JPS6051616A - Manufacturing method of fine colored powder - Google Patents
Manufacturing method of fine colored powderInfo
- Publication number
- JPS6051616A JPS6051616A JP15715783A JP15715783A JPS6051616A JP S6051616 A JPS6051616 A JP S6051616A JP 15715783 A JP15715783 A JP 15715783A JP 15715783 A JP15715783 A JP 15715783A JP S6051616 A JPS6051616 A JP S6051616A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- specific surface
- surface area
- reaction tower
- tio2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 48
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 238000003756 stirring Methods 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 230000007062 hydrolysis Effects 0.000 claims abstract description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 5
- 239000004408 titanium dioxide Substances 0.000 claims description 18
- 239000006185 dispersion Substances 0.000 claims description 4
- 238000005303 weighing Methods 0.000 claims 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000049 pigment Substances 0.000 abstract description 8
- 229910000069 nitrogen hydride Inorganic materials 0.000 abstract description 6
- 229910021529 ammonia Inorganic materials 0.000 abstract description 5
- 239000004020 conductor Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract description 3
- 238000004040 coloring Methods 0.000 abstract description 3
- 239000002537 cosmetic Substances 0.000 abstract description 3
- 238000005034 decoration Methods 0.000 abstract description 2
- 239000004033 plastic Substances 0.000 abstract description 2
- 229920003023 plastic Polymers 0.000 abstract description 2
- 239000002216 antistatic agent Substances 0.000 abstract 1
- 238000010348 incorporation Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 18
- 239000002245 particle Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 238000009826 distribution Methods 0.000 description 8
- KELHQGOVULCJSG-UHFFFAOYSA-N n,n-dimethyl-1-(5-methylfuran-2-yl)ethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=C(C)O1 KELHQGOVULCJSG-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229910010415 TiO(OH) Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 201000001352 cholecystitis Diseases 0.000 description 1
- 235000019646 color tone Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical group [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、黒色系の微細な有色粉末に関し、特に顔料、
導電材料及びセラミック原料として好適な有色粉末に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a black colored fine powder, in particular a pigment,
The present invention relates to colored powder suitable as a conductive material and a ceramic raw material.
従来、黒色顔料としてはカーボンブラック粉末と四三酸
化鉄粉末が知られている。カーボンブラック粉末は、黒
色顔料としての着色性(即ち、黒色度)の点ばかりでな
く、導電材料としての導電性の点でも優れた材料である
(比抵抗10−2〜10゜Ω・儂)。しかし、樹脂によ
ってはなじみにくくて分散し難く、また極微量ではある
が製造原料に由来する発癌性の3,4−ベンズピレンを
伴うため。Conventionally, carbon black powder and triiron tetroxide powder are known as black pigments. Carbon black powder is an excellent material not only in terms of colorability (i.e. blackness) as a black pigment but also in terms of electrical conductivity as a conductive material (specific resistance 10-2 to 10゜Ω・儂). . However, depending on the resin, it is difficult to be compatible and disperse, and it also contains a very small amount of carcinogenic 3,4-benzpyrene derived from the manufacturing raw material.
化粧品の分野では安全性が問われている。さらに。Safety is a question in the cosmetics field. moreover.
他の種類の顔料に比べ比表面積がはるかに大きいため、
それらと混合して用いても液体媒質中で均一な分散状態
を安定して維持することが困難である。一方、四三酸化
鉄粉末は強磁性のため分散性が劣り、また熱安定性が低
い(大気中で150℃以上に加熱するとγ−Fe、03
に酸化される)。Because the specific surface area is much larger than other types of pigments,
Even when mixed with these substances, it is difficult to stably maintain a uniform dispersion state in a liquid medium. On the other hand, triiron tetroxide powder has poor dispersibility due to its ferromagnetic nature, and also has low thermal stability (when heated to 150°C or higher in the atmosphere, γ-Fe, 03
).
これに対し、二酸化チタン粉末の還元生成物で。In contrast, with the reduction products of titanium dioxide powder.
低次酸化チタンと呼ばれる物質(一般式T r nO2
n−1+n≧2で表される)の粉末は、樹脂とのなじみ
。A substance called lower titanium oxide (general formula T r nO2
The powder (represented by n-1+n≧2) is compatible with the resin.
