[go: up one dir, main page]

JPS6239731A - Apparatus for measuring photo-physical properties of membrane - Google Patents

Apparatus for measuring photo-physical properties of membrane

Info

Publication number
JPS6239731A
JPS6239731A JP17940085A JP17940085A JPS6239731A JP S6239731 A JPS6239731 A JP S6239731A JP 17940085 A JP17940085 A JP 17940085A JP 17940085 A JP17940085 A JP 17940085A JP S6239731 A JPS6239731 A JP S6239731A
Authority
JP
Japan
Prior art keywords
light
liquid
excitation light
liquid surface
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17940085A
Other languages
Japanese (ja)
Inventor
Kenji Saito
謙治 斉藤
Harunori Kawada
河田 春紀
Takeshi Eguchi
健 江口
Yoshinori Tomita
佳紀 富田
Takashi Nakagiri
孝志 中桐
Yukio Nishimura
征生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17940085A priority Critical patent/JPS6239731A/en
Priority to US06/897,055 priority patent/US4790664A/en
Publication of JPS6239731A publication Critical patent/JPS6239731A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To enable measurement with high sensitivity, by providing an exciting light source for emitting exciting light allowed to irradiate the area to be measured of the membrane provided from the part below the surface of a liquid to the part thereabove at an incident angle totally reflected from the surface of the liquid and a detector for detecting the deflection quantity of probe light passed through the area to be measured. CONSTITUTION:The exciting light 1 emitted from an exciting light source 10 is modulated to intermittent light by a light intensity modulator 12 and the area to the measured area of the membrane 4 above the surface 3 of liquid in a liquid tank 1 is irradiated with the intermittent light through a first mirror 13a while the irradiated light is totally reflected from the surface 3 of the liquid to pass through the liquid 2 and issued to the outside of the tank 1 to be again reflected by a second mirror 13b. The re-reflected light 11 advances in parallel to the surface 3 of the liquid to be again reflected by the mirror 13a to irradiate the membrane 4 and the irradiated light is similarly totally reflected from the surface 3 of the liquid and reflected by a third mirror 13c to irradiate the membrane 4 through the mirror 13a. Prove light 6 emitted from a probe light source 5 passes through a measuring vicinity intermittently changed in refractivity by the irradiation of the light 11 and a light path is deflected as shown by a dotted line. A detector 7 receives this light 6 to send the same to a measuring controller 14 through a driver 8 and a lock-in amplifier 9 and the spectral absorption characteristics of the membrane 4 are obtained in the controller 14.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に液面上に展開された薄膜の特性を光学的
に測定する装置に関するもので、更に詳しくは、薄膜の
種々の特性分析の基礎となる光吸収特性の測定装置に関
する0本発明は、例えば単分子膜mwaの形成に際し、
累積すべく液面上に展開された単分子膜の特性分析等に
利用されるものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for optically measuring the characteristics of a thin film spread on a liquid surface, and more specifically, to an apparatus for optically measuring the characteristics of a thin film spread on a liquid surface. The present invention relates to a measuring device for light absorption characteristics, which is the basis of
It is used to analyze the characteristics of monomolecular films spread on the liquid surface for accumulation.

[従来の技術J 従来、ある試料の光吸収特性を測定する装置としては、
透過率又は反射率から光吸収特性を求める装置がある。
[Prior art J] Conventionally, as a device for measuring the light absorption characteristics of a certain sample,
There is a device that determines light absorption characteristics from transmittance or reflectance.

しかし、試料に光が照射された場合、透過光、反射光の
他に散乱光があり、更に高精度を期すためには光の吸収
成分を直接測定することが光吸収特性評価上重要となる
However, when a sample is irradiated with light, there is scattered light in addition to transmitted light and reflected light, and in order to achieve even higher accuracy, it is important to directly measure the absorption component of light in evaluating light absorption characteristics. .

光の吸収成分を直接測定する各種の方法の中の1つとし
て、光熱偏向分光装置(Phototer+5alDe
flection Spectrogcopy:  P
DS)と言われる装置がある。このPDS装置は、試料
の光吸収による発熱と共に試料内及び試料近傍に温度分
布が生じて屈折率が変化し、これによってそこに入射す
る光が偏向することを利用したものである。即ち、試料
の測定部位に、光吸収されたときに発熱による温度分布
を生じさせて屈折率を変化させる励起光と、これによる
偏向量を測定するためのプローブ光とを照射し、励起光
の波長とプローブ光の偏向量とから試料の光吸収特性を
測定するものである。この装置は、試料と検出系が独立
に設定でき、現場での計測や遠隔計測に適しており1本
発明の基本原理もこのPDS装置と同様である。
One of the various methods for directly measuring the absorption components of light is a photothermal deflection spectrometer (Phototer+5alDe
Reflection Spectrogcopy: P
There is a device called DS. This PDS device utilizes the fact that as heat is generated due to light absorption by the sample, a temperature distribution occurs within the sample and in the vicinity of the sample, causing a change in the refractive index, which deflects the light incident thereon. That is, the measurement site of the sample is irradiated with excitation light that generates a temperature distribution due to heat generation when the light is absorbed and changes the refractive index, and probe light that measures the amount of deflection caused by the excitation light. The light absorption characteristics of the sample are measured from the wavelength and the amount of deflection of the probe light. This device allows the sample and detection system to be set independently and is suitable for on-site measurement and remote measurement, and the basic principle of the present invention is also the same as this PDS device.

L記PDS装置は、励起光とプローブ光の配置によって
、横方向(tranSverse)型と縦方向(col
linear)型の二通りがあり、いずれも上述のよう
に試料の励起光吸収量に応じたプローブ光の偏向量を測
定するもので、検出器としては位置敏感検出器(PDS
)を用いることが多い。
Depending on the arrangement of excitation light and probe light, PDS devices can be of transverse type or longitudinal type.
As mentioned above, both measure the amount of deflection of the probe light according to the amount of excitation light absorbed by the sample, and the detector is a position sensitive detector (PDS).
) is often used.

第15図(a)は縦方向型の例で、励起光源10より出
た励起光11は、チョッパー12で断続光となり、レン
ズ34で集束されて試料4′に照射される。プローブ光
源5より出たプローブ光6は、レンズ35及びミラー等
の光路調整器17で励起光11が照射されている試料4
′の領域を通過して検出器7へと至り、点線で示される
ように偏向したときの偏向量が測定される。第15図(
b)は横方向型の例で、グローブ光5が試料4′の表面
に平行に照射される点が縦方向型と相違するだけで他は
同様である。
FIG. 15(a) shows an example of a vertical type, in which excitation light 11 emitted from an excitation light source 10 is turned into intermittent light by a chopper 12, focused by a lens 34, and irradiated onto a sample 4'. The probe light 6 emitted from the probe light source 5 passes through a lens 35 and an optical path adjuster 17 such as a mirror to a sample 4 irradiated with excitation light 11.
' and reaches the detector 7, where the amount of deflection is measured as shown by the dotted line. Figure 15 (
b) is an example of the horizontal type, which is the same as the vertical type except that the globe light 5 is irradiated parallel to the surface of the sample 4'.

このPDS装置における理論的取扱いは、試料内の熱伝
導方程式を解けばよく、偏向角φとして測定される偏向
量は、励起光強度、屈折率の温度係数(a n/δT)
、プローブ光の通過する領域での温度勾配(υT/δx
)笠に比例することになる。試料の光吸収係数に比例す
る項は(δThf)x )に含まれる。また(υn/D
T )は、試料によっては正負いずれかの値をとり得、
このことは偏向角も正負両方の場合があることを示して
いる。
Theoretical handling in this PDS device is to solve the heat conduction equation within the sample, and the amount of deflection measured as the deflection angle φ is determined by the excitation light intensity and the temperature coefficient of the refractive index (a n/δT).
, the temperature gradient in the region through which the probe light passes (υT/δx
) will be proportional to the shade. A term proportional to the light absorption coefficient of the sample is included in (δThf)x ). Also (υn/D
T) can take either positive or negative values depending on the sample,
This shows that the deflection angle can be both positive and negative.

