[go: up one dir, main page]

JPH0525812B2 - - Google Patents

Info

Publication number
JPH0525812B2
JPH0525812B2 JP59121100A JP12110084A JPH0525812B2 JP H0525812 B2 JPH0525812 B2 JP H0525812B2 JP 59121100 A JP59121100 A JP 59121100A JP 12110084 A JP12110084 A JP 12110084A JP H0525812 B2 JPH0525812 B2 JP H0525812B2
Authority
JP
Japan
Prior art keywords
ammonia
titanium
titanium oxide
titanium dioxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59121100A
Other languages
Japanese (ja)
Other versions
JPS60264313A (en
Inventor
Toshimasa Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Teikoku Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Kako Co Ltd filed Critical Teikoku Kako Co Ltd
Priority to JP12110084A priority Critical patent/JPS60264313A/en
Publication of JPS60264313A publication Critical patent/JPS60264313A/en
Publication of JPH0525812B2 publication Critical patent/JPH0525812B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は窒化チタンと酸化チタンの複合化合物
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a composite compound of titanium nitride and titanium oxide.

窒化チタンは高融点、高硬度で化学的に安定で
あり、電気伝導性にも優れている。これらの諸特
性を利用して、超硬材料、導電性材料として使用
されており、さらに超伝導材料、窒化ケイ素焼結
体等の導電性付加材料としての用途も開発が進ん
でいる。
Titanium nitride has a high melting point, high hardness, chemical stability, and excellent electrical conductivity. Utilizing these properties, it is used as a superhard material and an electrically conductive material, and its use as a superconducting material and electrically conductive additive material such as silicon nitride sintered bodies is also being developed.

窒化チタンは多くの場合不定比化合物となつて
おり、窒素の含有率や不純物、粒度特性等により
諸性質が大きく変化する。窒化チタンの固相−気
相反応により製造方法としては 金属チタン粉体を窒素またはアンモニア雰囲
気中にて800℃以上で加熱し窒化する方法。
Titanium nitride is often a non-stoichiometric compound, and its properties vary greatly depending on the nitrogen content, impurities, particle size characteristics, etc. A method for producing titanium nitride using a solid phase-vapor phase reaction is a method in which titanium metal powder is heated at 800°C or higher in a nitrogen or ammonia atmosphere to nitride it.

窒素雰囲気中、電気溶鉱炉で二酸化チタンを
強熱する方法。
A method of igniting titanium dioxide in an electric blast furnace in a nitrogen atmosphere.

アンモニア気流中で二酸化チタンを1400〜
1500℃で加熱する方法。
Titanium dioxide in ammonia stream from 1400~
Method of heating at 1500℃.

等がある。しかし、これらの製造法では作成した
窒化チタンは高温で処理するため、粒子径が大き
くなつてしまい、得られた生成物の粒子も不均一
である。本発明者は粒子径が小さく均一な粒子か
らなる窒化チタンを得るべく検討を重ねた結果本
発明を得るに至つた。
etc. However, in these production methods, the titanium nitride produced is treated at high temperatures, so the particle size becomes large and the particles of the obtained product are also non-uniform. The present inventor conducted repeated studies to obtain titanium nitride consisting of uniform particles with a small particle size, and as a result, the present invention was achieved.

現在、一般的な黒色導電性顔料としてはカーボ
ンブラツクおよび一酸化チタン(特開昭58−
91037、特開昭58−164653)が知られている。し
かしカーボンブラツクは表面積が大きくまた疏水
性であるため塗料化の際のハンドリングが困難で
あり、さらに工業的に生産されたカーボンブラツ
クには発癌性物質であるベンズピレンが混入する
可能性があるとされている。また一酸化チタン
は、本発明と同様に二酸化チタンを処理すること
により得られるため、樹脂とのなじみが良好であ
り、また無毒であるが、酸素存在下で加熱するこ
とにより高次の酸化物に変化しさらに、化学的に
も不安定であるという欠点を持つ。また、別の黒
色顔料としては四三酸化鉄、低次酸化チタン
TiOn(1<n<2)がある。しかし四三酸化鉄は
強磁性であるため分散安定性を維持しにくい欠点
がある。低次酸化チタンは二酸化チタン粉末と金
属チタン粉末との混合物を真空中で加熱する方法
か、二酸化チタン粉末を水素ガスにより高温で加
熱する方法等で得られるため、粒子径が小さく均
一性の高い生成物を得ることが困難である。
Currently, common black conductive pigments include carbon black and titanium monoxide
91037, Japanese Unexamined Patent Publication No. 58-164653) is known. However, carbon black has a large surface area and is hydrophobic, making it difficult to handle when turning it into a paint. Furthermore, it is believed that industrially produced carbon black may be contaminated with benzpyrene, a carcinogenic substance. ing. Furthermore, since titanium monoxide is obtained by treating titanium dioxide in the same manner as in the present invention, it is compatible with resin and is non-toxic. Furthermore, it has the disadvantage of being chemically unstable. Other black pigments include triiron tetroxide and lower titanium oxide.
There is TiOn (1<n<2). However, since triiron tetroxide is ferromagnetic, it has the disadvantage that it is difficult to maintain dispersion stability. Low-order titanium oxide is obtained by heating a mixture of titanium dioxide powder and metallic titanium powder in a vacuum, or by heating titanium dioxide powder at high temperature with hydrogen gas, so it has a small particle size and high uniformity. It is difficult to obtain the product.