樹脂中での分散性、耐熱性(3oO〜40CJ℃)、安
全性に優れている。この粉末は、導電性を還元度によっ
て101〜103Ω・儒と広範囲に変えることが出来1
色調も灰白、青灰、青黒、紫黒、茶黒。It has excellent dispersibility in resin, heat resistance (3oO to 40CJ°C), and safety. The conductivity of this powder can be varied over a wide range from 101 to 103 ohms depending on the degree of reduction.
The color tones are gray-white, blue-gray, blue-black, purple-black, and brown-black.
赤茶、と変えることが出来るという利点を有する。It has the advantage of being able to be changed to red or brown.
しかし、この低次酸化チタン粉末は、従来の製法(金回
チタン粉末又は水素ガスを還元剤として。However, this low-order titanium oxide powder can be produced using conventional methods (using gold-plated titanium powder or hydrogen gas as a reducing agent).
二酸化チタンを還元する)による限り、粉末粒子の粗大
化(平均粒径1. Ol1m以上、比表面f?1l−5
rr?711以下)が避けられなかった。即ち、これら
の製法では1000℃以上の処理温度が不可欠であるた
め9粒子の焼結、成長が生ずるのである。(reducing titanium dioxide), coarsening of powder particles (average particle size 1.Ol 1m or more, specific surface f?1l-5
rr? 711 or below) was unavoidable. That is, since these manufacturing methods require a processing temperature of 1000° C. or higher, 9 particles are sintered and grown.
こう(2て、顔料、導電材料として適する微細な粉末(
比表面積20 rr?/g以上)は事実上槽られなかっ
た。(2) Fine powder suitable as pigment and conductive material (
Specific surface area 20rr? /g or more) were virtually not treated.
本発明の目的は、上記従来の種々の有色粉末あるいはそ
ノ1らの製法の欠点を解消することにあり。An object of the present invention is to eliminate the drawbacks of the various conventional colored powders or methods of producing them.
(心1脂とのなじみがよく、無毒で安全性が高く、シか
も微細な有色粉末の工業的製法を提供することである。(It is an object of the present invention to provide an industrial method for producing a fine colored powder that is compatible with heart fat, is non-toxic, highly safe, and has a good compatibility with fat.
本発明者らは、二酸化チタン粉末をアンモニア雰囲気中
で加熱すると、500〜950 ’C,という比較的低
い温度でも、X線回折による構造解析の結果、二酸化チ
タンの一酸化チタンへの還元が進行し、導電性及び色彩
の点では前記低次酸化チタンと同等な有色粉末が得られ
、しかも粉末粒子の焼結、成長がほとんど起らないこと
を見出した。The present inventors found that when titanium dioxide powder is heated in an ammonia atmosphere, the reduction of titanium dioxide to titanium monoxide progresses even at a relatively low temperature of 500 to 950'C, as a result of structural analysis by X-ray diffraction. However, it has been found that a colored powder equivalent to that of the low-order titanium oxide can be obtained in terms of conductivity and color, and that sintering and growth of the powder particles hardly occur.
この方法によれば、還元を十分に進ませた時には一酸化
チタン粉末が得られ、還元を適宜の段階で止めれば一酸
化チタンと二酸化チタンからなる複合体粉末が得られる
。そして、いずれの場合も一酸化チタンには窒素(N)
が1〜15重量係固溶していることが乾式の定量分析か
ら判明した。即ち。According to this method, titanium monoxide powder is obtained when the reduction is sufficiently advanced, and when the reduction is stopped at an appropriate stage, a composite powder consisting of titanium monoxide and titanium dioxide is obtained. In both cases, titanium monoxide contains nitrogen (N).
It was found from dry quantitative analysis that 1 to 15% of the solid solution was present by weight. That is.
複合体粉末の場合は、酸素が一部望素で置換されている
立方晶系NaC1型構造の一酸化チタンと正方品系の二
酸化チタンとから構成さズ1ている。還゛元度(TrO
/T+02の比に相当)の高い程、粉末の導電性が商才
って比抵抗はio’〜1o−2Ω・鑵の範囲で変わり2
色彩は緑灰、青灰、青黒、黒、紫黒。In the case of the composite powder, it is composed of titanium monoxide having a cubic NaCl type structure in which oxygen is partially substituted with elemental elements and titanium dioxide having a tetragonal structure. Degree of reduction (TrO
/T+02), the higher the conductivity of the powder, the more the specific resistance changes in the range of io' to 1o-2Ω・2.