し発明が解決しようとする問題点] しかしながら、このPDS装置をそのまま液面上に展開
された薄膜についての測定に適用すると、試料たる薄j
模が極めて薄いものであるため、次のような不都合を生
ずる。ここで液面上に展開された薄膜とは、例えば中分
子膜のように、液面上に浮きも沈みもせずに広げられた
薄い膜をいう。
[Problems to be Solved by the Invention] However, if this PDS device is directly applied to the measurement of a thin film spread on the liquid surface, the sample thin film
Since the pattern is extremely thin, the following problems occur. Here, the thin film spread on the liquid surface refers to a thin film, such as a middle molecular film, that is spread on the liquid surface without floating or sinking.

液面上に展開された薄膜の場合、照射される励起光の薄
膜通過領域が短いため、励起光が液面に達する前の外環
境による影響1例えば空気中の粉塵やゆらぎのwe響を
受けやすい。また、励起光が薄膜到達後の不要な反射光
や透過光の影響もS/N比を低下させる原因となり、精
度及び感度のよい測定が困難となる。特に、液面上の気
相に特殊な気体を用いて液面上の薄膜と相互作用を利用
する系においては、励起光が通過する気体領域をできる
だけ短かくする必要があるが、実現が困難である。
In the case of a thin film spread on the liquid surface, the area through which the excitation light irradiates the thin film is short, so the excitation light is affected by the external environment before reaching the liquid surface.1For example, it is affected by the effects of dust and fluctuations in the air. Cheap. Further, the influence of unnecessary reflected light and transmitted light after the excitation light reaches the thin film also causes a decrease in the S/N ratio, making it difficult to perform measurements with good accuracy and sensitivity. In particular, in systems that use a special gas in the gas phase above the liquid surface and utilize interaction with a thin film on the liquid surface, it is necessary to make the gas region through which the excitation light passes as short as possible, but this is difficult to achieve. It is.

本発明は、このように、液面に展開された薄膜という極
めで薄く特異な環境下にある試料について、その光吸収
特性を精度及び感度よく測定できるようにすることをそ
の解決すべき問題点とするものである。
The present invention aims to solve the problem of making it possible to measure the light absorption characteristics of a thin film spread on a liquid surface, which is extremely thin and under a unique environment, with high precision and sensitivity. That is.

L問題点を解決するための手段] 本発明において上記の問題点を解決するために講じられ
た手段は、液面上に薄膜を展開させる液体を収容した液
槽と、液面下から液面りのVjIIUの測定部位へ当該
液面で全反射される入射角で照射される励起光を出射す
る励起光源と、液面下に位置し、上記液面で全反射され
た励起光を再び前記測定部位へ液面で全反射される角度
で入射させる光学系と、励起光を測定部位到達前に強度
変調する光強度変調器と、測定部位又はその近傍を通る
プローブ光を出射するグローブ光源と、この測定部位又
はその近傍を通ったプローブ光の偏向量を検出する検出
器とを有することを特徴とする薄膜の光物性測定装置と
するものである。
Means for Solving Problem L] The means taken to solve the above problems in the present invention include a liquid tank containing a liquid that spreads a thin film on the liquid surface, and a An excitation light source is located below the liquid surface and emits excitation light that is irradiated to the measurement site of the VjIIU at an incident angle that is totally reflected at the liquid surface. an optical system that makes the light enter the measurement site at an angle that causes total reflection on the liquid surface; a light intensity modulator that modulates the intensity of the excitation light before it reaches the measurement site; and a globe light source that emits the probe light that passes through the measurement site or its vicinity. , and a detector for detecting the amount of deflection of the probe light that has passed through the measurement site or its vicinity.

上記の光学系は、少なくとも2枚を1組とするミラーで
構成され、それらのミラーのいずれか1枚の所要部分に
励起光入射窓を配設したもの、もしくは、プリズムの少
なくとも2面をミラーとして構成され、それらのミラー
のいずれか1面の所要部分に励起光入射窓を配設したも
のなどが特に好適である。
The above optical system is composed of a set of at least two mirrors, and an excitation light entrance window is provided in a required part of one of the mirrors, or at least two surfaces of a prism are mirrored. Particularly suitable are mirrors configured as such, with an excitation light entrance window provided at a required portion of any one of the mirrors.

また、E記の光強度変調器は、例えば光を断続させる場
合はチョッパーが使用され、光の強弱を生じさせる場合
は可変フィルタ等が使用される。
In the light intensity modulator described in E, for example, a chopper is used to intermittent light, and a variable filter or the like is used to vary the intensity of light.

[作 用] 励起光が試料たる薄膜に吸収されると、励起光の照射時
と非照射時とでは測定部位及びその近傍の屈折率が変化
するので、これをプローブ光の偏向量として検出するこ
とによって光吸収特性を測定することができる。この原
理自体は従来のPO3法と同様である。
[Function] When the excitation light is absorbed by the thin film that is the sample, the refractive index of the measurement site and its vicinity changes between when the excitation light is irradiated and when it is not irradiated, so this is detected as the amount of deflection of the probe light. By this, the light absorption characteristics can be measured. This principle itself is similar to the conventional PO3 method.

ところで、本発明では、試料が液面上に展開された薄膜
であり、しかも励起光は、薄膜が展開している液面で全
反射されるよう液体側から照射されるものである。励起
光は液体内を通って薄膜に照射されるので、空気中を通
って照射されるときのように空気中の粉塵やゆらぎの影
響を受けることがない。薄膜へ照射された励起光は、液
面で全反射され、液面上の気相へと抜ける透過光は、全
反射時のエバネッセント波としての波長オーダー以下の
ごくわずかのものであるので、透過光が測定値に影響を
及ぼす心配もない、また、励起光は、液面で規則的に反
射されることになるため、不規則な反射光による悪!#
響も生じないものである。更に、励起光が液面及びミラ
ー面で多数回反射され、測定部位に励起光が複数回照射
されることになり、総合励起光強度及びプローブ光偏向
領域が増大されるため、プローブ光の偏向角が大きくな
って高感度な検出を行うことができる。
In the present invention, the sample is a thin film spread on a liquid surface, and the excitation light is irradiated from the liquid side so as to be totally reflected on the liquid surface on which the thin film is spread. Since the excitation light passes through the liquid and is irradiated onto the thin film, it is not affected by dust or fluctuations in the air, unlike when the excitation light is irradiated through the air. The excitation light irradiated to the thin film is totally reflected by the liquid surface, and the transmitted light that passes into the gas phase on the liquid surface is very small, on the order of the wavelength as an evanescent wave at the time of total reflection. There is no need to worry about the light affecting the measured values, and since the excitation light is regularly reflected on the liquid surface, there is no need to worry about irregular reflected light. #
It does not produce any sound. Furthermore, the excitation light is reflected many times on the liquid surface and mirror surface, and the measurement site is irradiated with the excitation light multiple times, increasing the total excitation light intensity and the probe light deflection area. The larger the angle, the more sensitive detection can be performed.

「実施例」 以下1本発明を、実施例とその図面を参照して詳廁に説
明する。
"Embodiments" The present invention will be described in detail below with reference to embodiments and drawings thereof.

第1図は1本発明の1実施例の模式図である。FIG. 1 is a schematic diagram of one embodiment of the present invention.

第1図において、lは液体2を収容した液槽で、その液
面3J:には試料たる薄膜4が展開されている。図示さ
れる薄膜4は、rIi分子膜を模式的に表わしたもので
ある。
In FIG. 1, 1 is a liquid tank containing a liquid 2, and a thin film 4, which is a sample, is developed on the liquid surface 3J:. The illustrated thin film 4 is a schematic representation of an rIi molecular film.

