[go: up one dir, main page]

JPH0460698B2 - - Google Patents

Info

Publication number
JPH0460698B2
JPH0460698B2 JP24319084A JP24319084A JPH0460698B2 JP H0460698 B2 JPH0460698 B2 JP H0460698B2 JP 24319084 A JP24319084 A JP 24319084A JP 24319084 A JP24319084 A JP 24319084A JP H0460698 B2 JPH0460698 B2 JP H0460698B2
Authority
JP
Japan
Prior art keywords
light
monomolecular film
excitation light
liquid surface
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24319084A
Other languages
Japanese (ja)
Other versions
JPS61125434A (en
Inventor
Kenji Saito
Yukio Nishimura
Yoshinori Tomita
Harunori Kawada
Takeshi Eguchi
Takashi Nakagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24319084A priority Critical patent/JPS61125434A/en
Priority to US06/799,497 priority patent/US4830502A/en
Publication of JPS61125434A publication Critical patent/JPS61125434A/en
Publication of JPH0460698B2 publication Critical patent/JPH0460698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に液面上に展開された単分子膜の
特性を光学的に測定しながらその累積操作を行う
ことのできる単分子累積膜形成装置に関するもの
で、更に詳しくは、単分子膜の種々の特性分析の
基礎となる光吸収特性の測定装置を備えた単分子
累積膜形成装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention particularly relates to a monomolecular cumulative film that can perform cumulative operations while optically measuring the properties of a monomolecular film spread on a liquid surface. The present invention relates to a forming apparatus, and more specifically, to a monomolecular cumulative film forming apparatus equipped with a measuring device for light absorption characteristics, which is the basis for various characteristic analyzes of monomolecular films.

[従来の技術] 従来、ある試料の光吸収特性を測定する装置と
しては、透過率又は反射率から光吸収特性を求め
る装置がある。しかし、試料に光が照射された場
合、透過光、反射光の他に散乱光があり、更に高
精度を期すためには光の吸収成分を直接測定する
ことが光吸収特性評価上重要となる。
[Prior Art] Conventionally, as a device for measuring the light absorption characteristics of a certain sample, there is a device that determines the light absorption characteristics from transmittance or reflectance. However, when a sample is irradiated with light, there is scattered light in addition to transmitted light and reflected light, and in order to achieve even higher accuracy, it is important to directly measure the absorption component of light in evaluating light absorption characteristics. .

光の吸収成分を直接測定する装置としては、断
続的に光を照射すると、試料に吸収された光エネ
ルギーが無輻射緩和過程により、断続的に熱に変
換されることを利用した測定装置である光音響分
光装置(Photoacoustic Spectroscopy:PAS)
や光熱輻射分光装置(Photothermal
Radiometry:PTR)がある。
A device that directly measures the absorption component of light is a measurement device that utilizes the fact that when irradiated with light intermittently, the light energy absorbed by the sample is intermittently converted into heat through a non-radiative relaxation process. Photoacoustic Spectroscopy (PAS)
and photothermal radiation spectrometer
Radiometry: PTR).

PAS装置は、検出器の種類によりマイクロホ
ン方式と圧電素子方式に分けられるが、マイクロ
ホン方式では試料を密閉した試料室にいれる必要
があり、圧電素子方式では検出器と試料の配置が
問題となり、いずれも液面上に展開された単分子
膜の測定には不向きである。また、PTR装置は、
赤外線検出器を用いていることから、水蒸気等の
大気変動の影響を受けやすいという欠点がある。
PAS devices can be divided into microphone type and piezoelectric element type depending on the type of detector, but with the microphone type it is necessary to place the sample in a sealed sample chamber, and with the piezoelectric element type, the placement of the detector and sample becomes a problem. It is also unsuitable for measuring monolayers spread on the liquid surface. In addition, the PTR device
Since it uses an infrared detector, it has the disadvantage of being susceptible to atmospheric changes such as water vapor.

一方、やはり光の吸収成分を直接測定する装置
として、光熱偏向分光装置(Photothermal
Deflection Spectroscopy:PDS)と言われる装
置がある。このPDS装置は、試料の光吸収によ
る発熱と共に試料内及び試料近傍に温度分布が生
じて屈折率が変化し、これによつてそこに入射す
る光が偏向することを利用したものである。即
ち、試料の測定部位に、光吸収されたときに発熱
による温度分布を生じさせて屈折率を変化させる
励起光と、これによる偏向量を測定するためのプ
ローブ光とを照射し、励起光の波長とプローブ光
の偏向量とから試料の光吸収特性を測定するもの
である。この装置は、試料と検出系が独立に設定
でき、現場での計測や遠隔計測に適しており、本
発明の単分子累積膜形成装置に設けられる光吸収
特性測定装置の基本原理もこのPDS装置と同様
である。
On the other hand, a photothermal deflection spectrometer (photothermal deflection spectrometer) is a device that directly measures the absorption component of light.
There is a device called Deflection Spectroscopy (PDS). This PDS device utilizes the fact that heat generated by the sample's absorption of light creates a temperature distribution within and near the sample, which changes the refractive index, thereby deflecting the light incident there. That is, the measurement site of the sample is irradiated with excitation light that generates a temperature distribution due to heat generation when the light is absorbed and changes the refractive index, and a probe light that measures the amount of deflection caused by the excitation light. The light absorption characteristics of the sample are measured from the wavelength and the amount of deflection of the probe light. This device allows the sample and detection system to be set independently, making it suitable for on-site measurement and remote measurement. It is similar to

上記PDS装置は、励起光とプローブ光の配置
によつて、横方向(transverse)型と縦方向
(collinear)型の二通りがあり、いずれも上述の
ように試料の励起光吸収量に応じたプローブ光の
偏向量を測定するもので、検出器としては位置敏
感検出器(PSD)を用いることが多い。
There are two types of PDS devices, transverse type and collinear type, depending on the arrangement of excitation light and probe light. It measures the amount of deflection of the probe light, and a position sensitive detector (PSD) is often used as the detector.

第10図aは縦方向型の例で、励起光源10よ
り出た励起光11は、チヨツパー12で断続光と
なり、レンズ34で集束されて試料4′に照射さ
れる。プローブ光源5より出たプローブ光6は、
レンズ35及びミラー等の光路調整器17で励起
光11が照射されている試料4′の領域を通過し
て検出器7へと至り、点線で示されるように偏向
したときの偏向量が測定される。第10図bは横
方向型の例で、プローブ光5が試料4′の表面に
平行に照射される点が縦方向型と相違するだけで
他は同様である。
FIG. 10a shows an example of a vertical type, in which excitation light 11 emitted from an excitation light source 10 is turned into intermittent light by a chopper 12, focused by a lens 34, and irradiated onto a sample 4'. The probe light 6 emitted from the probe light source 5 is
The excitation light 11 passes through the area of the sample 4' irradiated by the lens 35 and the optical path adjuster 17 such as a mirror, reaches the detector 7, and the amount of deflection is measured as shown by the dotted line. Ru. FIG. 10b shows an example of the horizontal type, which is the same as the vertical type except that the probe light 5 is irradiated parallel to the surface of the sample 4'.