The colors are green-gray, blue-gray, blue-black, black, and purple-black.
宵銅色と様々に変化する。また、還元度が高い程。The color changes in various ways, becoming a bronze color in the evening. Also, the higher the degree of return.
生成TiO中の窒素含有率も高まる。The nitrogen content in the produced TiO also increases.
上言i[方法を、原料をボートに充填して水平に静置す
る反応装置で行うと、黒色度でL値を19以下とするに
はNH3原単位が100〜300 KPNH3/製品K
pであるが2本発明者らの考案に係る下記に詳述する縦
型円筒状反応塔を有する反応装置で行うと、 NH5原
単位が5〜25 KyNI−13/製品KPと低く々る
っしたがって、工業的にこの方法を実施するためには、
生産性を高め、生産コストを低減するために流動床反応
装置の利用が是非型まれる。If the above method is carried out using a reaction apparatus in which raw materials are filled into a boat and left horizontally, the NH3 basic unit must be 100 to 300 KPNH3/Product K to achieve a blackness L value of 19 or less.
p, but 2 When carried out using a reactor having a vertical cylindrical reaction tower devised by the present inventors and detailed below, the NH5 basic unit is as low as 5 to 25 KyNI-13/product KP. Therefore, in order to implement this method industrially,
The use of fluidized bed reactors is strongly encouraged to increase productivity and reduce production costs.
しかし、この縦型反応塔の反応装置を利用した場合Vζ
は、静置式反応装置を使用した場合には起らない焼結が
起り易く、比表面積50d/F/以上の二酸化チタン粉
末を用いても、比表面積2 On?/g以上の製品粉末
を得ることが困難であることがわかった。However, when using this vertical reactor reactor, Vζ
, sintering that does not occur when using a static reactor is likely to occur, and even if titanium dioxide powder with a specific surface area of 50 d/F/ or more is used, the specific surface area is 2 On? It was found that it was difficult to obtain a product powder with a weight of 1.5% or more.
そこで本発明者らが、工業的規模で前記方法を実施し、
高い生産性、良好な経済性をもって所望の微細な有色粉
末を得る目的で、該方法の諸条件を検討した結果、原料
として、混式の加水分解により製造した二酸化チタン粉
末を採用することにより、この問題を解消することがで
きた7゜即ち2本発明によると、湿式の加水分解に19
製造した二酸化チタン粉末であって比表面積30d/l
1以上のものを。Therefore, the present inventors implemented the above method on an industrial scale,
In order to obtain the desired fine colored powder with high productivity and good economic efficiency, as a result of examining the various conditions of the method, we decided to use titanium dioxide powder produced by mixed hydrolysis as the raw material. According to the present invention, this problem can be solved by 7°, that is, 2°, and 19° for wet hydrolysis.
The produced titanium dioxide powder has a specific surface area of 30 d/l.
More than 1.
縦型円筒状の反応塔であってその下部が逆截頭円すい状
に狭さくしていて、底に上方へアンモニアガスを分散さ
せる手段を有し、内部に滞留する二酸化チタン粉末を攪
拌する手段を有するものと;前記アンモニアガス分散手
段へ連絡するアンモニアガス供給路と;前記反応塔を外
部より加熱する手段とを備えてなる反応装置を使用して
。It is a vertical cylindrical reaction tower whose lower part is narrowed in the shape of an inverted truncated cone, and has means for dispersing ammonia gas upward at the bottom and means for stirring the titanium dioxide powder staying inside. using a reaction apparatus comprising; an ammonia gas supply path communicating with the ammonia gas dispersion means; and means for externally heating the reaction tower.
アンモニアガス雰囲気中、500°〜950℃で。At 500° to 950°C in an ammonia gas atmosphere.
前記攪拌手段で攪拌りながら加熱する。ことからなる比
表面積20m/#以上の徽細な有色粉末の製法が提供さ
れる。The mixture is heated while being stirred by the stirring means. A method for producing a fine colored powder having a specific surface area of 20 m/# or more is provided.
微細な二酸化チタン粉末に1現在次の2つの方法で製造
される。Fine titanium dioxide powder is currently produced in two ways:
1)乾式法 四塩化チタンを酸水素炎中において加水分解させる。1) Dry method Titanium tetrachloride is hydrolyzed in an oxyhydrogen flame.