液槽1の側方にはプローブ光源5が設けられている。こ
のプローブ光源5からは、液面3直下で液面3と平行方
向にプローブ光6が照射されるものである。また、プロ
ーブ光源5と液槽lを挟んで相対向する位置には、送ら
れて来るプローブ光6の位置を検出する検出器7が設け
られている。
A probe light source 5 is provided on the side of the liquid tank 1. The probe light source 5 emits probe light 6 directly below the liquid surface 3 in a direction parallel to the liquid surface 3. Further, a detector 7 for detecting the position of the probe light 6 sent is provided at a position facing the probe light source 5 with the liquid tank 1 in between.

この検出器7の信号は、ドライバー8を介してロックイ
ンアンプ9へ送られるようになっている。
The signal from this detector 7 is sent to a lock-in amplifier 9 via a driver 8.

プローブ光源5のやや下方には励起光源1oが設けられ
ている。励起光源10は、薄膜4が展開されている液面
3で全反射される入射角で、液体?側から励起光11を
薄膜4に向けて照射するものである。液槽1に入る前の
励起光11の光路に沿った位置に、励起光11を断続光
として照射するための光強度変調器12が設けられてい
る。
An excitation light source 1o is provided slightly below the probe light source 5. The excitation light source 10 has an incident angle that is totally reflected by the liquid surface 3 on which the thin film 4 is developed. Excitation light 11 is irradiated toward the thin film 4 from the side. A light intensity modulator 12 is provided at a position along the optical path of the excitation light 11 before entering the liquid tank 1 for irradiating the excitation light 11 as intermittent light.

まず、励起光源10より出射された励起光11は、光強
度変調器12により断続光に変調されたのち、窓が開口
された第1のミラー13aの故意を透過し、液槽1の液
面3上に展開されている薄膜4の測定部位を液面3下よ
り照射する。このとき励起光11は入射角で液体2の臨
界角より大きくなるように入射され、液面3で全反射さ
れると、液体2内を通過して液411!!1外へ出て、
第2のミラー13bで再反射され、液面3と平行に進み
、前記第1のミラー13aのミラー面で再び反射されて
、薄膜4を照射する。前回と同様に液面3で全反射され
た励起光11は、今回は第2のミラー13bと平行で位
置が少しずれている第3のミラー13cで反射され、液
面3と平行に進んだのち、第1のミラー13aのミラー
面の別な部分で反射されて、薄膜4を照射する。このよ
うに、液面3→第2のミラー13b−+ilのミラー1
3a−+液面3→第3のミラー13c→第1のミラー1
3aの順に反射を繰り返すことによって、薄膜4の測定
部位に励起光11が複数回照射されることになる。断続
励起光11が全反射される各測定部位上の領域では、液
面3上の薄IIり4が光を吸収し、無放射輻射過程によ
り、断続的に熱を発生し、そのため、近傍の屈折率変化
が断続的に生じることになる。
First, the excitation light 11 emitted from the excitation light source 10 is modulated into intermittent light by the light intensity modulator 12, and then passes through the first mirror 13a with an open window, and is transmitted through the liquid level of the liquid tank 1. The measurement site of the thin film 4 spread on the liquid surface 3 is irradiated from below the liquid level 3. At this time, the excitation light 11 is incident at an angle of incidence greater than the critical angle of the liquid 2, and when it is totally reflected at the liquid surface 3, it passes through the liquid 2 and passes through the liquid 411! ! 1. Go outside.
The light is reflected again by the second mirror 13b, travels parallel to the liquid surface 3, is reflected again by the mirror surface of the first mirror 13a, and irradiates the thin film 4. The excitation light 11 that was totally reflected by the liquid surface 3 as before was reflected by the third mirror 13c, which is parallel to the second mirror 13b and whose position is slightly shifted, and travels parallel to the liquid surface 3. Thereafter, the light is reflected by another portion of the mirror surface of the first mirror 13a, and the thin film 4 is irradiated. In this way, the liquid level 3 → the mirror 1 of the second mirror 13b-+il
3a-+liquid level 3→third mirror 13c→first mirror 1
By repeating the reflection in the order of 3a, the measurement site of the thin film 4 is irradiated with the excitation light 11 multiple times. In the area on each measurement site where the intermittent excitation light 11 is totally reflected, the thin II layer 4 on the liquid surface 3 absorbs the light and intermittently generates heat due to a non-radiative radiation process, which causes the nearby Changes in refractive index occur intermittently.

光強度変調器12はロックインアンプ9に接続されてい
て、光強度変調器12から送られる励起光11の断続状
態を示す信号を参照信号として、検出器7からの信号を
同期検出できるようになっている。プローブ光源5、励
起光源lO5光強度変調器12及びロックインアンプ9
は、各々測定制御器14に接続されている。測定制御器
14は、プローブ光6及び励起光11の光路及び波長並
びに光強度変調器12による励起光11の断続間隔を制
御すると共に、ロックインアンプ9からの信号によって
光吸収特性を算出するものである。
The light intensity modulator 12 is connected to the lock-in amplifier 9, and the signal from the detector 7 can be synchronously detected using a signal indicating the intermittent state of the excitation light 11 sent from the light intensity modulator 12 as a reference signal. It has become. Probe light source 5, excitation light source 1O5 light intensity modulator 12, and lock-in amplifier 9
are each connected to the measurement controller 14. The measurement controller 14 controls the optical path and wavelength of the probe light 6 and the excitation light 11 and the intermittent interval of the excitation light 11 by the optical intensity modulator 12, and calculates the optical absorption characteristics based on the signal from the lock-in amplifier 9. It is.

尚、液槽1は、少なくともプローブ光6及び励起光11
の光路となる部分に透明な窓を設けておけば、ことさら
全体を透明とする必要はない。また、液体2は、励起光
11についてを吸収の小さいものであればプローブ光6
へ多少直接影響を与えるものであっても測定にさほど悪
影響はないが、透明であることが好ましい。
Note that the liquid tank 1 receives at least the probe light 6 and the excitation light 11.
If a transparent window is provided in the part that becomes the optical path, there is no need to make the entire part transparent. In addition, if the liquid 2 has a small absorption of the excitation light 11, the probe light 6
It is preferable that the material be transparent, although it will not have much of an adverse effect on the measurement even if it has a direct effect on the material.

一方、プローブ光源5から出射されるプローブ光6は、
液面3直下を液面3と平行に通るため、上記励起光11
の照射によって断続的に屈折率が変化する測定部位近傍
を通過することになる。この屈折率の断続的変化を生じ
る領域を、プローブ光源5から出射されたグローブ光6
が通過すると、変化した屈折率分布に応じて、点線で示
されるように光路が偏向することになる。
On the other hand, the probe light 6 emitted from the probe light source 5 is
The excitation light 11 passes directly below the liquid surface 3 in parallel to the liquid surface 3.
The beam passes near the measurement site where the refractive index changes intermittently due to the irradiation. The region where this intermittent change in refractive index occurs is detected by the globe light 6 emitted from the probe light source 5.
, the optical path will be deflected as shown by the dotted line in accordance with the changed refractive index distribution.