このPDS装置におけるの理論的取扱いは、試
料内の熱伝導方程式を解けばよく、偏向角φとし
て測定される偏向量は、励起光強度、屈折率の温
度係数(∂n/∂T)、プローブ光の通過する領域
での温度匂配(∂T/∂x)等に比例することにな
る。試料の光吸収係数に比例する項は(∂T/
∂x)に含まれる。また(∂n/∂T)は、試料によ
つては正負いずれかの値をとり得、このことは偏
向角も正負両方の場合があることを示している。
Theoretical handling in this PDS device is to solve the heat conduction equation within the sample, and the amount of deflection measured as the deflection angle φ is determined by the excitation light intensity, temperature coefficient of refractive index (∂n/∂T), probe It is proportional to the temperature gradient (∂T/∂x) in the area through which the light passes. The term proportional to the light absorption coefficient of the sample is (∂T/
included in ∂x). Furthermore, (∂n/∂T) can take either a positive or negative value depending on the sample, which indicates that the deflection angle can also be both positive and negative.

しかしながら、このPDS装置をそのまま液面
上に展開された単分子膜についての測定に適用す
ると、試料たる単分子膜が極めて薄いものである
ため、次のような不都合を生ずる。
However, if this PDS device is applied as it is to the measurement of a monomolecular film spread on a liquid surface, the following problems will occur because the monomolecular film that is the sample is extremely thin.

液面上に展開された単分子膜の場合、照射され
る励起光の通過領域が短いため、励起光が液面に
達する前の外環境による影響、例えば空気中の粉
塵やゆらぎの影響を受けやすい。また、励起光が
単分子膜到達後の不要な反射光や透過光の影響も
S/N比を低下させる原因となり、精度及び感度
のよい測定が困難となる。特に、液面上の気相に
特殊な気体を用いて液面上の単分子膜と相互作用
を利用する系においては、励起光が通過する気体
領域をできるだけ短かくする必要があるが、実現
が困難である。
In the case of a monomolecular film spread on the liquid surface, the passage area of the irradiated excitation light is short, so the excitation light is affected by the external environment before reaching the liquid surface, such as dust in the air and fluctuations. Cheap. Further, the influence of unnecessary reflected light and transmitted light after the excitation light reaches the monomolecular film also causes a decrease in the S/N ratio, making it difficult to perform measurements with good accuracy and sensitivity. In particular, in systems that use a special gas in the gas phase on the liquid surface and utilize interaction with a monomolecular film on the liquid surface, it is necessary to make the gas region through which the excitation light passes as short as possible. is difficult.

一方、発明者にちなんでラングミユア・ブロジ
エツト法と呼ばれる単分子膜累積法(以下LB法
という。新実験化学講座18巻498頁〜507頁丸善参
照)においては、液面上に形成した単分子膜を基
板の表面上に移し取り、1枚ずつ重ねて超薄膜を
作るため、液面上の単分子膜の特性が重要であ
る。LB法により基板上に移し取つた累積膜の構
造や分子配向が液面上の展開単分子膜の状態を基
にしていることは当然であるが、その状態がその
まま基板上に移されているかどうかには問題があ
る。
On the other hand, in the monomolecular film accumulation method (hereinafter referred to as the LB method; see Maruzen, New Experimental Chemistry Course, Vol. 18, pp. 498-507), which is called the Langmiur-Blodget method after the inventor, a monomolecular film is formed on the liquid surface. The characteristics of the monomolecular film on the liquid surface are important because it is transferred onto the surface of a substrate and layered one by one to form an ultra-thin film. It is natural that the structure and molecular orientation of the cumulative film transferred onto the substrate by the LB method is based on the state of the developed monolayer on the liquid surface, but is it true that the structure and molecular orientation of the film are transferred onto the substrate as is? There is a problem with that.

従来、LB法を実施するための単分子累積膜形
成装置においては、成膜枠を移動させて単分子膜
の展開領域を縮め、面密度を増してやるに従つて
上昇する単分子膜の表面圧を測定する表面圧測定
器を設け、この測定値が所定の範囲内のものとな
つているか否かによつて基板に移し取るに適した
状態となつているか否かを判断している。即ち、
基板への移し取りに好適な範囲内で選ばれた一定
の表面圧を単分子膜が維持するように、成膜枠の
移動量を表面圧測定器の測定値に基づいて制御し
ている。また、単分子膜が基板に移し取られて行
くに従つて液面上の単分子膜の面密度は低下し、
表面圧も低下することになるので、上記制御は、
液面上での単分子膜の形成からその基板への移し
取り操作完了まで継続して成されるもので、単分
子累積膜の取得における重要な制御の一つとなつ
ている。
Conventionally, in a monomolecular cumulative film forming apparatus for carrying out the LB method, the surface pressure of the monomolecular film increases as the film formation frame is moved to reduce the development area of the monomolecular film and increase the areal density. A surface pressure measuring device is provided to measure the surface pressure, and whether or not the measured value is within a predetermined range is used to determine whether the state is suitable for transfer to a substrate. That is,
The amount of movement of the film forming frame is controlled based on the measured value of the surface pressure measuring device so that the monomolecular film maintains a constant surface pressure selected within a range suitable for transfer to the substrate. Furthermore, as the monomolecular film is transferred to the substrate, the areal density of the monomolecular film on the liquid surface decreases,
Since the surface pressure will also decrease, the above control is
This process is carried out continuously from the formation of a monomolecular film on the liquid surface until the completion of the transfer operation to the substrate, and is one of the important controls in obtaining a monomolecular cumulative film.

上記表面圧測定器としては、単分子膜に覆われ
ていない液面と、単分子膜に覆われた液面との表
面張力の差から間接的に求める方法を応用したも
のや、単分子膜に覆われていない液面と、単分子
膜に覆われた液面とを区切つて浮ぶことになる成
膜枠に加わる二次元的圧力を直接測定するもの等
があり、各々特色がある。また、通常、表面圧と
共に単分子膜の一分子当りの占有面積及びその変
化量も計測されている。占有面積及びその変化量
は、成膜枠の左右の動きから求められている。
The above-mentioned surface pressure measuring instruments include those that apply a method that indirectly determines the surface tension from the difference in surface tension between the liquid surface that is not covered with a monomolecular film and the liquid surface that is covered with a monomolecular film, and There are methods that directly measure the two-dimensional pressure applied to a floating film forming frame that separates the liquid surface that is not covered by a monomolecular film from the liquid surface that is covered by a monomolecular film, and each method has its own characteristics. Further, in addition to the surface pressure, the occupied area per molecule of the monomolecular film and the amount of change thereof are also usually measured. The occupied area and the amount of change thereof are determined from the left and right movement of the film forming frame.