T iC4(gl −1−2H2(gl + 02(g
l 胆四見T 1ot(sl + 4HCJ(gl2)
湿式法
硫酸チタンもしくは四塩化チタンの水溶液を煮沸、アル
カリ中和によって加水分解させ、生成した水酸化チタン
を大気中で脱水焼成する。T iC4(gl -1-2H2(gl + 02(g
l Cholecystitis T 1ot (sl + 4HCJ (gl2)
Wet method An aqueous solution of titanium sulfate or titanium tetrachloride is hydrolyzed by boiling and alkali neutralization, and the produced titanium hydroxide is dehydrated and calcined in the atmosphere.
Tie”(aq) + 2H20(/!l−→Ti0(
OIT)2(sl + 2H”(aq)TiO(OH)
、(sl−一−→Ti02fsl + HIO(glこ
れら2種類の粉末の還元をNH3雰囲気下。Tie"(aq) + 2H20(/!l-→Ti0(
OIT)2(sl+2H”(aq)TiO(OH)
, (sl-1-→Ti02fsl + HIO(gl) These two types of powders were reduced under NH3 atmosphere.
500°〜950℃で行ったところ、乾式法によるT’
i02粉末(比表面積s o rn’/Ji’ (平均
粒子径0.03μrIL))は焼結が著しく、還元条件
を種々変化しても、還元粉末の比表面積は、10rr?
/I(平均粒子径0.2μrlL)前後となり、目的と
する微細な生成物は得られなかった。一方、湿式法で製
造し5た粉末(40rn’/g(平均粒子径004μm
))は。When conducted at 500° to 950°C, T' by dry method
The i02 powder (specific surface area s o rn'/Ji' (average particle size 0.03μrIL)) is significantly sintered, and even if the reduction conditions are varied, the specific surface area of the reduced powder is 10rr?
/I (average particle size: 0.2 μrlL), and the desired fine product could not be obtained. On the other hand, powder produced by wet method (40rn'/g (average particle size 004μm)
))teeth.
比表面積20nr’/Ii以上(平均粒子径0.08μ
m)の生成物が得られ、還元時の焼結が少ないことが本
発明の方法は500〜950℃の温度で行われる。50
0℃未満では還元が進行し難<、950℃を超えると焼
結が無視し得ない程顕著になる。Specific surface area 20nr'/Ii or more (average particle size 0.08μ
The process of the invention is carried out at temperatures of 500 to 950<0>C, resulting in the products of m) and less sintering during reduction. 50
At temperatures below 0°C, reduction is difficult to proceed, and at temperatures above 950°C, sintering becomes so pronounced that it cannot be ignored.
600〜850℃が特に好ましい。Particularly preferred is 600-850°C.
処理中、アンモニアガスは、線速度0.5cm/sec
以上の気流で供給することが好ましい。0.5 crr
y’s e c未満だと、粉末の還元が不均一となり易
い。処理に要する時間は大体5〜8時間である。During the treatment, the ammonia gas has a linear velocity of 0.5 cm/sec.
It is preferable to supply the air with the above air flow. 0.5cr
If it is less than y's e c, the reduction of the powder tends to be non-uniform. The time required for the treatment is approximately 5 to 8 hours.
本発明の方法に使用する反応装置は反応帯域に攪拌手段
を備えていて、 NH3ガスと粉末の良好な接触が行わ
れる。The reactor used in the method of the invention is equipped with stirring means in the reaction zone to ensure good contact between the NH3 gas and the powder.
本発明の方法によシ得られる有色粉末は、前述のように
還元度とともに色彩が変化するが、その中の黒色酸化チ
タン粉末は比表面積が大^い程。The color of the colored powder obtained by the method of the present invention changes with the degree of reduction as described above, and the black titanium oxide powder among them has a large specific surface area.