検出器7は、In続してプローブ光6を受け、プローブ
光6の受光位置をドライバー8を介してロックインアン
プ9へ送る。ロックインアンプ9は、この検出器7から
の信号を受けると同時に光強度変調器12からの信号を
受けており、両信号を同期させることによって、励起光
11照射時のプローブ光6の受光位置信号と、励起光1
1非照射時のブロービ光6の受光位置信号とをS/N比
艮〈区分けして測定制御器14へ送る。測定制御器14
は、この送られて来た信号に基づき、その時の励起光1
1の波長についてのプローブ光6の偏向量を求め、これ
に基づいて光吸収特性を算出する。また、励起光11の
波長を順次変えながら同様の測定を行えば、 fJ薄膜
の分光吸収特性を得ることができる。
The detector 7 continuously receives the probe light 6 and sends the receiving position of the probe light 6 to the lock-in amplifier 9 via the driver 8 . The lock-in amplifier 9 receives the signal from the detector 7 and the signal from the light intensity modulator 12 at the same time, and by synchronizing both signals, the lock-in amplifier 9 determines the receiving position of the probe light 6 when the excitation light 11 is irradiated. Signal and excitation light 1
1. The light reception position signal of the Bloby light 6 during non-irradiation is divided into S/N ratios and sent to the measurement controller 14. Measurement controller 14
is the excitation light 1 at that time based on this sent signal.
The amount of deflection of the probe light 6 for one wavelength is determined, and the light absorption characteristics are calculated based on this. Further, by performing similar measurements while sequentially changing the wavelength of the excitation light 11, the spectral absorption characteristics of the fJ thin film can be obtained.

この測定に際して、氾畷定部位は、測定制御器14で励
起光11の光路を調節することで自由に選択でき、また
液面3の位置に応じてやはり測定制御器14でグローブ
光6の光路を調節して正確を期すことができる。また、
プローブ光源5、励起光源10及び光強度変調器12に
必要な調節を全て測定制御器14で自動的に行うように
し、操作を簡略化することも可能である。
In this measurement, the flooded area can be freely selected by adjusting the optical path of the excitation light 11 with the measurement controller 14, and the optical path of the globe light 6 can also be selected with the measurement controller 14 depending on the position of the liquid level 3. can be adjusted for accuracy. Also,
It is also possible to automatically make all necessary adjustments to the probe light source 5, excitation light source 10, and light intensity modulator 12 by the measurement controller 14, thereby simplifying the operation.

励起光11の測定部位における光量分布、液体2の熱に
よる屈折率変化の特性、プローブ光6の入射ビーム位置
及びその時の偏向量から薄膜4によって吸収された光エ
ネルギーが求まる。従って、励起光11の薄膜4への照
射エネルギーをフォトセンサー等でモニターしておけば
1両者から薄1模4の絶対的な光吸収特性が得られる。
The light energy absorbed by the thin film 4 is determined from the light intensity distribution of the excitation light 11 at the measurement site, the characteristics of the refractive index change due to heat of the liquid 2, the incident beam position of the probe light 6, and the amount of deflection at that time. Therefore, by monitoring the irradiation energy of the excitation light 11 onto the thin film 4 using a photosensor or the like, the absolute light absorption characteristics of the thin film 4 can be obtained from both of them.

そして、励起光11の波長を変化させることにより、絶
対的分光吸収特性が得られる。また、励起光11の各波
長における相対強度を予め求め、波長に対応したプロー
ブ光6の偏向量を求めるだけでも、相対的な分光吸収特
性を得ることができる。光吸収特性の相対値、絶対値は
、測定の目的に応じ適宜選択すればよい。
Then, by changing the wavelength of the excitation light 11, absolute spectral absorption characteristics can be obtained. Further, the relative spectral absorption characteristics can be obtained by simply determining the relative intensity of the excitation light 11 at each wavelength in advance and determining the amount of deflection of the probe light 6 corresponding to the wavelength. The relative value and absolute value of the light absorption characteristic may be appropriately selected depending on the purpose of measurement.

第2図及び第3図は、本発明の基本原理の説明図である
。第2図において、液面3上に試料としての薄膜4が展
開されていて、励起光11は液面3下から液面で全反射
する角度で入射され、全反射されたのち、ミラー13b
で液面3と平行な方向へ反射され、再びミラー13aで
反射されて液面3上の薄膜4を照射する。このとき、第
3図に示されるように、液面3の全反射位置をN、ミラ
ー13bの反射位置をR1そのミラー面と液面との交叉
位置をB、ミラー13aの反射位置をL、そのミラー面
と液面との交叉位置をAとすると、励起光の入射角< 
LNAが0であれば、全反射角< RNBもθとなり、
ミラー13bの反射光11が液面N1と平行になるよう
にミラー13bの取付角を設定すると、反射位ii¥t
Rにおける法線M2と励起光比1とのなす角は0/2と
なり、ミラー13bと液面昼とのなす角< RBNは9
θ−θ/2となる。また、液面と平行な励起光11がL
点で再びN点の方向へ反射されるには、ミラー13aの
法線Ml と励起光11とのなす角がθ/2になるよう
に設定すればよく、その場合、ミラー13aと液面N1
とのなす角< LANは90−0/2となる。
FIGS. 2 and 3 are explanatory diagrams of the basic principle of the present invention. In FIG. 2, a thin film 4 as a sample is spread on a liquid surface 3, and the excitation light 11 is incident from below the liquid surface 3 at an angle such that it is totally reflected by the liquid surface.
The light is reflected in a direction parallel to the liquid surface 3, and is reflected again by the mirror 13a to illuminate the thin film 4 on the liquid surface 3. At this time, as shown in FIG. 3, the total reflection position of the liquid surface 3 is N, the reflection position of the mirror 13b is R1, the intersection position of the mirror surface and the liquid surface is B, the reflection position of the mirror 13a is L, If the intersection position of the mirror surface and the liquid surface is A, then the incident angle of the excitation light is <
If LNA is 0, the total reflection angle < RNB will also be θ,
If the mounting angle of the mirror 13b is set so that the reflected light 11 of the mirror 13b is parallel to the liquid surface N1, the reflection position ii\t
The angle between the normal M2 in R and the excitation light ratio 1 is 0/2, and the angle between the mirror 13b and the liquid surface is < RBN is 9
θ−θ/2. Also, the excitation light 11 parallel to the liquid surface is
In order for the excitation light 11 to be reflected again in the direction of the N point at the point, the angle between the normal Ml of the mirror 13a and the excitation light 11 should be set to θ/2.
The angle made with < LAN is 90-0/2.

但し、第3図では、ミラー13aにおいて、励起光の透
過位置と液面からの反射光の再反射位置りとが重なって
いて、透過と反射とをともに大きくすることは不可能で
あり、総合的な励起光強度を大きくすることはできない
。そこで、ミラー13bの取付角はそのままで、取付位
置を若干ずらせれば、液面と平行な励起光の高さが変わ
り、第1図に示された実施例のように、透過と反射とが
重ならなくなる。
However, in FIG. 3, in the mirror 13a, the transmission position of the excitation light and the re-reflection position of the reflected light from the liquid surface overlap, and it is impossible to increase both transmission and reflection. It is not possible to increase the excitation light intensity. Therefore, by slightly shifting the mounting position of the mirror 13b while keeping the mounting angle the same, the height of the excitation light parallel to the liquid surface changes, and as in the embodiment shown in FIG. They no longer overlap.

第4図は、本発明の別なl実施例を示す説明図で、励起
光11が液面上の薄膜4に照射される部分のみを示して
いる。励起光11は、液面3で全反射する角度でミラー
13aの開[」窓を透過し、液面3で全反射したのち、
ミラー13bで液面3と羽村かつ前記開口窓からずれた
位置でミラー13aに照射するように反射する。その励
起光は、ミラー13aで再び反射され、前回と同じ入射
角で液面3へ入射し、再びミラー13bで液面3と羽行
な方向へ反射され、今回は前記開口窓を透過する。この
透過光をミラー13dにより垂直に反射すると、透過し
て米た励起光IIは同じ光路を反対方向へ戻ることによ
り、計4回液面上の薄膜4を照射することができる。
FIG. 4 is an explanatory diagram showing another embodiment of the present invention, showing only the portion where the excitation light 11 is irradiated onto the thin film 4 on the liquid surface. The excitation light 11 passes through the open window of the mirror 13a at an angle at which it is totally reflected on the liquid surface 3, and after being totally reflected on the liquid surface 3,
The light is reflected by the mirror 13b so as to irradiate the mirror 13a at a position offset from the liquid surface 3 and the aperture window. The excitation light is reflected again by the mirror 13a, enters the liquid surface 3 at the same angle of incidence as before, is reflected again by the mirror 13b in a direction opposite to the liquid surface 3, and this time passes through the aperture window. When this transmitted light is vertically reflected by the mirror 13d, the transmitted excitation light II returns in the opposite direction along the same optical path, thereby making it possible to irradiate the thin film 4 on the liquid surface four times in total.

