい直方体で、図中左
右方向に二次元ピストン運動可能なものとなっている。As shown in FIGS. 6 and 7, an inner frame 21 made of, for example, polypropylene is suspended horizontally inside a shallow and wide rectangular liquid tank 1 containing a liquid 2. 3'
is in charge of As the liquid 2, pure water is usually used. A film forming frame 22 made of, for example, polypropylene is floated inside the inner frame 21 . The film forming frame 22 is 1
It is a rectangular parallelepiped whose width is slightly shorter than the inner width of the inner frame 21, and is capable of two-dimensional piston movement in the left and right directions in the figure.
成膜枠22には、成膜枠22を図中右方に引張るための
重錘23が滑車24を介して結び付けられている。また
、成膜枠22上に固定された磁石25と、成膜枠22の
上方で図中左右に移動可能で磁石25に接近すると互に
反撥し合う対磁石2Bとが設けられていて、これによっ
て成膜枠22は図中左右への移動並びに停止が可能なも
のとなっている。このような!lI錘23や一組の磁石
25.213の代りに1回転モーターやプーリーを用い
て直接成膜枠22を移動させるものもある。A weight 23 for pulling the film forming frame 22 to the right in the figure is tied to the film forming frame 22 via a pulley 24 . Further, a magnet 25 fixed on the film forming frame 22 and a counter magnet 2B which can be moved from side to side in the figure above the film forming frame 22 and repel each other when approaching the magnet 25 are provided. Accordingly, the film forming frame 22 can be moved to the left and right in the figure and can be stopped. like this! There is also a system in which the film forming frame 22 is directly moved using a one-rotation motor or a pulley instead of the lI weight 23 or the set of magnets 25,213.
内枠21内の両側には、吸引パイプ27を介して吸引ポ
ンプ(図示されていない)に接続された吸引ノズル28
が並べられている。この吸引ノズル28は、単分子膜や
単分子累積膜内に不純物が混入してしまうのを防止する
ために、液面3.3′上の不要になった前工程の単分子
膜等を迅速に除去するのに用いられるものである。尚、
20は基板ホルダ29に取付けられて垂直に上下される
基板である。Suction nozzles 28 connected to a suction pump (not shown) via a suction pipe 27 are provided on both sides of the inner frame 21.
are lined up. This suction nozzle 28 quickly removes unnecessary monomolecular films from the previous process on the liquid level 3.3' in order to prevent impurities from getting into the monomolecular film or monomolecular cumulative film. It is used to remove still,
Reference numeral 20 denotes a substrate that is attached to a substrate holder 29 and is vertically moved up and down.
まず、成膜枠22を移動させて、液面3.3′上の不要
となった単分子膜等を掃き寄せながら吸引ノズル2Bか
らすすり出し、液面3.3′を浄化する。こうして清浄
化された液面3.3′の左端に成膜枠22を寄せて1例
えば、〜5X10−)■an/1(7)W度でベンゼン
、クロロホルム等の揮発性溶媒に溶かした膜構成物質の
溶液を、スポイト等で数滴液面3上にたらす、この溶液
が液面3上に広がり、溶媒が揮発すると、単分子膜が液
面3上に残されることになる。First, the film forming frame 22 is moved to sweep up unnecessary monomolecular films and the like on the liquid surface 3.3' while sucking them out from the suction nozzle 2B to purify the liquid surface 3.3'. The film forming frame 22 is moved to the left end of the liquid surface 3.3' that has been cleaned in this way, and a film is prepared by dissolving it in a volatile solvent such as benzene or chloroform at ~5X10-)■an/1(7)W degrees. A few drops of the solution of the constituent substances are dropped onto the liquid surface 3 using a dropper or the like. When this solution spreads over the liquid surface 3 and the solvent evaporates, a monomolecular film is left on the liquid surface 3.
上記単分子膜は、液面3上で二次元系の挙動を示す0分
子の面密度が低いときには二次元気体の気体膜と呼ばれ
、一分子当りの占有面積と表面圧との間に二次元理想気
体の状態方程式が成立する。The above-mentioned monomolecular film is called a gas film of a secondary gas when the areal density of molecules exhibiting two-dimensional system behavior on the liquid surface 3 is low, and there is a difference between the occupied area per molecule and the surface pressure. The equation of state for a dimensional ideal gas holds.