黒色度(L値)(スガ試験機製カラーコンピュータ8M
−!lで測定)と着色力が増加することがわかっている
。したがって顔料としては比表面積20n?711以上
の粉末が望ましいが2本発明の方法により容易に製造で
きる。このように9本発明の有色粉末の黒色のものは黒
色度が高く1着色力が優れているため、顔料としてプラ
スチック々どに添加した場合少量で効果がでる。また有
害な物質を含まないので化粧品等の材料としても使用で
きる。Blackness (L value) (Suga Test Instruments Color Computer 8M
-! It has been found that the tinting strength increases when the coloring strength increases. Therefore, as a pigment, the specific surface area is 20n? Powders with a particle size of 711 or higher are desirable and can be easily produced by the method of the present invention. As described above, the black colored powder of the present invention has a high degree of blackness and excellent coloring power, so when it is added to plastics as a pigment, a small amount is effective. Also, since it does not contain harmful substances, it can be used as a material for cosmetics, etc.
また、比抵抗が10−” 〜10”Ω−cm (10K
p/cd圧粉体)であるので、導電材料として、静電防
止用や抵抗ペーストとして使用できる。さらに1本発明
の方法で得られた有色粉末を原料とし、てセラミック焼
結体を製造すると黄金色を呈し、装飾用に利用できる。In addition, the specific resistance is 10-” to 10”Ω-cm (10K
Since it is a p/cd green compact, it can be used as a conductive material, for antistatic purposes, and as a resistance paste. Furthermore, when a ceramic sintered body is produced using the colored powder obtained by the method of the present invention as a raw material, it exhibits a golden color and can be used for decoration.
添付図面を参照して1本発明に使用する装置を具体的に
説明する。図示の装置は2反応塔1.冷却手段4を備え
たアンモニアガス供給路22反応塔1f:加熱するため
の手段17よりなっている。DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus used in the present invention will be specifically described with reference to the accompanying drawings. The illustrated apparatus has two reaction columns, 1. Ammonia gas supply line 22 equipped with cooling means 4 Reaction tower 1f: consisting of means 17 for heating.
反応塔の上部には二酸化チタンの投入口8が設けられて
おり、下端は逆截頭円すい状に狭さくシ。A titanium dioxide inlet 8 is provided in the upper part of the reaction tower, and the lower end is narrowed in the shape of an inverted truncated cone.
底は気体分散板3によって閉鎖されている。気体分散板
は目皿のようなものでよい。The bottom is closed by a gas distribution plate 3. The gas distribution plate may be something like a perforated plate.
気体分散板6は支持棒15によって支持されて。The gas distribution plate 6 is supported by a support rod 15.
逆截頭円すいの底面に保持さfl、ているが、支持棒を
下げることによって反応済みチタン酸化物を則り出すこ
とができる。Although it is held at the bottom of the inverted truncated cone, the reacted titanium oxide can be poured out by lowering the support rod.
反応塔には回転軸に固定された攪拌翼6..6’。The reaction tower has a stirring blade fixed to a rotating shaft6. .. 6'.
6′が設けられ、塔外のモーター5によって回転させら
れる。塔頂には気体排出管1oが設けられ。6' is provided and rotated by a motor 5 outside the tower. A gas discharge pipe 1o is provided at the top of the tower.
該排出管はザイクロン11に連絡し、気体に随拌して来
た粉塵は分離され、粉体はスクリューコンベアー12に
よって反応塔に戻さill、気体は導管16から排出さ
れる。The discharge pipe is connected to the Zyclone 11, the dust entrained in the gas is separated, the powder is returned to the reaction tower by the screw conveyor 12, and the gas is discharged from the conduit 16.
攪拌翼は好ましくはピッチの大きい竹とんほの羽を6枚
重ねたようなもの、即ち1図面において上端の翼6と下
端の翼6′は右半分と左半分tま逆のピッチに傾いてお
り、真中の翼6Qj手前半分と向う側半分が逆のピッチ
に傾いている。そしてさらに翼には酸化チタンが通路し
得る孔を多数設けておくのが好ましい。The stirring blade is preferably a stack of six bamboo wings with a large pitch, that is, in one drawing, the upper end blade 6 and the lower end blade 6' are inclined at opposite pitches to the right half and the left half t. The front half of the middle wing 6Qj and the opposite half are tilted at opposite pitches. Furthermore, it is preferable to provide the blade with a large number of holes through which titanium oxide can pass.