第5図および第6図は、本発明の更に別なl実施例の説
明図で、第5図は励起光11が液面3上の薄膜4に照射
される部分の構成を示し、vg6図は液面3で全反射さ
れた励起光11が繰り返し液面3上の薄膜4に照射され
る原理を示している。本実施例は、第2図および第3図
で示した第2のミラー13bの取付角を、第2図および
第3図の場合よりも微小角(法線方向でΔθ/2)ずら
せたもので、その分だけ第1のミラー13aへ反射光が
入射される位置もずれることになる。このような構成に
すると、第6図に示すように、最初の励起光照射位置N
lで液面3と励起光11どのなす角を0とすれば、2回
目の励起光照射位置N2での入射角は0−Δθ、3回目
では再び0となるので、繰り返し、液面上の薄M4を照
射することができる。
5 and 6 are explanatory diagrams of still another embodiment of the present invention. FIG. 5 shows the structure of the part where the excitation light 11 is irradiated onto the thin film 4 on the liquid surface 3, and FIG. shows the principle in which the excitation light 11 totally reflected on the liquid surface 3 is repeatedly irradiated onto the thin film 4 on the liquid surface 3. In this embodiment, the mounting angle of the second mirror 13b shown in FIGS. 2 and 3 is shifted by a small angle (Δθ/2 in the normal direction) from that shown in FIGS. 2 and 3. Therefore, the position at which the reflected light is incident on the first mirror 13a also shifts by that amount. With this configuration, as shown in FIG. 6, the first excitation light irradiation position N
If the angle between the liquid surface 3 and the excitation light 11 is set to 0 at l, the incident angle at the excitation light irradiation position N2 for the second time is 0 - Δθ, and for the third time it becomes 0 again. A thin M4 beam can be irradiated.

第7図および第8図は、本発明の更に別な1実施例の説
明図で、第7図は励起光11が液面3Lの薄@4に照射
される部分の構成を示し、第8図は液面3で全反射され
た励起光11が繰り返し液面3上の薄@4に照射される
原理を示している0本実施例は、第2図および第3図で
示したのと同一のミラー配置であって、励起光L’ 1
が前記薄膜4に入射する角度をθからΔθずらせて0−
Δ0にしている。このような構成にすると、第8図に示
すように、最初の励起光照射位置N1で液面3と励起光
11とのなす角が0−Δθであれば、2回目の励起光照
射位置N2での入射角はθ+Δ0.3回目では再び0−
Δ0となり、以後1回置にθ−Δθ、0+Δ0を繰り返
し、液面3上の薄膜4を照射することができる。
7 and 8 are explanatory diagrams of still another embodiment of the present invention, in which FIG. 7 shows the configuration of a portion where the excitation light 11 is irradiated onto a thin layer @4 of the liquid surface 3L, and FIG. The figure shows the principle in which the excitation light 11 totally reflected on the liquid surface 3 is repeatedly irradiated onto a thin layer 4 on the liquid surface 3. This embodiment is different from the one shown in FIGS. 2 and 3. Same mirror arrangement, excitation light L' 1
is incident on the thin film 4 by shifting Δθ from θ to 0−
It is set to Δ0. With this configuration, as shown in FIG. 8, if the angle between the liquid level 3 and the excitation light 11 at the first excitation light irradiation position N1 is 0 - Δθ, then the second excitation light irradiation position N2 The incident angle at is θ+Δ0.The third time it becomes 0- again
The value becomes Δ0, and thereafter the thin film 4 on the liquid surface 3 can be irradiated by repeating θ−Δθ, 0+Δ0 every other time.

第9図および第10図は1本発明の更に別なl実施例の
説明図で、第9図は励起光11が液面3上の薄膜4に照
射される部分の構成を縦断面で示し、第10図は励起光
11とプローブ光6との位置関係を横断面で示している
0本実施例は、第2図および第3図で示したのと同一の
ミラー配置であるが、励起光11の入射角を、第10図
に示されるように、水平方向に偏差を手える光学系を使
用している。
9 and 10 are explanatory diagrams of still another embodiment of the present invention, and FIG. 9 shows the structure of the part where the excitation light 11 is irradiated onto the thin film 4 on the liquid surface 3 in a longitudinal section. , FIG. 10 shows the positional relationship between the excitation light 11 and the probe light 6 in a cross section. This embodiment has the same mirror arrangement as shown in FIGS. 2 and 3, but the excitation light 11 and the probe light 6 are An optical system is used in which the incident angle of the light 11 can be varied in the horizontal direction, as shown in FIG.

そのため、第9I54の縦断面図では同一の照射位置で
同一の光路を辿るように見える励起光11は、実際の液
面3上では薄1模4の照射位置を少しずつ移動させなが
ら反射を繰り返すことになる。この移動照射位置を連ね
る仮線の直下を、第10図中鎖線で示すように、ブーロ
ープ光6を通過させることにより大なる偏向量を得るこ
とができる。
Therefore, in the vertical cross-sectional view of No. 9I54, the excitation light 11 appears to follow the same optical path at the same irradiation position, but on the actual liquid surface 3, the excitation light 11 is repeatedly reflected while gradually moving the irradiation position of the thin layer 14. It turns out. A large amount of deflection can be obtained by passing the Boulop light 6 directly under the temporary line connecting these moving irradiation positions, as shown by the chain line in FIG.

第11図および第12図は、本発明の更に別な1実施例
の説明図で、第11図は励起光11が液面3上の薄膜4
に照射される部分の構成を縦断面で示し、第12図は励
起光11とプローブ光6との位置関係を横断面で示して
いる。本実施例は、第9図および第10図で示した1対
のミラー13eおよび13fの一部分を、対向する側へ
屈曲又は湾曲させた1対のミラー13gおよび13hで
構成されている。そのため、液面3上の薄膜4に対する
励起光11の照射位置は、当初は第10図の場合と同様
に一方向へ僅かずつずれて行くが、前記の屈曲FB13
g’および13h′に達すると1反射の角度が変わり、
薄膜4の励起光照射位置は逆に移動して、再び最初の位
置へ戻って来る。その結果、励起光照射位置の領域をあ
まり広くない局所に限定することが可能となる。なお、
重犯の屈曲もしくは湾曲はミラー13gおよび13hの
人、射点の両サイドに設けることができ、更に局所化す
ることが可能である。
11 and 12 are explanatory diagrams of still another embodiment of the present invention, in which the excitation light 11 is applied to the thin film 4 on the liquid surface 3.
FIG. 12 shows the configuration of the portion irradiated with a vertical section, and FIG. 12 shows the positional relationship between the excitation light 11 and the probe light 6 in a cross section. This embodiment is composed of a pair of mirrors 13g and 13h, which are partially bent or curved toward opposite sides of the pair of mirrors 13e and 13f shown in FIGS. 9 and 10. Therefore, the irradiation position of the excitation light 11 on the thin film 4 on the liquid surface 3 initially shifts slightly in one direction as in the case of FIG.
When g' and 13h' are reached, the angle of one reflection changes,
The excitation light irradiation position of the thin film 4 moves in the opposite direction and returns to the initial position again. As a result, it becomes possible to limit the area of the excitation light irradiation position to a local area that is not very wide. In addition,
Serious bends or curvatures can be provided on both sides of the shooting point of the mirrors 13g and 13h, and can be further localized.