次いで、この気体膜の状態から、徐々に成膜枠22を右
方に動かし、単分子膜が展開している液面3の領域を次
第に縮めて面密度を増してやると、分子間相互作用が強
まり、二次元液体の液体膜を経て二次元固体の固体膜へ
と変わる。この固体膜となると1分子の配列配向はきれ
いに揃い、高度の秩序性及び均一な超薄膜性を持つに至
る。そして、このときに基板20の表面に当該固体膜と
なった単分子膜を付着させて移し取ることが可能となる
。また、同一の基板に複数回単分子膜を重ねて移し取る
ことによって、単分子累積膜を得ることができる。尚、
基板20としては1例えばガラス、合成樹脂、セラミッ
ク、金属等が使用されている。Next, from this state of gas film, the film forming frame 22 is gradually moved to the right to gradually reduce the area of the liquid surface 3 where the monomolecular film is developed and increase the areal density, thereby increasing the intermolecular interaction. It becomes stronger and changes from a liquid film of a two-dimensional liquid to a solid film of a two-dimensional solid. In this solid film, the arrangement and orientation of each molecule is neatly aligned, resulting in a high degree of order and uniform ultra-thin film properties. At this time, the monomolecular film that has become a solid film can be attached to the surface of the substrate 20 and transferred. Furthermore, a monomolecular cumulative film can be obtained by stacking and transferring a monomolecular film multiple times onto the same substrate. still,
As the substrate 20, for example, glass, synthetic resin, ceramic, metal, etc. are used.
単分子膜を液面3上から基板2oの表面に移し取る方法
は大別して2種類ある。−は垂直浸漬法で他は水平付着
法である。垂直浸漬法とは、液面3上の単分子膜に累積
操作に好適な一定の表面圧をかけながら、膜を横切る方
向、即ち、垂直方向に基板2Gを上下させることにより
単分子膜を移し取る方法である。水平付着法とは、基板
20を水平に保ちながら上から液面3にできるだけ近づ
け、わずかに傾けて一端から単分子膜に触れて付着する
方法である。There are roughly two types of methods for transferring the monomolecular film from above the liquid level 3 to the surface of the substrate 2o. - is the vertical immersion method, and the others are the horizontal attachment method. The vertical immersion method is a method in which the monomolecular film is transferred by moving the substrate 2G up and down in the direction across the film, that is, in the vertical direction, while applying a constant surface pressure suitable for cumulative operation to the monomolecular film on the liquid level 3. This is the way to take it. The horizontal adhesion method is a method in which the substrate 20 is held horizontally, brought as close as possible to the liquid surface 3 from above, and slightly tilted to touch the monomolecular film from one end for adhesion.
上記基板20へ移し取るのに好適な単分子膜の状態下に
おいて占該移し取り操作を行うべく、単分子膜の表面圧
を計測することが行われている。一般に、移し取るのに
好適な単分子膜の表面圧は15〜30dyn/c■とさ
れている。この範囲外では、分子の配列配向が乱れたり
膜の剥れを生じやすくなる。もっとも、特別の場合1例
えば、膜構成物質の化学構造、温度条件等によっては、
好適な表面圧の値が上記範囲からはみ出ることもあるの
で、上記範囲は一応の目安である。In order to carry out the transfer operation under conditions of the monomolecular film suitable for transfer to the substrate 20, the surface pressure of the monomolecular film is measured. Generally, the surface pressure of a monomolecular film suitable for transfer is 15 to 30 dyn/c. Outside this range, the arrangement and orientation of molecules may be disturbed and the film may easily peel off. However, in special cases 1, for example, depending on the chemical structure of the membrane constituents, temperature conditions, etc.
Since the preferred surface pressure value may be outside the above range, the above range is only a rough guide.
上記単分子膜の表面圧は1表面圧測定器(図示されてい
ない)によって自動的かつ継続的に計測されるものであ
る0表面圧の測定器としては、単分子膜に覆われていな
い液面3′と、単分子膜に覆われた液面3との表面張力
の差から間接的に求める方法を応用したものや、単分子
膜に覆われていない液面3′と、単分子膜に覆われた液
面3とを区切って浮ぶことになる成膜枠22に加わる二
次元的圧力を直接測定するもの等があり、各々特色があ
る。また1通常、表面圧と共に単分子膜の一分子当りの
占有面積及びその変化量も計測される。占有面積及びそ
の変化量は、成膜枠22の左右の動きから求められる。The surface pressure of the monomolecular film mentioned above is automatically and continuously measured by a surface pressure measuring device (not shown). There are methods that apply an indirect method of determining the surface tension from the difference in surface tension between the surface 3' and the liquid surface 3 covered with a monomolecular film, and those that apply the method of calculating the surface tension indirectly from the difference in surface tension between the surface 3' and the liquid surface 3 that is not covered with a monomolecular film. There are methods that directly measure the two-dimensional pressure applied to the film-forming frame 22, which floats in separation from the liquid surface 3 covered by the liquid surface 3, and each method has its own characteristics. Furthermore, in addition to the surface pressure, the occupied area per molecule of the monomolecular film and the amount of change thereof are also usually measured. The occupied area and the amount of change thereof are determined from the left and right movement of the film forming frame 22.