反応塔の下方には、生成物の排出道を兼ねたアンモニア
供給管2が設けられている。このアンモニア供給管2は
冷却手段(通水ジャケットでよい)4を有する。図示の
態様ではその上端は直接反応塔に連結せず2反応塔との
間に空間が形成されているが:気体分散板の操作を妨げ
ないように、逆円すい状部に接してもよい。その場合は
気体分散板に近い部分に予熱帯を設けなければならない
。An ammonia supply pipe 2, which also serves as a product discharge path, is provided below the reaction tower. This ammonia supply pipe 2 has a cooling means 4 (which may be a water jacket). In the illustrated embodiment, the upper end is not directly connected to the reaction tower, but a space is formed between the two reaction towers; however, it may be in contact with the inverted conical portion so as not to interfere with the operation of the gas distribution plate. In that case, a preheating zone must be provided near the gas distribution plate.
また図示の態様では気体分散板3の支持棒15を操作可
能に支持するために生成物排出管を兼ねるアンモニア供
給管は斜めに折れている。生成物排出管は受器16に終
り、ここに貯留した生成物はロータリーバルブ14で逐
次排出される。Further, in the illustrated embodiment, the ammonia supply pipe, which also serves as a product discharge pipe, is bent diagonally in order to operably support the support rod 15 of the gas distribution plate 3. The product discharge pipe ends in a receiver 16, and the product stored there is sequentially discharged by a rotary valve 14.
加熱手段17f′i電気抵抗加熱が好都合である。The heating means 17f'i are conveniently electrical resistance heating.
図示の態様においては冷却手段4と加熱装置17の間に
は断熱材7が設けであるが、設計によってはこの断熱材
は不要である。In the illustrated embodiment, a heat insulating material 7 is provided between the cooling means 4 and the heating device 17, but this heat insulating material is not required depending on the design.
この装置は、炉芯管として高温部が窒化され難い材料が
良(、Ni系のインコネルが最善であるが。For this device, it is best to use a material that does not easily nitride the high-temperature part of the furnace core tube (although Ni-based Inconel is the best).
5US510Sでも十分使用することができる。5US510S can also be used.
化学工学の通常の知識を有するものが容易に製作するこ
とができるから、設計製作の詳細について記載する必要
はない。It is not necessary to describe the details of the design and manufacture since it can be easily manufactured by someone with ordinary knowledge of chemical engineering.
本発明の方法を行うとき、攪拌翼の回転速度は重要であ
る。適切な速度は翼の具体的形状2寸法力とによるが1
回転速度が遅すぎると所望の微細′粒子は得難い。反応
塔1内に滞留させられた二酸化チタン粉末16は、攪拌
翼6.6’、 6’により攪拌させられ、同時に気体分
散板3からのNH3と接触させられる。このとき加熱手
段17による加熱で還元が進む。When carrying out the method of the invention, the rotational speed of the stirring blade is important. The appropriate speed depends on the specific shape, dimensions, and forces of the wing.
If the rotation speed is too slow, it is difficult to obtain the desired fine particles. The titanium dioxide powder 16 retained in the reaction tower 1 is stirred by the stirring blades 6, 6', 6' and is simultaneously brought into contact with NH3 from the gas distribution plate 3. At this time, the reduction progresses due to heating by the heating means 17.
実施例
以下の実施例で、は、内径30σ、高さ130のの反応
塔を備えた添伺図面に示したごとき構成の縦型反応装置
を使用した。三段に交互に重ねられている回転翼は各々
縦方向の幅が75朋で、垂直に対して60°傾いたプロ
ペラ状であり、各界と反応塔の器壁との間隙が1.5C
IItとなるような長さである。EXAMPLES In the following examples, a vertical reactor having a configuration as shown in the attached drawings was used, which was equipped with a reaction column having an inner diameter of 30σ and a height of 130 mm. The rotor blades, which are alternately stacked in three stages, each have a vertical width of 75 mm and are propeller-shaped, tilted at 60 degrees with respect to the vertical, and the gap between each field and the wall of the reaction tower is 1.5 cm.
The length is such that IIt.
実施例(1)比表面積40rr?/g<平均粒子径00
4μrIL)の二酸化チタン微粉末(帝国化工社製、商
標名MT500B、湿式法)を反応塔に5Ky装入し。Example (1) Specific surface area 40rr? /g<average particle size 00
5 Ky of titanium dioxide fine powder (manufactured by Teikoku Kako Co., Ltd., trade name MT500B, wet method) of 4μrIL) was charged into a reaction tower.