しかしながら、上記基板に移し取るに適した状
態の単分子膜の表面圧は、種々の実験によらなけ
れば定められず、また表面圧で液面上の単分子膜
の状態を判断するのは間接的であつて正確さに欠
ける問題がある。また、一般に、移し取るのに好
適な単分子膜の表面圧は15〜30dyn/cmとされて
いる。この範囲外では、分子の配列配向が乱れた
り膜の剥れを生じやすくなる。しかし、特別の場
合、例えば、膜構成物質の化学構造、温度条件等
によつては、好適な表面圧の値が上記範囲からは
み出ることもあるので、上記範囲は一応の目安に
しか過ぎない。
However, the surface pressure of the monomolecular film in a state suitable for transfer to the above substrate cannot be determined without conducting various experiments, and it is not possible to determine the state of the monomolecular film on the liquid surface based on the surface pressure. The problem is that it is too accurate and lacks accuracy. Furthermore, in general, the surface pressure of a monomolecular film suitable for transfer is 15 to 30 dyn/cm. Outside this range, the arrangement and orientation of molecules may be disturbed and the film may easily peel off. However, in special cases, for example, depending on the chemical structure of the membrane constituents, temperature conditions, etc., a suitable surface pressure value may fall outside the above range, so the above range is only a rough guide.

[発明が解決しようとする問題点] 本発明は、液面に展開された単分子膜という極
めて薄く特異な環境下にある試料について、その
光吸収特性を精度及び感度よく測定できるように
することによつて、液面上の単分子膜の特性を直
接分析しつつ累積操作ができるようにすることを
その解決すべき問題点とするものである。
[Problems to be Solved by the Invention] The present invention is directed to making it possible to accurately and sensitively measure the light absorption characteristics of a monomolecular film spread on a liquid surface, which is extremely thin and in a unique environment. The problem to be solved is to be able to perform accumulation operations while directly analyzing the characteristics of a monomolecular film on the liquid surface.

[問題点を解決するための手段] 本発明において上記問題点を解決するために講
じられた手段は、液面下から液面上に展開された
単分子膜の測定部位へ当該液面で全反射される入
射角で照射される励起光を出射する励起光源と、
励起光を測定部位到達前に断続光とするチヨツパ
ーと、前記測定部位又はその近傍を通るプローブ
光を出射するプローブ光源と、この測定部位又は
その近傍を通つたプローブ光の偏向量を検出する
検出器とを有する光吸収特性測定装置を備えた単
分子累積膜形成装置とすることである。
[Means for Solving the Problems] The means taken to solve the above problems in the present invention is that the measurement site of the monomolecular film spread on the liquid surface is completely transferred from below the liquid surface to the measurement site on the liquid surface. an excitation light source that emits excitation light that is irradiated at an incident angle that is reflected;
A chopper that makes excitation light into intermittent light before it reaches the measurement site, a probe light source that emits a probe light that passes through the measurement site or the vicinity thereof, and a detection that detects the amount of deflection of the probe light that passes through the measurement site or the vicinity thereof. The object of the present invention is to provide a monomolecular cumulative film forming apparatus equipped with a light absorption characteristic measuring device having a device.

[作用] 励起光が単分子膜に吸収されると、励起光の照
射時と非照射時とでは測定部位及びその近傍の屈
折率が変化するので、これをプローブ光の偏向量
として検出することによつて光吸収特性を測定す
ることができる。この原理自体は従来のPDS装
置と同様である。
[Function] When the excitation light is absorbed by the monomolecular film, the refractive index of the measurement site and its vicinity changes between when the excitation light is irradiated and when it is not irradiated, so this can be detected as the amount of deflection of the probe light. The light absorption characteristics can be measured by This principle itself is the same as that of conventional PDS devices.

ところで、本発明では、試料が液面上に展開さ
れた単分子膜であり、しかも励起光は、単分子膜
が展開している液面で全反射されるよう液体側か
ら照射されるものである。励起光は液体内を通つ
て単分子膜に照射されるので、空気中を通つて照
射されるときのように空気中の粉塵やゆらぎの影
響を受けることがない。単分子膜へ照射された励
起光は、液面で全反射され、液面上の気相へと抜
ける透過光は、全反射時のエバネツセント波とし
ての波長オーダー以下のごくわずかのものである
ので、透過光が測定値に影響を及ぼす心配もな
い。また、励起光は、液面で規則的に反射される
ことになるため、不規則な反射光による悪影響も
生じないものである。そして、このようにして液
面上に展開されている単分子膜の光吸収特性を測
定し、これに基づいて単分子膜の特性を分析して
基板に移し取るに適した状態となつているか否か
を判別すれば、正確な判別が可能である。
By the way, in the present invention, the sample is a monomolecular film spread on the liquid surface, and the excitation light is irradiated from the liquid side so that it is totally reflected on the liquid surface on which the monomolecular film is spread. be. Since the excitation light passes through the liquid and is irradiated onto the monomolecular film, it is not affected by dust or fluctuations in the air, unlike when it is irradiated through the air. The excitation light irradiated to the monomolecular film is totally reflected by the liquid surface, and the transmitted light that passes into the gas phase on the liquid surface is very small, on the order of the wavelength as an evanescent wave at the time of total reflection. There is no need to worry about transmitted light affecting the measured values. Furthermore, since the excitation light is regularly reflected on the liquid surface, there is no adverse effect caused by irregularly reflected light. In this way, the light absorption characteristics of the monomolecular film developed on the liquid surface are measured, and based on this, the characteristics of the monomolecular film are analyzed to determine whether it is in a state suitable for transfer to a substrate. If it is determined whether or not, accurate determination is possible.

[実施例] 第1図において1は液体2を収容した液槽で、
その液面3上には単分子膜4が展開されている。
図面では単分子膜4を模式的に表わしてある。
[Example] In FIG. 1, 1 is a liquid tank containing liquid 2,
A monomolecular film 4 is spread on the liquid surface 3.
In the drawing, the monomolecular film 4 is schematically shown.

液槽1の側方にはプローブ光源5が設けられて
いる。このプローブ光源5からは、液面3直下で
液面3と平行方向にプローブ光6が照射されるも
のである。また、プローブ光源5と液槽1を挟ん
で相対向する位置には、送られて来るプローブ光
6の位置を検出する検出器7が設けられている。
この検出器7の信号は、ドライバー8を介してロ
ツクインアンプ9へ送られるようになつている。
A probe light source 5 is provided on the side of the liquid tank 1. The probe light source 5 emits probe light 6 directly below the liquid surface 3 in a direction parallel to the liquid surface 3. Further, a detector 7 for detecting the position of the probe light 6 sent is provided at a position facing the probe light source 5 with the liquid tank 1 in between.
The signal from this detector 7 is sent to a lock-in amplifier 9 via a driver 8.

プローブ光源5のやや下方には励起光源10が
設けられている。励起光源10は、単分子膜4が
展開されている液面3で全反射される角度で、液
体2側から励起光11を単分子膜4の測定部位に
向けて照射するものである。励起光11の光路に
沿つた位置に、励起光11を断続光として照射す
るためのチヨツパー12が設けられている。ま
た、励起光源10から照射されて液面3で全反射
された励起光11が液槽1から出た位置には、こ
の励起光11を吸収するための吸収体13が設け
られている。
An excitation light source 10 is provided slightly below the probe light source 5. The excitation light source 10 irradiates excitation light 11 from the liquid 2 side toward the measurement site of the monomolecular film 4 at an angle at which it is totally reflected by the liquid surface 3 on which the monomolecular film 4 is spread. A chopper 12 is provided along the optical path of the excitation light 11 for irradiating the excitation light 11 as intermittent light. Further, an absorber 13 for absorbing the excitation light 11 is provided at a position where the excitation light 11 emitted from the excitation light source 10 and totally reflected by the liquid surface 3 exits the liquid tank 1 .