前述した成膜枠22の動きは、上記測定器によって計測
される単分子膜の表面圧に基づいて制御されるものであ
る。即ち、移し取り操作に好適な範囲内で選ばれた一定
の表面圧を単分子膜が常に維持するよう、対磁石26を
左右に移動させる駆動装置(図示されていない)が表面
圧測定器により計測された単分子膜の表面圧に基づいて
制御される。この成膜枠22の移動制御は、1!!!構
成物質の溶液滴下後、単分子膜の移し取り操作開始塩だ
けでなく、移し取り操作中も継続して成されるものであ
る0例えば、移し取り操作において、単分子膜が基板2
0に移し取られて行くに従って、液面3上の単分子膜分
子の面密度は低下し1表面圧も低下することになる。従
って、成膜枠22を移動させて単分子膜の展開面積を縮
小し、その表面圧低下分を補正して一定表面圧を維持す
ることが必要となる。The movement of the film forming frame 22 described above is controlled based on the surface pressure of the monomolecular film measured by the measuring device. That is, a driving device (not shown) for moving the counter magnet 26 from side to side is controlled by a surface pressure measuring device so that the monomolecular film always maintains a constant surface pressure selected within a range suitable for the transfer operation. It is controlled based on the measured surface pressure of the monolayer. The movement control of this film forming frame 22 is 1! ! ! After dropping the solution of the constituent substances, the monomolecular film transfer operation begins.This process is carried out not only during the salt application but also continuously during the transfer operation.For example, in the transfer operation, the monomolecular film is
As it is transferred to 0, the surface density of the monolayer molecules on the liquid level 3 decreases, and the surface pressure also decreases. Therefore, it is necessary to move the film forming frame 22 to reduce the area in which the monomolecular film is developed, and to correct the decrease in surface pressure to maintain a constant surface pressure.
上述のように、単分子累積膜を得るには種々の微妙な調
整が要求されるものである。しかし、これまでどのよう
な条件が最適条件となるかは種々の実験によらなければ
ならず、また液面3上の単分子膜が累積に適した状態と
なっているか否かは1表面圧等で間接的に確認すること
しかできず、正確さに欠けているのである。ところで1
本発明を前記表面圧測定器の代りに利用すれば、液面3
上の単分子膜の特性をその場で検知でき、その都度最適
条件下で累積させて行くことが可能となるものである。As mentioned above, various delicate adjustments are required to obtain a monomolecular cumulative film. However, until now it has been necessary to conduct various experiments to find out what conditions are the optimal conditions, and whether the monomolecular film on the liquid level 3 is in a state suitable for accumulation depends on the surface pressure of 1. It can only be confirmed indirectly through methods such as methods, and it lacks accuracy. By the way 1
If the present invention is used in place of the surface pressure measuring device, the liquid level 3
The characteristics of the monomolecular film above can be detected on the spot, and can be accumulated under optimal conditions each time.
次に、単分子膜分子の取得時に本発明を利用するに適し
た実施例を第8図で説明する。Next, an embodiment suitable for utilizing the present invention when obtaining monolayer molecules will be described with reference to FIG.
液体2が収容された液槽lの一側に支持柱30が立上げ
られており、そこに基板20を保持した基板ホルダ29
が取付けられていて、基板20を液面3に向って上下に
垂直移動できるようになっている。A support column 30 is erected on one side of the liquid tank l containing the liquid 2, and a substrate holder 29 holding the substrate 20 is mounted on the support column 30.
is attached so that the substrate 20 can be vertically moved up and down toward the liquid level 3.
液槽l内の底部には昇降波J31が設けられていて、そ
の上に計測ユニット32が設置されている。An ascending/descending wave J31 is provided at the bottom of the liquid tank l, and a measuring unit 32 is installed above it.