四13図および第14図は、本発明の更に別なl実施例
の説明図で、第13図は励起光11が液面31:、の薄
膜4に照射される部分の構成を縦断面で示し、第14図
は励起光11とプローブ光6との位置関係を横断面で示
している0本実施例は、第9図および第10図に示され
た構成における1対のミラー13eおよび13fの代り
に、プリズム16の2つの面leaおよび18bを置換
し、励起光11をこのプリズム16中を透過させるもの
である。
413 and 14 are explanatory diagrams of still another embodiment of the present invention, and FIG. 13 is a longitudinal section showing the structure of the part where the excitation light 11 is irradiated onto the thin film 4 at the liquid surface 31. 14 shows the positional relationship between the excitation light 11 and the probe light 6 in a cross section. This embodiment shows a pair of mirrors 13e and 13f in the configuration shown in FIGS. 9 and 10. Instead, two surfaces lea and 18b of the prism 16 are replaced, and the excitation light 11 is transmitted through the prism 16.

これは、ミラー面の代りにプリズムの側面を反 ”射面
に形成して置換し、光学系を一体化して調整を容易にす
るものであるが、プリズムをミラーの代りに使用する方
式が、本実施例だけでなく、既に説明した本発明の他の
各個に対しても応用できることは言うまでもない。
This method replaces the mirror surface by forming the side surface of the prism into a reflective surface, integrating the optical system and making adjustment easier. It goes without saying that the present invention can be applied not only to this embodiment but also to other parts of the present invention already described.

本発明による光物性の測定は、液槽を第16図および第
17図に示されるようなものとして、単分子累積膜の取
得時に利用すると有益である。
In the measurement of optical properties according to the present invention, it is advantageous to use a liquid bath as shown in FIGS. 16 and 17 when obtaining a monomolecular cumulative film.

発明者にちなんでラングミュア・プロジェット法と呼ば
れる単分子膜累積法(以下LB法という。
A monolayer accumulation method (hereinafter referred to as the LB method) is called the Langmuir-Prodgett method after the inventor.

新実験化学講座18巻488頁〜507頁丸善参照)に
おいては、液面3上に形成した単分子膜を基板20の表
面上に移し取り、1枚ずつ重ねて超薄膜を作るため、液
面3上の薄膜の特性が重要である。
In the New Experimental Chemistry Course Vol. 18, pp. 488-507 Maruzen), the monomolecular film formed on the liquid surface 3 is transferred onto the surface of the substrate 20 and layered one by one to form an ultra-thin film. The characteristics of the thin film above 3 are important.

LB法により基板20上に移し取った累積膜の構造や分
子配向が液面3上の展開単分子膜の状態を基にしている
ことは当然であるが、その状態がそのまま基板20上に
移されているかどうかには問題がある。本発明は、液面
3上に展開された単分子膜がそのままの状態で基板20
上に移し取れるかどうかを分析するのに利用できるもの
である。以下に、車分子累vi膜を得るための液槽l及
びその手順を説明する。
It goes without saying that the structure and molecular orientation of the cumulative film transferred onto the substrate 20 by the LB method are based on the state of the developed monomolecular film on the liquid surface 3, but it is also true that the structure and molecular orientation of the cumulative film transferred onto the substrate 20 by the LB method are based on the state of the developed monomolecular film on the liquid surface 3. There is a question as to whether or not it has been done. In the present invention, the monomolecular film developed on the liquid surface 3 is transferred to the substrate 20 while it is intact.
This can be used to analyze whether it can be transferred to the top. Below, the liquid tank 1 and its procedure for obtaining the vehicle molecule cumulative film will be explained.

i18図及び第17図に示されるように、液体2が収容
された浅くて広い角型の液槽lの内側に、例えばポリプ
ロピレン製等の内枠21が水平に釣っており、水面3,
3′を仕切っている。液体2としては、通常純水が用い
られる。内枠21の内側には1例えばやはりポリプロピ
レン製等の成膜枠22が浮かべられている。成膜枠22
は、幅が内枠21の内幅より僅かに短かい直方体で、図
中左右方向に二次元ピストン運動可能なものとなってい
る。成膜枠22には、成膜枠22を図中右方に引っ張る
ための重錘23が滑車24を介して結び付けられている
As shown in Figure i18 and Figure 17, an inner frame 21 made of, for example, polypropylene is suspended horizontally inside a shallow and wide rectangular liquid tank l containing liquid 2, and the water surface 3,
It separates 3'. As the liquid 2, pure water is usually used. A film forming frame 22 made of, for example, polypropylene is floated inside the inner frame 21 . Film forming frame 22
is a rectangular parallelepiped whose width is slightly shorter than the inner width of the inner frame 21, and is capable of two-dimensional piston movement in the left-right direction in the figure. A weight 23 for pulling the film forming frame 22 to the right in the figure is tied to the film forming frame 22 via a pulley 24.

また、成膜枠22上に固定された磁石25と、成膜枠2
2の上方で図中左右に移動可能で磁石25に接近すると
互に反発し合う対磁石26とが設けられていて、これに
よって成膜枠22は図中左右への移動並びに停止が可能
なものとなっている。このような重錘23や一組の磁石
25.28の代りに、回転モーターやプーリーを用いて
直接成膜枠22を移動させるものもある。
In addition, a magnet 25 fixed on the film forming frame 22 and a magnet 25 fixed on the film forming frame 22
A pair of magnets 26 is provided above 2, which can be moved left and right in the figure and repel each other when approaching the magnet 25, so that the film forming frame 22 can be moved left and right in the figure and can be stopped. It becomes. Instead of such a weight 23 or a set of magnets 25, 28, there is also a system in which a rotary motor or a pulley is used to directly move the film forming frame 22.

内枠21内の両側には、吸引バイブ27を介して吸引ポ
ンプ(図示されていない)に接続された吸引ノズル28
が並べられている。この吸引ノズル28は、単分子膜や
単分子累v1@内に不純物が混入してしまうのを防止す
るために、液面3.3′上の不要になった前工程の単分
子膜等を迅速に除去するのに用いられるものである。尚
、20は基板ホルダ29に取付けられて垂直に旧下され
る基板である。
Suction nozzles 28 connected to a suction pump (not shown) via a suction vibrator 27 are provided on both sides of the inner frame 21.
are lined up. This suction nozzle 28 removes unnecessary monomolecular films, etc. from the previous process on the liquid level 3.3' in order to prevent impurities from being mixed into the monomolecular film or monomolecular layer v1@. It is used for quick removal. Note that 20 is a board that is attached to a board holder 29 and is vertically lowered.

まず、成膜枠22を移動させて、液面3.3′上の不要
となった単分子膜等を掃き寄せながら吸引ノズル28か
らすすり出し、液面3.3′を浄化する。こうして清浄
化された液面3,3′の左端に成膜枠22を寄せて、例
えば、z 5 X 10−’5ofL/ fLの濃度で
ベンゼン、クロロホルム等の揮発性溶媒に溶かした膜構
成物質の溶液を、スポイト等で数滴液面3上にたらす、
この溶液が液面31:に広がり、溶媒が揮発すると、単
分子膜が液面3上に残されることになる。
First, the film forming frame 22 is moved to sweep up unnecessary monomolecular films and the like on the liquid surface 3.3' while sucking them out from the suction nozzle 28 to purify the liquid surface 3.3'. The film forming frame 22 is brought to the left end of the liquid surfaces 3 and 3' thus cleaned, and the film forming material dissolved in a volatile solvent such as benzene or chloroform at a concentration of, for example, z 5 x 10-'5 of L/fL is deposited. Drop a few drops of this solution onto the liquid surface 3 using a dropper etc.
When this solution spreads on the liquid surface 31 and the solvent evaporates, a monomolecular film is left on the liquid surface 3.