チヨツパー12はロツクインアンプ9に接続さ
れていて、チヨツパー12から送られる励起光1
1の断線状態を示す信号を参照信号として、検出
器7からの信号を同期検出できるようになつてい
る。プローブ光源5、励起光源10、チヨツパー
12及びロツクインアンプ9は、各々測定制御器
14に接続されている。測定制御器14は、プロ
ーブ光6及び励起光11の光路及び波長並びにチ
ヨツパー12による励起光11の断続間隔を制御
すると共に、ロツクインアンプ9からの信号によ
つて単分子膜4の光吸収特性を算出するものであ
る。
The chopper 12 is connected to a lock-in amplifier 9, and the pump light 1 sent from the chopper 12
The signal from the detector 7 can be synchronously detected by using the signal indicating the disconnection state of the detector 7 as a reference signal. The probe light source 5, excitation light source 10, chopper 12, and lock-in amplifier 9 are each connected to a measurement controller 14. The measurement controller 14 controls the optical path and wavelength of the probe light 6 and the excitation light 11 as well as the intermittent interval of the excitation light 11 by the chopper 12, and also controls the light absorption characteristics of the monomolecular film 4 using the signal from the lock-in amplifier 9. is calculated.

尚、液槽1は、少なくともプローブ光6及び励
起光11の光路となる部分に透明な窓を設けてお
けば、ことさら全体を透明とする必要はない。ま
た、液体2は、励起光11について吸収の小さい
ものであればプローブ光6へ多少直接影響を与え
るものであつても測定にさほど悪影響はないが、
透明であることが好ましい。
Note that the liquid tank 1 does not need to be entirely transparent as long as a transparent window is provided at least in the portion that becomes the optical path of the probe light 6 and the excitation light 11. In addition, if the liquid 2 has a small absorption of the excitation light 11, even if it has a slight direct effect on the probe light 6, it will not have much of an adverse effect on the measurement.
Preferably, it is transparent.

まず、励起光源10より出射された励起光11
は、チヨツパー12により断続光に変調され、液
槽1の液面3上に展開されている単分子膜4の測
定部位を液面3下より照射する。このとき、励起
光11は、入射角が液体2の臨界角より大きくな
るように入射され、液面3で全反射され、液体2
内を通過して液槽1の外へ出る。液面3上の気相
には、全反射の時のエバネツセント波として、波
長オーダー以下のごくわずかな光がしみ出すだけ
である。液槽1から出た励起光11は、吸収体1
3により吸収され、不要な光がカツトされる。断
続励起光11が全反射される測定部位上の領域で
は、液面3上の単分子膜4が光を吸収し、無放射
輻射過程により、断続的に熱を発生し、そのた
め、近傍の屈折率変化が断続的に生じることにな
る。
First, excitation light 11 emitted from the excitation light source 10
is modulated into intermittent light by the chopper 12, and irradiates the measurement site of the monomolecular film 4 spread on the liquid surface 3 of the liquid tank 1 from below the liquid surface 3. At this time, the excitation light 11 is incident such that the incident angle is larger than the critical angle of the liquid 2, is totally reflected at the liquid surface 3, and is totally reflected in the liquid 2.
It passes through the inside and exits the liquid tank 1. Only a very small amount of light, on the order of a wavelength, seeps into the gas phase above the liquid surface 3 as an evanescent wave during total reflection. The excitation light 11 emitted from the liquid tank 1 is transmitted to the absorber 1
3, and unnecessary light is cut out. In the area above the measurement site where the intermittent excitation light 11 is totally reflected, the monomolecular film 4 on the liquid surface 3 absorbs the light and intermittently generates heat due to a non-radiative radiation process, which causes refraction in the vicinity. Rate changes will occur intermittently.

一方、プローブ光源5から出射されるプローブ
光6は、液面3直下を液面3と平行に通るため、
上記励起光11の照射によつて断続的に屈折率が
変化する測定部位近傍を通過することになる。こ
の屈折率の断続的変化を生じる領域を、プローブ
光源5から出射されたプローブ光6が通過する
と、変化した屈折率分布に応じて、点線で示され
るように光路が偏向することになる。
On the other hand, since the probe light 6 emitted from the probe light source 5 passes directly below the liquid surface 3 in parallel to the liquid surface 3,
The excitation light 11 passes through the vicinity of the measurement site where the refractive index changes intermittently due to the irradiation of the excitation light 11. When the probe light 6 emitted from the probe light source 5 passes through a region where the refractive index changes intermittently, the optical path is deflected as shown by the dotted line according to the changed refractive index distribution.

検出器7は、継続してプローブ光6を受け、プ
ローブ光6の受光位置をドライバー8を介してロ
ツクインアンプ9へ送る。ロツクインアンプ9
は、この検出器7からの信号を受けると同時にチ
ヨツパー12からの信号を受けており、両信号を
同期させることによつて、励起光11照射時のプ
ローブ光6の受光位置信号と、励起光11非照射
時のプローブ光6の受光位置信号とをS/N比良
く区分けして測定制御器14へ送る。測定制御器
14は、この送られて来た信号に基づき、その時
の励起光11の波長についてのプローブ光6の偏
向量を求め、これに基づいて単分子膜4光吸収特
性を算出する。また、励起光11の波長を順次変
えながら同様の測定を行えば、単分子膜4の分光
吸収特性を得ることができる。
The detector 7 continuously receives the probe light 6 and sends the receiving position of the probe light 6 to the lock-in amplifier 9 via the driver 8. Lock-in amplifier 9
receives the signal from the chopper 12 at the same time it receives the signal from the detector 7, and by synchronizing both signals, the light reception position signal of the probe light 6 when the excitation light 11 is irradiated and the light reception position signal of the excitation light 6 11 and the light reception position signal of the probe light 6 during non-irradiation are separated with a good S/N ratio and sent to the measurement controller 14. Based on this sent signal, the measurement controller 14 determines the amount of deflection of the probe light 6 for the wavelength of the excitation light 11 at that time, and calculates the optical absorption characteristics of the monomolecular film 4 based on this. Further, by performing similar measurements while sequentially changing the wavelength of the excitation light 11, the spectral absorption characteristics of the monomolecular film 4 can be obtained.