計測ユニット32は、ドーナツ状に中抜きとなった略口
形を成すもので、その内周側底辺部は鏡面18となって
いて、この鏡面13が液面3の直ぐ下方で平行に位置す
るよう昇降装置i31で位置が調節されている。この計
測ユニット32内には、プローブ光源5.検出器7.プ
ローブ光源5から出射されたプローブ光6を液面3と鏡
面13の間を通して検出器7へと導く光路調整手段18
a −18c 、励起光源10.励起光源から出射され
た励起光11を断続光とするチ、、ツバー12.吸収体
14及び励起光11を液面3と鏡面18の間で複数回反
射させて吸収体14へと導く光路調整手段18d、 1
8eが設けられている。The measurement unit 32 has a generally hollow donut shape, and its inner bottom side is a mirror surface 18, and the measurement unit 32 is arranged so that the mirror surface 13 is located directly below and parallel to the liquid level 3. The position is adjusted by the lifting device i31. This measurement unit 32 includes a probe light source 5. Detector 7. Optical path adjustment means 18 that guides the probe light 6 emitted from the probe light source 5 to the detector 7 through between the liquid surface 3 and the mirror surface 13
a-18c, excitation light source 10. 12. The excitation light 11 emitted from the excitation light source is made into intermittent light. Optical path adjustment means 18d, 1 that reflects the absorber 14 and the excitation light 11 multiple times between the liquid surface 3 and the mirror surface 18 and guides it to the absorber 14.
8e is provided.
また、計測ユニット32の内周側両側面下部は、計測ユ
ニット32内を液体2かも仕切った状態でプローブ光6
と励起光1Gを通過させる窓部33となっている。尚、
22は、単分子膜である薄H4の表面圧を調整するため
の成膜枠である。Further, the lower portions of both sides of the inner peripheral side of the measurement unit 32 are arranged so that the inside of the measurement unit 32 is partitioned off from the liquid 2 and the probe light 6
This serves as a window portion 33 through which the excitation light 1G passes. still,
22 is a film forming frame for adjusting the surface pressure of the thin H4, which is a monomolecular film.
上記実施例によれば薄a4の光吸収特性を高感度で測定
できることは第1図で説明した通りである。特に本実施
例によれば、薄194を単分子膜としてこれを形成しつ
つ光吸収特性を測定でき、これから形成されている単分
子膜の特性を容易に分析できるので、基板22に累積さ
れる単分子累積膜をより高精度のものとすることができ
る。また、二ニア)化されているので、測定系に外界か
ら与えられる影響を減少させることができ、液槽lへの
直脱も容易である。As explained in FIG. 1, according to the above embodiment, the light absorption characteristics of a thin A4 sheet can be measured with high sensitivity. In particular, according to this embodiment, the light absorption characteristics can be measured while forming the thin film 194 as a monomolecular film, and the characteristics of the monomolecular film that is being formed can be easily analyzed. A monomolecular cumulative film can be made with higher precision. In addition, since the measuring system is linear, it is possible to reduce the influence exerted on the measurement system from the outside world, and it is easy to take it out directly to the liquid tank l.
[発明の効果]
本発明によれば、液面上に展開されている薄膜の光吸収
特性の測定に当り1反射光及び透過光の影響並びに励起
ビームを空気中に通すことによる悪影響を排除でき、高
感度、高精度の測定が可能となるものである。[Effects of the Invention] According to the present invention, when measuring the light absorption characteristics of a thin film spread on a liquid surface, it is possible to eliminate the influence of reflected light and transmitted light as well as the adverse effects of passing an excitation beam through the air. , it is possible to perform measurements with high sensitivity and high precision.
第1図は本発明の一実施例を示す説明図、第2図ないし
第5図は各々他の実施例の説明図、第6図及び第7図は
単分子累積膜を得る場合の液槽及び手順の説明図、第8
図は単分子累積膜の取得時に利用するに適した実施例の
説明図、第9図(a)。
(b)は従来技術の説明図である。
1:液槽、2:液体、3.3’:液面、4:薄膜、5ニ
ブローブ光源。
6:プローブ光、7:検出器。
8ニドライバー、9:ロックインアンプ、10:励起光
源、11:励起光、12:チョツノ々−113:鏡面、
14:吸収体、15:測定制御器、IB=仕切枠、17
:光路分割、
18、18a 〜18e :光路調整手段、19:媒体
。
20:基板、21:内枠、22:成膜枠、23:重錘。
24:滑車、25:磁石、26二対磁石。
27:吸収パイプ、28:吸引ノズル。
23:基板ホルダ、30:支持柱、31:昇降装置。
32:計測ユニット、33:!!部。FIG. 1 is an explanatory diagram showing one embodiment of the present invention, FIGS. 2 to 5 are explanatory diagrams of other embodiments, and FIGS. 6 and 7 are liquid tanks for obtaining a monomolecular cumulative film. and explanatory diagram of the procedure, No. 8
The figure is an explanatory diagram of an example suitable for use when obtaining a monomolecular cumulative film, FIG. 9(a). (b) is an explanatory diagram of the prior art. 1: liquid tank, 2: liquid, 3.3': liquid level, 4: thin film, 5 nib lobe light source. 6: Probe light, 7: Detector. 8 driver, 9: lock-in amplifier, 10: excitation light source, 11: excitation light, 12: chotsuno-113: mirror surface,
14: Absorber, 15: Measurement controller, IB = partition frame, 17
: Optical path division, 18, 18a to 18e: Optical path adjustment means, 19: Medium. 20: Substrate, 21: Inner frame, 22: Film forming frame, 23: Weight. 24: Pulley, 25: Magnet, 26 Two pairs of magnets. 27: Absorption pipe, 28: Suction nozzle. 23: Substrate holder, 30: Support column, 31: Lifting device. 32: Measurement unit, 33:! ! Department.