炉内線速度2Cm A e Cのアンモニアガスを分散
板を通して流し、攪拌翼を15rpmで回転音せて粉末
全攪拌しながら、炉内温度700℃、5時間の還元を行
った。回収した粉末は26に2で青黒色を呈しており、
L値10.比表面積29 nr’/ 9 (平均粒径0
.05 μm )、比抵抗2X10−”Ω−am (1
0K9/cl圧粉体)であった。またX線回折によれば
’rtov/Tto(Nlの比け1/10である。Ammonia gas was flowed through the dispersion plate at a linear velocity of 2 Cm A e C in the furnace, and reduction was carried out at a furnace temperature of 700° C. for 5 hours while stirring the entire powder with a stirring blade rotating at 15 rpm. The recovered powder had a blue-black color in 26 out of 2,
L value 10. Specific surface area 29 nr'/9 (average particle size 0
.. 05 μm), specific resistance 2×10-”Ω-am (1
0K9/cl powder compact). Also, according to X-ray diffraction, 'rtov/Tto (1/10 of Nl).
実施例(2)〜(5)実施例(1)の二酸化チタン粉末
を用い、同一の反応装置を使い、還元条件を変えて還元
を行った。表1に反応条件とその結果を示す。Examples (2) to (5) Reduction was carried out using the same reaction apparatus using the titanium dioxide powder of Example (1) and changing the reduction conditions. Table 1 shows the reaction conditions and results.
hお、これら実施例で用いた反応装置の場合は。Oh, in the case of the reaction apparatus used in these examples.
攪拌翼の回転は10rpm以上が好ましく、特に20r
pm以上が好ましかった。The rotation of the stirring blade is preferably 10 rpm or more, especially 20 rpm.
pm or higher was preferable.
比較例(1)
比表面75(50rn’/、!i’r(平均粒子径0.
03μm)の二酸化チタン微粉末(西独デクサ社製、商
標名P−25.乾式法で製造)を実施例(1)で用いた
反応装置K 3 K9装入し、炉内線速度2σ/S e
Cのアンモニアガスを流し、棺、拌1d’c 15
rpmで回転して粉末を攪拌しながら、炉内温度700
℃、5時間の還元を行った。回収した粉末の比表面積は
10rr?/’;l(平均粒子径015μm)となり焼
結がかなシみられた。Comparative Example (1) Specific surface 75 (50rn'/, !i'r (average particle size 0.
03 μm) titanium dioxide fine powder (manufactured by West German Dexa AG, trade name P-25, manufactured by dry method) was charged into the reactor K 3 K9 used in Example (1), and the linear velocity in the furnace was set at 2σ/S e
Pour in the ammonia gas of C, stir the coffin 1d'c 15
While stirring the powder by rotating at rpm, the furnace temperature was increased to 700°C.
Reduction was performed at ℃ for 5 hours. The specific surface area of the recovered powder is 10rr? /';l (average particle size 015 μm), and slight sintering was observed.
比較例(2)〜(3)
比較例(1)の二酸化チタン粉末を用い、同一の反応装
置を使って還元条件を変えて還元を行った。Comparative Examples (2) to (3) Using the titanium dioxide powder of Comparative Example (1), reduction was performed using the same reaction apparatus under different reduction conditions.
表1に条件とその結果を示す。Table 1 shows the conditions and results.