この測定に際して、測定部位は、測定制御器1
4で励起光11の光路を調節することで自由に選
択でき、また液面3の位置に応じてやはり測定制
御器14でプローブ光6の光路を調節して正確を
期すことができる。また、プローブ光源5、励起
光源10及びチヨツパー12に必要な調節を全て
測定制御器14で自動的に行うようにし、操作を
簡略化することも可能である。
In this measurement, the measurement part is the measurement controller 1
4 can be freely selected by adjusting the optical path of the excitation light 11, and accuracy can also be ensured by adjusting the optical path of the probe light 6 with the measurement controller 14 according to the position of the liquid level 3. It is also possible to automatically make all necessary adjustments to the probe light source 5, excitation light source 10, and chopper 12 by the measurement controller 14, thereby simplifying the operation.

励起光11の測定部位における光量分布、液体
2の熱による屈折率変化の特性、プローブ光6の
入射ビーム位置及びその時の偏向量から単分子膜
4によつて吸収された光エネルギーが求まる。従
つて、励起光11の単分子膜4への照射エネルギ
ーをフオトセンサー等でモニターしておけば、両
者から単分子膜4の絶対的な光吸収特性が得られ
る。そして、励起光11の波長を変化させること
により、絶対的分光吸収特性が得られる。また、
励起光11の各波長における相対強度を予め求
め、波長に対応したプローブ光6の偏向量を求め
るだけでも、相対的な分光吸収特性を得ることが
できる。光吸収特性の相対値、絶対値は、測定の
目的に応じ適宜選択すればよい。
The light energy absorbed by the monomolecular film 4 is determined from the light intensity distribution of the excitation light 11 at the measurement site, the characteristics of the refractive index change due to heat of the liquid 2, the incident beam position of the probe light 6, and the amount of deflection at that time. Therefore, by monitoring the irradiation energy of the excitation light 11 onto the monomolecular film 4 with a photo sensor or the like, the absolute light absorption characteristics of the monomolecular film 4 can be obtained from both. Then, by changing the wavelength of the excitation light 11, absolute spectral absorption characteristics can be obtained. Also,
Relative spectral absorption characteristics can be obtained by simply determining the relative intensity of the excitation light 11 at each wavelength in advance and determining the amount of deflection of the probe light 6 corresponding to the wavelength. The relative value and absolute value of the light absorption characteristic may be appropriately selected depending on the purpose of measurement.

上述のような光吸収特性測定装置で単分子膜4
の光吸収特性を測定し、これに基づいてその他の
特性をも分析すれば、単分子膜4の状態を正確に
把握できる。そして、この分析を行いつつ単分子
膜4の累積操作を行えば、精度良く単分子累積膜
を形成できる。単分子膜4の累積操作及びそれを
行うための液槽1回りの装置は、後述するように
従来のものと同様である。また、単分子膜4の特
性分析及び累積操作を測定制御器14で自動的に
行わせることもできる。
Monomolecular film 4 was measured using the light absorption property measuring device as described above.
By measuring the light absorption characteristics of the monomolecular film 4 and analyzing other characteristics based on this, the state of the monomolecular film 4 can be accurately grasped. Then, by carrying out the cumulative operation of the monomolecular film 4 while performing this analysis, a monomolecular cumulative film can be formed with high accuracy. The accumulation operation of the monomolecular film 4 and the equipment surrounding the liquid tank 1 for carrying out the accumulation operation are the same as those of the conventional ones, as will be described later. Further, the characteristic analysis and cumulative operation of the monomolecular film 4 can be automatically performed by the measurement controller 14.

プローブ光6は、第2図に示されるように、励
起光11と共に励起光11の測定部位で全反射さ
せるようにしてもよい。このようにすると、液体
2の大きな屈折率変化を生ずる部分を通過させる
ことができ、高感度の測定ができる利点がある。
As shown in FIG. 2, the probe light 6 may be totally reflected together with the excitation light 11 at the measurement site of the excitation light 11. This has the advantage that it can pass through a portion of the liquid 2 that causes a large change in refractive index, allowing highly sensitive measurement.

プローブ光6は、第3図に示されるように、液
面3近くの気相中を通過させ、気相部の屈折率変
化の影響下に置くこともできる。このようにする
と、プローブ光6と励起光11が全く交差しない
ので、プローブ光6に対して励起光11が交差す
ることによつて及ぼす影響を除去することができ
る。
As shown in FIG. 3, the probe light 6 can also be passed through a gas phase near the liquid surface 3 and placed under the influence of a change in the refractive index of the gas phase. In this way, since the probe light 6 and the excitation light 11 do not intersect at all, the influence of the excitation light 11 intersecting the probe light 6 can be eliminated.

第4図に示されるように、単分子膜4が展開さ
れている液面3の一部を仕切枠15で仕切り、単
分子膜4の無い液面3′を形成し、この液面3′を
参照液面として測定することもできる。即ち、プ
ローブ光源5から出射されたプローブ光6及び励
起光源10から出射されてチヨツパー12を経た
励起光11を、例えばビームスプリツターやハー
フミラー等の光路分割手段16で分割した後、ミ
ラー等の光路調整手段17を用いて液面3と3′
に同時にプローブ光6と励起光11を送る。そし
て、液面3,3′に対応するプローブ光6の偏向
量を各々の検出器7で検知し、両者の差から測定
を行うものである。このようにすると、単分子膜
4の有無による差が測定でき、他の影響を相殺す
ることができるので、高精度の測定が可能とな
る。
As shown in FIG. 4, a part of the liquid surface 3 where the monomolecular film 4 is spread is partitioned off by a partition frame 15 to form a liquid surface 3' without the monomolecular film 4, and this liquid surface 3' can also be measured as a reference liquid level. That is, the probe light 6 emitted from the probe light source 5 and the excitation light 11 emitted from the excitation light source 10 and passed through the chopper 12 are split by an optical path splitting means 16 such as a beam splitter or a half mirror, and then separated by a mirror or the like. The liquid levels 3 and 3' are adjusted using the optical path adjusting means 17.
Probe light 6 and excitation light 11 are simultaneously sent to. Then, the amount of deflection of the probe light 6 corresponding to the liquid levels 3, 3' is detected by each detector 7, and measurement is performed based on the difference between the two. In this way, the difference due to the presence or absence of the monomolecular film 4 can be measured, and other influences can be canceled out, making it possible to perform highly accurate measurements.