Claims (1)
光を照射しつつこの測定部位又はその近傍にプローブ光
を照射し、このプローブ光の偏向量から光吸収特性を測
定するに際し、前記励起光を、第一の測定部位の液面で
全反射される入射角で液体側から照射すると共に、この
反射光を液面下で少なくとも第二の測定部位の液面で全
反射される角度に反射させることを特徴とする薄膜の光
吸収特性測定方法。1) Intermittently irradiating the measurement area of a thin film spread on the liquid surface with excitation light and irradiating the measurement area or its vicinity with probe light, and measuring the light absorption characteristics from the amount of deflection of this probe light. , the excitation light is irradiated from the liquid side at an incident angle such that it is totally reflected by the liquid surface of the first measurement site, and the reflected light is totally reflected by the liquid surface of at least the second measurement site below the liquid surface. A method for measuring the light absorption characteristics of a thin film, which is characterized by reflecting the light at a certain angle.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24318584A JPS61122547A (en) | 1984-11-20 | 1984-11-20 | Measuring method of light absorption characteristic of thin film |
US06/799,497 US4830502A (en) | 1984-11-20 | 1985-11-19 | Apparatus and method for measuring light absorption characteristic of a thin film, and equipment provided with said apparatus for forming a monomolecular built-up film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24318584A JPS61122547A (en) | 1984-11-20 | 1984-11-20 | Measuring method of light absorption characteristic of thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61122547A true JPS61122547A (en) | 1986-06-10 |
Family
ID=17100086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24318584A Pending JPS61122547A (en) | 1984-11-20 | 1984-11-20 | Measuring method of light absorption characteristic of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61122547A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02195233A (en) * | 1989-01-25 | 1990-08-01 | Aloka Co Ltd | Absorbance measuring apparatus |
-
1984
- 1984-11-20 JP JP24318584A patent/JPS61122547A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02195233A (en) * | 1989-01-25 | 1990-08-01 | Aloka Co Ltd | Absorbance measuring apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2833778B2 (en) | Biological sensor | |
JPS5824861A (en) | Method of measuring organism active substance | |
US7144153B2 (en) | Measuring apparatus | |
US4790664A (en) | Device and method for measuring optical properties | |
US4830502A (en) | Apparatus and method for measuring light absorption characteristic of a thin film, and equipment provided with said apparatus for forming a monomolecular built-up film | |
JP3437619B2 (en) | Sensor device | |
JP2000019104A (en) | Surface plasmon sensor | |
CN107356560B (en) | Total reflection type oblique incident light reflection difference scanning imaging device and its use method | |
WO2018099408A1 (en) | Highly sensitive, graphene surface wave based multiple light beam refractive index detection apparatus and method | |
JPS6363945A (en) | Stabilization of optical property measurement | |
JPS61122547A (en) | Measuring method of light absorption characteristic of thin film | |
US5211829A (en) | Analytical method and apparatus using capillary tube | |
CN111103217A (en) | Quick response's high accuracy light scattering turbidimeter measuring device | |
JP3716305B2 (en) | Internal reflection type two-dimensional imaging ellipsometer | |
JPS61122545A (en) | Measuring method of light absorption characteristic of thin film | |
JPS61122549A (en) | Instrument for measuring light absorption characteristic of thin film | |
JPS61122550A (en) | Instrument for measuring light absorption characteristic of thin film | |
JPS61122551A (en) | Instrument for measuring light absorption characteristic of thin film | |
JPH0460698B2 (en) | ||
JPS61122548A (en) | Measuring instrument for light absorption characteristic of thin film | |
CN214472763U (en) | An angle-modulated SPR sensor and SPR detection equipment based on scanning galvanometer | |
JPS6239731A (en) | Apparatus for measuring photo-physical properties of membrane | |
JPS61122546A (en) | Measuring method of light absorption characteristic of thin film | |
JPH0575059B2 (en) | ||
US7330263B2 (en) | Measurement method and apparatus |