添付図面は本発明に使用する装置例を示す概念図である
。
図において。
1:反応塔、 2:アンモニアガス供給管。
3:気体分散板、4:冷却手段。
17:加熱手段。
特許出願人三菱金属株式会社
代理人 弁理士松 井 政 広
弁理士岩見谷 周 志The accompanying drawings are conceptual diagrams showing examples of devices used in the present invention. In fig. 1: Reaction tower, 2: Ammonia gas supply pipe. 3: Gas distribution plate, 4: Cooling means. 17: Heating means. Patent applicant Mitsubishi Metals Co., Ltd. Representative: Patent attorney Masa Matsui Hiro patent attorney Shu Shi Iwamiya
Claims (1)
あって比表面550m”/#以上のものを。 縦型円筒状の反応塔であってその下部が逆截頭円すい状
に狭さくしていて、底に上方へアンモニアガスを分散さ
せる手段を有し、内部に滞留する二酸化チタン粉末を攪
拌する手段を有するものと;前記アンモニアガス分散手
段へ連絡するアンモニアガス供給路と;前記反応塔を外
部より加熱する手段とを備えてなる反応装置を使用して
。 アンモニアガス雰囲気中、500°〜950℃で前記攪
拌手段で攪拌しながら加熱する。ことからなる比表面積
20cII/g以上の微細な有色粉末の製法。[Scope of Claims] 1. Titanium dioxide powder produced by floating hydrolysis with a specific surface of 550 m"/# or more. A vertical cylindrical reaction tower, the lower part of which is an inverted truncated cone. an ammonia gas supply path connected to the ammonia gas dispersion means; using a reaction apparatus comprising a means for externally heating the reaction tower; heating at 500° to 950°C in an ammonia gas atmosphere while stirring with the stirring means; a specific surface area of 20 cII/ A method for producing fine colored powder weighing more than g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15715783A JPS6051616A (en) | 1983-08-30 | 1983-08-30 | Manufacturing method of fine colored powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15715783A JPS6051616A (en) | 1983-08-30 | 1983-08-30 | Manufacturing method of fine colored powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6051616A true JPS6051616A (en) | 1985-03-23 |
JPS6241162B2 JPS6241162B2 (en) | 1987-09-01 |
Family
ID=15643427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15715783A Granted JPS6051616A (en) | 1983-08-30 | 1983-08-30 | Manufacturing method of fine colored powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6051616A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132971A (en) * | 1986-10-31 | 1988-06-04 | アメリカン テレフォン アンド テレグラフ カムパニー | Composition containing light stable pigment |
US5002646A (en) * | 1988-04-23 | 1991-03-26 | Tioxide Group Plc | Method for making titanium nitride |
-
1983
- 1983-08-30 JP JP15715783A patent/JPS6051616A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132971A (en) * | 1986-10-31 | 1988-06-04 | アメリカン テレフォン アンド テレグラフ カムパニー | Composition containing light stable pigment |
US5002646A (en) * | 1988-04-23 | 1991-03-26 | Tioxide Group Plc | Method for making titanium nitride |
Also Published As
Publication number | Publication date |
---|---|
JPS6241162B2 (en) | 1987-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4668501A (en) | Process for preparing a titanium oxide powder | |
US4898843A (en) | Titanate powder and process for producing the same | |
CN1476413B (en) | Production of fine-grained particles | |
CN107150127B (en) | Preparation method of spherical cobalt powder | |
JP2009091205A (en) | Fine particle low-order zirconium oxide / zirconium nitride composite and method for producing the same | |
KR830001081B1 (en) | Method for manufacturing rutile titanium dioxide | |
CN109336143B (en) | Method for preparing nano magnesium oxide by one-step pyrolysis method | |
AU2326500A (en) | Ultra-fine particles of zinc oxide, method for preparing the same and cosmetic comprising the same | |
Hashimoto et al. | Well-dispersed α-Fe2O3 particles for lead-free red overglaze enamels through hydrothermal treatment | |
KR20150041606A (en) | Ultrafine particles of titanium dioxide and process for producing the same | |
JPS6051616A (en) | Manufacturing method of fine colored powder | |
AU765840B2 (en) | Highly white zinc oxide fine particles and method for preparation thereof | |
JPS6081023A (en) | Barium titanate powder | |
CA2045526C (en) | Process for preparing silicon carbide | |
JP4182669B2 (en) | Manufacturing method of granular hematite particle powder | |
JPH05163022A (en) | Spherical anatase titanium oxide and its production | |
JPH0791063B2 (en) | Method for producing ultrafine particulate low-order titanium oxide powder having black color | |
JPS6241171B2 (en) | ||
CN109942018B (en) | A kind of preparation method of nano-scale strontium titanate powder | |
JP2747916B2 (en) | Potassium titanate long fiber and method for producing titania fiber using the same | |
JP2009091206A (en) | Fine particle titanium monoxide composition and method of manufacturing the same | |
US4617061A (en) | Mixed phases having the composition Bi2-x Crx O3 | |
JPS5933624B2 (en) | Method for producing inorganic pigment preparations | |
JPH0525812B2 (en) | ||
Dittmann et al. | Influence of burner scale‐up on characteristics of flame‐synthesized titania and silica nanoparticles |