また、第5図に示されるように、励起光11を
多重反射させることもできる。励起光源10より
出射した励起光11は、チヨツパー12により断
続光となつた後、液面3で全反射され、さらに液
面3下に配置された鏡面18により反射され、再
び液面3を照射する。液面3と平行に鏡面18を
設定すれば、鏡面18の存在する領域で反射を繰
り返し、液面3上の単分子膜4を複数箇所照射す
ることになり、屈折率分布の生ずる領域が広が
る。そこにプローブ光源5からプローブ光6を通
過させれば、プローブ光6は偏向される領域が増
大するため、その大きな偏向角を得ることができ
る。この偏向によるプローブ光6の位置ずれを検
出器7で検出すれば、高感度な検出を行なうこと
ができる。入射角θ、鏡面18と液面3の距離
d、反射領域をlとすれば、励起光照射回数Nは
次式のような関係がある。即ち、N=l/
(2dtanθ)の関係が成立し、例えば、l=30mm、
d=0.5mm、θ=60°とすればN≒18となり、感度
を約18倍上げることができる。
Furthermore, as shown in FIG. 5, the excitation light 11 can be reflected multiple times. The excitation light 11 emitted from the excitation light source 10 is turned into intermittent light by the chopper 12, is totally reflected at the liquid surface 3, is further reflected by the mirror surface 18 disposed below the liquid surface 3, and irradiates the liquid surface 3 again. do. If the mirror surface 18 is set parallel to the liquid surface 3, reflection will be repeated in the region where the mirror surface 18 exists, and the monomolecular film 4 on the liquid surface 3 will be irradiated at multiple locations, expanding the region where the refractive index distribution occurs. . If the probe light 6 from the probe light source 5 is passed therethrough, the area where the probe light 6 is deflected increases, so that a large deflection angle can be obtained. If the position shift of the probe light 6 due to this deflection is detected by the detector 7, highly sensitive detection can be performed. Letting the incident angle θ, the distance d between the mirror surface 18 and the liquid surface 3, and the reflection area be l, the number of times N of excitation light irradiation has the following relationship. That is, N=l/
The relationship (2dtanθ) holds true, for example, l=30mm,
If d=0.5 mm and θ=60°, N≒18, and the sensitivity can be increased approximately 18 times.

更に、第6図に示されるように、プローブ光6
を、液面3付近に設けた、例えばニオブ酸リチウ
ム結晶、酸化チタン結晶、二酸化ケイ素結晶、ガ
ラス、プラスチツク等の屈折率変化の大きな媒体
19中に通すこともできる。即ち、液面3上の単
分子膜4の光吸収によつて発生した熱を、単分子
膜4近傍に液面3と平行に配置した熱屈折率変化
の大きな媒体19に作用させて屈折率変化に変換
し、その媒体19中をプローブ光6を通過させ、
プローブ光6の偏向量を拡大し、高感度検出を図
ることができる。
Furthermore, as shown in FIG.
can also be passed through a medium 19 with a large refractive index change, such as a lithium niobate crystal, a titanium oxide crystal, a silicon dioxide crystal, glass, or plastic, provided near the liquid surface 3. That is, heat generated by light absorption by the monomolecular film 4 on the liquid surface 3 is applied to a medium 19 with a large change in thermal refractive index, which is arranged near the monomolecular film 4 and parallel to the liquid surface 3, to change the refractive index. converting it into a change, passing the probe light 6 through the medium 19,
It is possible to increase the amount of deflection of the probe light 6 and achieve highly sensitive detection.

本発明において、単分子膜4を累積させるため
の液槽1回りの装置は従来と同様であり、累積操
作手順も従来とほぼ同様であるが、これを第7図
及び第8図で説明する。
In the present invention, the equipment surrounding one liquid tank for accumulating the monomolecular film 4 is the same as the conventional one, and the accumulation operation procedure is also almost the same as the conventional one, which will be explained with reference to FIGS. 7 and 8. .

図に示されるように、液体2が収容された浅く
て広い角型の液槽1の内側に、例えばポリプロピ
レン製等の内枠21が水平に釣つてあり、水面
3,3′を仕切つている。液体2としては、通常
純水が用いられる。内枠21の内側には、例えば
やはりポリプロピレン製等の成膜枠22が浮かべ
られている。成膜枠22は、幅が内枠21の内幅
より僅かに短かい直方体で、図中左右方向に二次
元ピストン運動可能なものとなつている。成膜枠
22には、成膜枠22を図中右方に引張るための
重錘23が滑車24を介して結び付けられてい
る。また、成膜枠22上に固定された磁石25
と、成膜枠22の上方で図中左右に移動可能で磁
石25に接近すると互に発撥し合う対磁石26と
が設けられていて、これによつて成膜枠22は図
中左右への移動並びに停止が可能なものとなつて
いる。このような重錘23や一組の磁石25,2
6の代りに、回転モーターやプーリーを用いて直
接成膜枠22を移動させるものもある。
As shown in the figure, an inner frame 21 made of, for example, polypropylene is hung horizontally inside a shallow and wide rectangular liquid tank 1 containing a liquid 2, and partitions water surfaces 3 and 3'. . As the liquid 2, pure water is usually used. Inside the inner frame 21, a film forming frame 22 made of, for example, polypropylene is floated. The film forming frame 22 is a rectangular parallelepiped whose width is slightly shorter than the inner width of the inner frame 21, and is capable of two-dimensional piston movement in the left-right direction in the figure. A weight 23 for pulling the film forming frame 22 to the right in the figure is tied to the film forming frame 22 via a pulley 24 . In addition, a magnet 25 fixed on the film forming frame 22
and a pair of magnets 26 which are movable from side to side in the figure above the film forming frame 22 and which repel each other when approaching the magnet 25, thereby causing the film forming frame 22 to move from side to side in the figure. It is possible to move as well as stop. Such a weight 23 and a set of magnets 25, 2
Instead of 6, there is also a system in which the film forming frame 22 is directly moved using a rotary motor or a pulley.

内枠21内の両側には、吸引パイプ27を介し
て吸引ポンプ(図示されていない)に接続された
吸引ノズル28が並べられている。この吸引ノズ
ル28は、単分子膜4や得られる単分子累積膜内
に不純物が混入してしまうのを防止するために、
液面3,3′上の不要になつた前工程の単分子膜
4等を迅速に除去するのに用いられるものであ
る。尚、20は基板ホルダ29に取付けられて垂
直に上下される基板である。
Suction nozzles 28 connected to a suction pump (not shown) via suction pipes 27 are arranged on both sides of the inner frame 21 . This suction nozzle 28 is used to prevent impurities from being mixed into the monomolecular film 4 or the obtained monomolecular cumulative film.
This is used to quickly remove the monomolecular film 4 from the previous process that is no longer needed on the liquid surface 3, 3'. Note that 20 is a board that is attached to a board holder 29 and is vertically moved up and down.

まず、成膜枠22を移動させて、液面3,3′
上の不要となつた単分子膜4等を掃き寄せながら
吸引ノズル28からすすり出し、液面3,3′を
浄化する。こうして清浄化された液面3,3′の
左端に成膜枠22を寄せて、例えば、〜5×10-3
mol/lの濃度でベンゼン、クロロホルム等の揮
発性溶媒に溶かした膜構成物質の溶液を、スポイ
ト等で数滴液面3上にたらす。この溶液が液面3
上に広がり、溶媒が揮発すると、単分子膜4が液
面3上に残されることになる。
First, the film forming frame 22 is moved and the liquid levels 3, 3'
The monomolecular film 4, etc., which are no longer needed on the top, are swept up and sucked out from the suction nozzle 28, thereby purifying the liquid surfaces 3, 3'. The film forming frame 22 is moved to the left end of the liquid surface 3, 3' cleaned in this way, and the
A few drops of a solution of a membrane constituent material dissolved in a volatile solvent such as benzene or chloroform at a concentration of mol/l are dropped onto the liquid surface 3 using a dropper or the like. This solution is liquid level 3
When it spreads upward and the solvent evaporates, a monomolecular film 4 is left on the liquid surface 3.