上記単分子膜は、液面3上で二次元系の挙動を示す0分
子の面密度が低いときには二次元気体の気体膜と呼ばれ
、一分子当りの占有面積と表面圧との間に二次元理想気
体の状態方程式が成立する。
The above-mentioned monomolecular film is called a gas film of a secondary gas when the areal density of molecules exhibiting two-dimensional system behavior on the liquid surface 3 is low, and there is a difference between the occupied area per molecule and the surface pressure. The equation of state for a dimensional ideal gas holds.

次いで、この気体膜の状態から、徐々に成膜枠22を右
方に動かし、単分子膜が展開している液面3の領域を次
第に縮めて面密度を増してやると、分子間相互作用が強
まり、二次元液体の液体膜を経て二次元固体の固体膜へ
と変わる。この固体膜となると1分子の配列配向はきい
に揃い、高度の秩序性及び均一な超薄膜性を持つに至る
。そして、このときに基板20の表面に当該固体膜とな
った単分子膜を付着させて移し取ることが可能となる。
Next, from this state of gas film, the film forming frame 22 is gradually moved to the right to gradually reduce the area of the liquid surface 3 where the monomolecular film is developed and increase the areal density, thereby increasing the intermolecular interaction. It becomes stronger and changes from a liquid film of a two-dimensional liquid to a solid film of a two-dimensional solid. In this solid film, the arrangement and orientation of each molecule is perfectly aligned, resulting in a highly ordered and uniform ultra-thin film. At this time, the monomolecular film that has become a solid film can be attached to the surface of the substrate 20 and transferred.

また、同一の基板に複数回単分子膜を重ねて移し取るこ
とによって、単分子膜aPt1を得ることができる。尚
、基板20としては、例えばガラス、合成樹脂、セラミ
ック、金属等が使用されている。
Further, the monomolecular film aPt1 can be obtained by stacking and transferring the monomolecular film multiple times onto the same substrate. Note that, as the substrate 20, for example, glass, synthetic resin, ceramic, metal, etc. are used.

単分子膜を液面3上から基板20の表面に移し取る方法
は大別して2種類ある。−は垂直浸漬法で他は水平付着
法である。垂直浸漬法とは、液面3上の単分子1模に′
A植操作に好適な一定の表面圧をかけながら、膜を横切
る方向、即ち、垂直方向に基板20をE下させることに
より単分子膜を移し取る方法である。水平付着法とは、
基板20を水平に保ちながら」−から液面3にできるだ
け近づけ、わずかに傾けて一端から単分子膜に触れて付
着する方法である。
There are roughly two types of methods for transferring the monomolecular film from above the liquid level 3 to the surface of the substrate 20. - is the vertical immersion method, and the others are the horizontal attachment method. The vertical immersion method means that a model of a single molecule on the liquid level 3 is
A is a method of transferring a monomolecular film by lowering the substrate 20 in a direction across the film, that is, in a vertical direction, while applying a constant surface pressure suitable for the transplantation operation. What is the horizontal attachment method?
This method involves holding the substrate 20 horizontally, moving it as close to the liquid surface 3 as possible, tilting it slightly, and touching the monomolecular film from one end to attach it.

1記基板20へ移し取るのに好適な単分子膜の状態下に
おいて当該移し取り操作を行うべく、単分子膜の表面圧
を計測することが行われている。一般に、移し取るのに
好適な単分子膜の表面圧は15〜30db 子の配列配向が乱れたり膜の剥れを生じやすくなる。も
っとも、特別の場合、例えば、膜構成物質の化学構造、
温度条件等によっては、好適な表面圧の値が上記範囲か
らはみ出ることもあるので、上記範囲は一応の目安であ
る。
The surface pressure of the monomolecular film is measured in order to perform the transfer operation under conditions of the monomolecular film suitable for transferring to the substrate 20 described above. In general, the surface pressure of a monomolecular film suitable for transfer is 15 to 30 db, which tends to disturb the arrangement and orientation of the molecules and cause the film to peel off. However, in special cases, for example, the chemical structure of membrane constituents,
Depending on the temperature conditions, etc., the suitable value of the surface pressure may exceed the above range, so the above range is only a rough guide.

上記単分子膜の表面圧は1表面圧測定器(図示されてい
ない)によって目動的かつIn続的に計測されるもので
ある。表面圧の測定器としては、単分子膜に覆われてい
ない液面3′と、中分子膜に覆われた液面3との表面張
力の差から間接的に求める方法を応用したものや、単分
子膜に覆われていない液面3′と、単分子膜に覆われた
液面3とを区切って浮ぶことになる成膜枠22に加わる
二次元的圧力を直接測定するもの等があり、各々特色が
ある。また、通常、表面圧と共に単分子膜の一分子当り
の占有面積及びその変化量は、成膜枠22の左右の動き
から求められる。
The surface pressure of the monomolecular film is measured manually and continuously using a surface pressure measuring device (not shown). Surface pressure measuring instruments include those that apply a method of indirectly determining the surface tension from the difference in surface tension between the liquid surface 3' that is not covered with a monomolecular film and the liquid surface 3 that is covered with a medium molecular film; There are methods that directly measure the two-dimensional pressure applied to the floating film forming frame 22, which separates the liquid surface 3' that is not covered with a monomolecular film from the liquid surface 3 that is covered with a monomolecular film. , each with its own characteristics. Further, the surface pressure, the area occupied per molecule of the monomolecular film, and the amount of change thereof are usually determined from the left and right movement of the film forming frame 22.

前述した成膜枠22の動きは、上記測定器によって計測
される単分子膜の表面圧に基づいて制御されるものであ
る。即ち、移し取り操作に好適な範囲内で選ばれた一定
の表面圧を単分子膜が常に維持するよう、対磁石2Bを
左右に移動させる駆動装置(図示されていない)が表面
圧測定器により計測された単分子膜の表面圧に基づいて
制御される。この成膜枠22の移動制御は、膜構成物質
の溶液滴下後、単分子膜の移し取り操作開始迄だけでな
く、移し取り操作中も継続して成されるものである0例
えば、移し取り操作において、単分子膜が基板20に移
し取られて行くに従って、液面3Lの単分子膜分子の面
密度は低下し、表面圧も低下することになる。従って、
成膜枠22を移動させて単分子膜の展開面精を縮小し、
その表面圧低下分を補正して一定表面圧を維持すること
が必要となる。
The movement of the film forming frame 22 described above is controlled based on the surface pressure of the monomolecular film measured by the measuring device. That is, a driving device (not shown) for moving the counter magnet 2B from side to side is controlled by a surface pressure measuring device so that the monomolecular film always maintains a constant surface pressure selected within a range suitable for the transfer operation. It is controlled based on the measured surface pressure of the monolayer. This movement control of the film forming frame 22 is performed not only after dropping the solution of the film constituent material until the start of the monomolecular film transfer operation, but also continuously during the transfer operation. In the operation, as the monomolecular film is transferred to the substrate 20, the surface density of the monomolecular film molecules on the liquid surface 3L decreases, and the surface pressure also decreases. Therefore,
Move the film forming frame 22 to reduce the surface area of the monomolecular film,
It is necessary to maintain a constant surface pressure by correcting the decrease in surface pressure.

上述のように、単分子累積膜を得るには種々の・微妙な
aiI整が要求されるものである。しかし、これまでど
のような条件が最適条件となるかは種々の実験によらな
ければならず、また液面3上の単分子膜が累積に適した
状態となっているか否かは、表面圧等で間接的に確認す
ることしかできず、正確さに欠けているのである。とこ
ろで1本発明を前記表面圧測定器の代りに利用すれば、
液′面3上の単分子膜の特性をその場で検知でき、その
都度最適条件下で累積させて行くことが可能となるもの
である。
As mentioned above, various delicate aiI adjustments are required to obtain a monomolecular cumulative film. However, what conditions are optimal has to be determined through various experiments, and whether the monomolecular film on the liquid level 3 is in a state suitable for accumulation depends on the surface pressure. It can only be confirmed indirectly through methods such as methods, and it lacks accuracy. By the way, if the present invention is used in place of the surface pressure measuring device,
It is possible to detect the characteristics of the monomolecular film on the liquid surface 3 on the spot, and to accumulate it under optimal conditions each time.