上記単分子膜4は、液面3上で二次元系の挙動
を示す。分子の面密度が低いときには二次元気体
の気体膜と呼ばれ、一分子当りの占有面積と表面
圧との間に二次元理想気体の状態方程式が成立す
る。
The monomolecular film 4 exhibits two-dimensional behavior on the liquid surface 3. When the areal density of molecules is low, it is called a gas film of a secondary gas, and a two-dimensional ideal gas equation of state is established between the occupied area per molecule and the surface pressure.

次いで、この気体膜の状態から、徐々に成膜枠
22を右方に動かし、単分子膜4が展開している
液面3の領域を次第に縮めて面密度を増してやる
と、分子間相互作用が強まり、二次元液体の液体
膜を経て二次元固体の固体膜へと変わる。この固
体膜となると、分子の配列配向はきれいに揃い、
高度の秩序性及び均一な超薄膜性を持つに至る。
そして、このときに基板20の表面に当該固体膜
となつた単分子膜4を付着させて移し取ることが
可能となる。また、同一の基板20に複数回単分
子膜4を重ねて移し取ることによつて、単分子累
積膜を得ることができる。尚、基板20として
は、例えばガラス、合成樹脂、セラミツク、金属
等が使用されている。
Next, from this gas film state, the film forming frame 22 is gradually moved to the right to gradually reduce the area of the liquid surface 3 where the monomolecular film 4 is developed and increase the areal density, thereby increasing the intermolecular interaction. becomes stronger, and changes from a liquid film of a two-dimensional liquid to a solid film of a two-dimensional solid. When it comes to this solid film, the molecules are arranged and oriented in a neat manner.
It has a high degree of order and uniform ultra-thin film properties.
At this time, the monomolecular film 4, which has become a solid film, can be attached to the surface of the substrate 20 and transferred. Further, by stacking and transferring the monomolecular film 4 to the same substrate 20 multiple times, a monomolecular cumulative film can be obtained. Incidentally, as the substrate 20, for example, glass, synthetic resin, ceramic, metal, etc. are used.

単分子膜4を液面3上から基板20の表面に移
し取る方法は大別して2種類ある。一は垂直浸漬
法で他は水平付着法である。垂直浸漬法とは、液
面3上の単分子膜4を累積操作に好適な一定の状
態に維持しながら、膜を横切る方向、即ち、垂直
方向に基板20を上下させることにより単分子膜
4を移し取る方法である。水平付着法とは、基板
20を水平に保ちながら上から液面3にできるだ
け近づけ、わずかに傾けて一端から単分子膜4に
触れて付着する方法である。そして、本発明で
は、前記した光吸収特性測定装置の測定値に基づ
いて、単分子膜4が基板20への移し取りに適し
た状態となるよう、液面3上への単分子膜4の形
成から移し取り操作完了まで成膜枠22の移動を
制御することになる。また、本発明における光吸
収特性測定装置は、従来の表面圧測定器に代えて
設けても、表面圧測定器と併用するようにしても
よい。
There are roughly two types of methods for transferring the monomolecular film 4 from above the liquid level 3 to the surface of the substrate 20. One is the vertical dipping method and the other is the horizontal deposition method. The vertical immersion method refers to the monomolecular film 4 on the liquid level 3 being maintained in a constant state suitable for accumulation operation while the substrate 20 is moved up and down in the direction across the film, that is, in the vertical direction. This is a method of transferring. The horizontal adhesion method is a method in which the substrate 20 is held horizontally, brought as close as possible to the liquid surface 3 from above, and slightly tilted to touch the monomolecular film 4 from one end for adhesion. In the present invention, the monomolecular film 4 is deposited on the liquid surface 3 so that the monomolecular film 4 is in a state suitable for transfer to the substrate 20 based on the measured values of the above-mentioned light absorption characteristic measuring device. The movement of the film forming frame 22 is controlled from formation to completion of the transfer operation. Further, the light absorption characteristic measuring device according to the present invention may be provided in place of a conventional surface pressure measuring device, or may be used in combination with a surface pressure measuring device.

次に、本発明の他の実施例を第9図で説明す
る。
Next, another embodiment of the present invention will be described with reference to FIG.

液体2が収容された液槽1の一側に支持柱30
が立上げられており、そこに基板20を保持した
基板ホルダ29が取付けられていて、基板20を
液面3に向つて上下に垂直移動できるようになつ
ている。液槽1内の底部には昇降装置31が設け
られていて、その上に計測ユニツト32が設置さ
れている。
A support column 30 is installed on one side of the liquid tank 1 containing the liquid 2.
A substrate holder 29 holding the substrate 20 is attached thereto, so that the substrate 20 can be vertically moved up and down toward the liquid level 3. A lifting device 31 is provided at the bottom of the liquid tank 1, and a measuring unit 32 is installed on top of the lifting device 31.

計測ユニツト32は、ドーナツ状に中抜きとな
つた略口形を成すもので、その内周側底辺部は鏡
面18となつていて、この鏡面18が液面3の直
ぐ下方で平行に位置するよう昇降装置31で位置
が調節されている。この計測ユニツト32内に
は、プローブ光源5、検出器7、プローブ光源5
から出射されたプローブ光6を液面3と鏡面18
の間を通して検出器7へと導く光路調整手段17
a〜17c、励起光源10、励起光源から出射さ
れた励起光11を断続光とするチヨツパー12、
吸収体13及び励起光11を液面3と鏡面18の
間で複数回反射させて吸収体13へと導く光路調
整手段17d,17eが設けられている。また、
計測ユニツト32の内周側両側面下部は、計測ユ
ニツト32内を液体2から仕切つた状態でプロー
ブ光6と励起光10を通過させる窓部33となつ
ている。尚、22は、単分子膜である単分子膜4
の表面圧を調整するための成膜枠である。
The measurement unit 32 has a generally hollow donut shape, and its inner bottom side is a mirror surface 18, and the measurement unit 32 is arranged so that the mirror surface 18 is located directly below and parallel to the liquid level 3. The position is adjusted by a lifting device 31. This measurement unit 32 includes a probe light source 5, a detector 7, a probe light source 5,
The probe light 6 emitted from the liquid surface 3 and the mirror surface 18
an optical path adjusting means 17 that guides the optical path to the detector 7 through the
a to 17c, an excitation light source 10, a chopper 12 that uses the excitation light 11 emitted from the excitation light source as intermittent light;
Optical path adjustment means 17d and 17e are provided to reflect the absorber 13 and the excitation light 11 multiple times between the liquid surface 3 and the mirror surface 18 and guide it to the absorber 13. Also,
The lower portions of both inner side surfaces of the measurement unit 32 are window portions 33 through which the probe light 6 and the excitation light 10 pass, while the inside of the measurement unit 32 is partitioned off from the liquid 2. In addition, 22 is a monomolecular film 4 which is a monomolecular film.
This is a film forming frame for adjusting the surface pressure of the film.

上記実施例によれば単分子膜4の光吸収特性を
高感度で測定できることは第5図で説明した通り
である。特に本実施例によれば、光吸収特性測定
装置がユニツト化されているので、測定系に外界
から与えられる影響を減少させることができ、液
槽1への直脱も容易である。
As explained in FIG. 5, according to the above embodiment, the light absorption characteristics of the monomolecular film 4 can be measured with high sensitivity. In particular, according to this embodiment, since the light absorption characteristic measuring device is integrated into a unit, the influence of the outside world on the measuring system can be reduced, and direct removal into the liquid tank 1 is also easy.

[発明の効果] 本発明によりば、液面上に展開されている単分
子膜の光吸収特性をその場で直接検知でき、これ
から形成されている単分子膜の種々の特性を容易
に分析できるので、最適状態下で単分子膜を累積
でき、得られる単分子累積膜をより高精度のもの
とすることができるものである。
[Effects of the Invention] According to the present invention, the light absorption characteristics of a monomolecular film developed on the liquid surface can be directly detected on the spot, and various characteristics of the monomolecular film that is being formed can be easily analyzed. Therefore, a monomolecular film can be accumulated under optimal conditions, and the obtained monomolecular cumulative film can be made with higher precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2
図ないし第6図は各々プローブ光及び励起光光路
の他の実施例の説明図、第7図及び第8図は単分
子累積膜を得る場合の液槽回りの装置及び手順の
説明図、第9図は本発明の実施例の説明図、第1
0図a,bは従来技術の説明図である。 1……液槽、2……液体、3,3′……液面、
4……単分子膜、5……プローブ光源、6……プ
ローブ光、7……検出器、8……ドライバー、9
……ロツクインアンプ、10……励起光源、11
……励起光、12……チヨツパー、13……吸収
体、14……測定制御器、15……仕切枠、16
……光路分割手段、17,17a〜17e……光
路調整手段、18……鏡面、19……媒体、20
……基板、21……内枠、22……成膜枠、23
……垂錘、24……滑車、25……磁石、26…
…対磁石、27……吸収パイプ、28……吸引ノ
ズル、29……基板ホルダ、30……支持柱、3
1……昇降装置、32……計測ユニツト、33…
…窓部。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG.
6 to 6 are explanatory diagrams of other embodiments of the probe light and excitation light optical paths, respectively. Figure 9 is an explanatory diagram of the embodiment of the present invention, the first
0A and 0B are explanatory diagrams of the prior art. 1...liquid tank, 2...liquid, 3,3'...liquid level,
4... Monomolecular film, 5... Probe light source, 6... Probe light, 7... Detector, 8... Driver, 9
... Lock-in amplifier, 10 ... Excitation light source, 11
... Excitation light, 12 ... Chopper, 13 ... Absorber, 14 ... Measurement controller, 15 ... Partition frame, 16
... Optical path dividing means, 17, 17a to 17e ... Optical path adjusting means, 18 ... Mirror surface, 19 ... Medium, 20
... Substrate, 21 ... Inner frame, 22 ... Film forming frame, 23
... plumbum, 24 ... pulley, 25 ... magnet, 26 ...
... pair magnet, 27 ... absorption pipe, 28 ... suction nozzle, 29 ... substrate holder, 30 ... support column, 3
1... Lifting device, 32... Measurement unit, 33...
...window section.

Claims (1)

【特許請求の範囲】[Claims] 1 液面下から液面上に展開された単分子膜の測
定部位へ当該液面で全反射される入射角で照射さ
れる励起光を出射する励起光源と、励起光を測定
部位到達前に断続光とするチヨツパーと、前記測
定部位又はその近傍を通るプローブ光を出射する
プローブ光源と、この測定部位又はその近傍を通
つたプローブ光の偏向量を検出する検出器とを有
する光吸収特性測定装置を備えていることを特徴
とする単分子累積膜形成装置。
1. An excitation light source that emits excitation light that is irradiated from below the liquid surface to the measurement site of the monomolecular film spread on the liquid surface at an incident angle that is totally reflected by the liquid surface, and a A light absorption characteristic measurement comprising a chopper that emits intermittent light, a probe light source that emits a probe light that passes through the measurement site or the vicinity thereof, and a detector that detects the amount of deflection of the probe light that passes through the measurement site or the vicinity thereof. A monomolecular cumulative film forming device comprising:
JP24319084A 1984-11-20 1984-11-20 Forming apparatus of monomolecular cumulative film Granted JPS61125434A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24319084A JPS61125434A (en) 1984-11-20 1984-11-20 Forming apparatus of monomolecular cumulative film
US06/799,497 US4830502A (en) 1984-11-20 1985-11-19 Apparatus and method for measuring light absorption characteristic of a thin film, and equipment provided with said apparatus for forming a monomolecular built-up film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24319084A JPS61125434A (en) 1984-11-20 1984-11-20 Forming apparatus of monomolecular cumulative film

Publications (2)

Publication Number Publication Date
JPS61125434A JPS61125434A (en) 1986-06-13
JPH0460698B2 true JPH0460698B2 (en) 1992-09-28

Family

ID=17100165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24319084A Granted JPS61125434A (en) 1984-11-20 1984-11-20 Forming apparatus of monomolecular cumulative film

Country Status (1)

Country Link
JP (1) JPS61125434A (en)

Also Published As

Publication number Publication date
JPS61125434A (en) 1986-06-13

Similar Documents

Publication Publication Date Title
JP2833778B2 (en) Biological sensor
US4790664A (en) Device and method for measuring optical properties
US4830502A (en) Apparatus and method for measuring light absorption characteristic of a thin film, and equipment provided with said apparatus for forming a monomolecular built-up film
US4682897A (en) Light scattering measuring apparatus
JP6322295B2 (en) Scanning probe microscope and its sample holder
CN107356560B (en) Total reflection type oblique incident light reflection difference scanning imaging device and its use method
WO2018099408A1 (en) Highly sensitive, graphene surface wave based multiple light beam refractive index detection apparatus and method
JPS6363945A (en) Stabilization of optical property measurement
JPH0460698B2 (en)
JPH0422457B2 (en)
JPS61122548A (en) Measuring instrument for light absorption characteristic of thin film
US4952027A (en) Device for measuring light absorption characteristics of a thin film spread on a liquid surface, including an optical device
JPS61122547A (en) Measuring method of light absorption characteristic of thin film
JP3716305B2 (en) Internal reflection type two-dimensional imaging ellipsometer
JPS61122551A (en) Instrument for measuring light absorption characteristic of thin film
JPS61122546A (en) Measuring method of light absorption characteristic of thin film
JPS61122549A (en) Instrument for measuring light absorption characteristic of thin film
JPS61122550A (en) Instrument for measuring light absorption characteristic of thin film
JPS6239731A (en) Apparatus for measuring photo-physical properties of membrane
CN214472763U (en) An angle-modulated SPR sensor and SPR detection equipment based on scanning galvanometer
JPH0575059B2 (en)
JPS629234A (en) Measuring instrument for light absorption characteristics of thin film
CN112557321A (en) Method, device and system for measuring light energy absorption rate of substance
JPS62140050A (en) Apparatus for measuring absorption characteristics of membrane
JPH1038856A (en) Light absorptance measuring instrument and measuring method