[発明の効果] 本発明によれば、液面上に展開されている薄膜の光吸収
特性の測定に当り1反射光及び透過光の影響並びに励起
ビームを空気中に通すことによる悪影響を排除でき、高
感度、高精度の測定が可能となるものである。
[Effects of the Invention] According to the present invention, when measuring the light absorption characteristics of a thin film spread on a liquid surface, it is possible to eliminate the influence of reflected light and transmitted light as well as the adverse effects of passing an excitation beam through the air. , it is possible to perform measurements with high sensitivity and high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の説明図、第2図及び第3図
は本発明の基本原理の説明図、第4図ないし第14図は
他の各実施例の説明図、第15図は従来例の説明図、第
16図及び第17図は単分子累績膜を得る液槽及び手順
の説明図である。 1:液槽、2:液体、3.3’:液面、4 : fiI
膜、5ニブローブ光源、6:プローブ光、7:検出器、 8ニドライバー、9:ロックインアンプ、lO:励起光
源、11:励起光、 12:光強度変調器、13:ミラー、 14:測定制御器°、16:プリズム、20:基板、2
1:内枠、22:成膜枠、23:重錘、24:滑車、2
5:磁石、28二対磁石、27:吸収パイプ、2日:吸
引ノズル。 第2図 基本構成図 第3図 第4圓 応用イ列の構成図 第5図 第6図 第7図 応用例の構成図 第8図 応用例の原理図 第9図 第10図 応用例の平面図 第11図 応用イ列の構成図 第12図 応用例の平面図 第13図 応用例の構成図 第14図 応用例の平面図 第1b図 従来イ外構成図 第16図 第17図 単分各累積膜の説明図
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams of the basic principle of the present invention, FIGS. 4 to 14 are explanatory diagrams of other embodiments, and FIG. The figure is an explanatory diagram of a conventional example, and FIGS. 16 and 17 are explanatory diagrams of a liquid tank and procedure for obtaining a monomolecular stacked film. 1: Liquid tank, 2: Liquid, 3.3': Liquid level, 4: fiI
Membrane, 5 nib lobe light source, 6: probe light, 7: detector, 8 nib driver, 9: lock-in amplifier, lO: excitation light source, 11: excitation light, 12: light intensity modulator, 13: mirror, 14: measurement Controller °, 16: Prism, 20: Substrate, 2
1: Inner frame, 22: Film forming frame, 23: Weight, 24: Pulley, 2
5: Magnet, 28 pairs of magnets, 27: Absorption pipe, 2nd: Suction nozzle. Figure 2 Basic configuration diagram Figure 3 Figure 4 Configuration diagram of applied array Figure 5 Figure 6 Figure 7 Configuration diagram of applied example Figure 8 Principle diagram of applied example Figure 9 Figure 10 Plane of applied example Figure 11: Configuration diagram of the applied example A. Figure 12: Plan view of the applied example. Figure 13: Configuration diagram of the applied example. Figure 14. Plan view of the applied example. Figure 1b. Explanatory diagram of each cumulative film

Claims (1)

【特許請求の範囲】[Claims] 1)液面上に薄膜を展開させる液体を収容した液槽と、
液面下から液面上の薄膜の測定部位へ当該液面で全反射
される入射角で照射される励起光を出射する励起光源と
、液面下に位置し、上記液面で全反射された励起光を再
び前記測定部位へ液面で全反射される角度で入射させる
光学系と、励起光を測定部位到達前に強度変調する光強
度変調器と、測定部位又はその近傍を通るプローブ光を
出射するプローブ光源と、この測定部位又はその近傍を
通ったプローブ光の偏向量を検出する検出器とを有する
ことを特徴とする薄膜の光物性測定装置。
1) A liquid tank containing a liquid that spreads a thin film on the liquid surface;
An excitation light source that emits excitation light that is irradiated from below the liquid surface to the measurement site of the thin film on the liquid surface at an incident angle that is totally reflected by the liquid surface; an optical system that makes the excitation light enter the measurement site again at an angle at which it is totally reflected by the liquid surface; a light intensity modulator that modulates the intensity of the excitation light before it reaches the measurement site; and a probe light that passes through the measurement site or its vicinity. 1. An apparatus for measuring optical physical properties of a thin film, comprising: a probe light source that emits light; and a detector that detects the amount of deflection of the probe light that has passed through the measurement site or its vicinity.
JP17940085A 1985-08-16 1985-08-16 Apparatus for measuring photo-physical properties of membrane Pending JPS6239731A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17940085A JPS6239731A (en) 1985-08-16 1985-08-16 Apparatus for measuring photo-physical properties of membrane
US06/897,055 US4790664A (en) 1985-08-16 1986-08-15 Device and method for measuring optical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17940085A JPS6239731A (en) 1985-08-16 1985-08-16 Apparatus for measuring photo-physical properties of membrane

Publications (1)

Publication Number Publication Date
JPS6239731A true JPS6239731A (en) 1987-02-20

Family

ID=16065204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17940085A Pending JPS6239731A (en) 1985-08-16 1985-08-16 Apparatus for measuring photo-physical properties of membrane

Country Status (1)

Country Link
JP (1) JPS6239731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410819A (en) * 2011-08-08 2012-04-11 苏州大学 A method for measuring three-dimensional surface shape of film-based mirror
JP6786027B1 (en) * 2020-03-04 2020-11-18 三菱電機株式会社 Biological composition measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410819A (en) * 2011-08-08 2012-04-11 苏州大学 A method for measuring three-dimensional surface shape of film-based mirror
JP6786027B1 (en) * 2020-03-04 2020-11-18 三菱電機株式会社 Biological composition measuring device
WO2021176583A1 (en) * 2020-03-04 2021-09-10 三菱電機株式会社 Biological component measurement device

Similar Documents

Publication Publication Date Title
US20030138208A1 (en) Grating optical waveguide structure for multi-analyte determinations and the use thereof
EP1691189A2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell.
JPH07260808A (en) Scanning near field interatomic force microscope
KR960705246A (en) Near-field optical microscope and its measurement method (NEAR-FIELD OPTICAL MICROSCOPE)
US4790664A (en) Device and method for measuring optical properties
CA2015920A1 (en) Examination of the physical properties of thin films
US4830502A (en) Apparatus and method for measuring light absorption characteristic of a thin film, and equipment provided with said apparatus for forming a monomolecular built-up film
JPS6239731A (en) Apparatus for measuring photo-physical properties of membrane
CN107356560B (en) Total reflection type oblique incident light reflection difference scanning imaging device and its use method
JPS6363945A (en) Stabilization of optical property measurement
CN109884823A (en) The manufacturing method of polarized light illumination device and the substrate with light-sensitive surface
JPS61122547A (en) Measuring method of light absorption characteristic of thin film
JPS61122548A (en) Measuring instrument for light absorption characteristic of thin film
CN214472763U (en) An angle-modulated SPR sensor and SPR detection equipment based on scanning galvanometer
JPH0460698B2 (en)
JPH0422457B2 (en)
JPS61122549A (en) Instrument for measuring light absorption characteristic of thin film
JPS629233A (en) Forming device for thin film
JPS61122551A (en) Instrument for measuring light absorption characteristic of thin film
JPS61122546A (en) Measuring method of light absorption characteristic of thin film
JPS61122550A (en) Instrument for measuring light absorption characteristic of thin film
US5149374A (en) Device for forming LB film
Triebel et al. Application of the laser-induced deflection (LID) technique for low absorption measurements in bulk materials and coatings
Fedortsov et al. A fast operating laser device for measuring the thicknesses of transparent solid and liquid films
JPS62140050A (en) Apparatus for measuring absorption characteristics of membrane