本発明は窒化チタンと酸化チタンの複合体で前
述の材料の欠点を解消した、例えば黒色顔料、導
電材料として有用な粉体を得るものである。本発
明の方法は二酸化チタンあるいは含水酸化チタン
粉体をアンモニアガス、水素ガス混合気体中で
800〜1000℃の温度で加熱し窒化することを特徴
とするものである。すなわち、前述のように二酸
化チタンをアンモニアガス気流中で高温で長時間
処理することにより窒化チタンを得ることができ
るが、この方法で作成した窒化チタンは粒子間の
焼結が生じるため、粒子径の小さいものが得にく
い。鋭意検討の結果、アンモニア、水素混合気体
で加熱還元窒化することにより、均一で粒子径の
小さい良好な黒色系導電性粉末を得ることができ
た。生成物の組成はX線回析および窒素分析
(CNコーダー Yanaco製)の結果、窒化チタン
と酸化チタンの複合体の状態であつた。
The present invention provides a powder using a composite of titanium nitride and titanium oxide, which eliminates the drawbacks of the above-mentioned materials and is useful as, for example, a black pigment or a conductive material. The method of the present invention is to prepare titanium dioxide or hydrous titanium oxide powder in a mixed gas of ammonia gas and hydrogen gas.
It is characterized by heating and nitriding at a temperature of 800 to 1000°C. That is, as mentioned above, titanium nitride can be obtained by treating titanium dioxide in an ammonia gas stream at high temperature for a long time, but titanium nitride created by this method has a small particle size because sintering occurs between particles. Small ones are difficult to obtain. As a result of intensive studies, we were able to obtain a good black conductive powder with uniform and small particle size by thermal reduction nitriding with a mixed gas of ammonia and hydrogen. As a result of X-ray diffraction and nitrogen analysis (CN coder manufactured by Yanaco), the composition of the product was found to be a composite of titanium nitride and titanium oxide.

本発明に用いられる原料は二酸化チタン粉体・
含水酸化チタン粉体および薄片状雲母に二酸化チ
タンあるいは含水酸化チタンを被覆した雲母チタ
ン等を用いることができる。含水酸化チタンとし
ては、二酸化チタン(ルチル、アナターゼ)の製
造工程における中間体であるメタチタン酸、オル
ソチタン酸等を用いることができる。しかし、こ
の場合は、二酸化チタンを処理する場合より焼結
が生じやすく、低い温度で処理する必要がある。
二酸化チタンとしてはルチル、アナターゼのいず
れでもよく、また焼結を防ぐために表面処理を施
したものを用いることもできる。得られた生成物
の粒子径は原料の粒子径を保持するため0.05μ〜
1μの幅広い範囲で得ることができる。反応温度
は1000℃より高いと焼結により粒子成長が著しく
大きくなり、また不均一になる。また低温では窒
化反応が進行しにくく、また反応時間も著しく長
時間が必要となるため1〜4時間で反応を終了す
るためには800℃以上1000℃以下にする必要があ
る。
The raw materials used in the present invention are titanium dioxide powder and
Hydrous titanium oxide powder and flaky mica coated with titanium dioxide or hydrous titanium oxide, etc. can be used. As the hydrous titanium oxide, metatitanic acid, orthotitanic acid, etc., which are intermediates in the manufacturing process of titanium dioxide (rutile, anatase), can be used. However, in this case, sintering occurs more easily than when titanium dioxide is treated, and the treatment must be performed at a lower temperature.
The titanium dioxide may be either rutile or anatase, and may be surface-treated to prevent sintering. The particle size of the obtained product is 0.05μ to maintain the particle size of the raw material.
Can be obtained in a wide range of 1μ. If the reaction temperature is higher than 1000°C, grain growth will become significantly large and non-uniform due to sintering. Further, the nitriding reaction is difficult to proceed at low temperatures, and the reaction time is also required to be extremely long. Therefore, in order to complete the reaction in 1 to 4 hours, the temperature must be 800°C or more and 1000°C or less.

アンモニア・水素混合気体はアンモニアの比率
が少なくとも50%であることが望ましい。アンモ
ニアの比率の増加により生成物の色調を褐色〜黒
褐色〜青黒色と変化させることができる。また二
酸化チタン、含水酸化チタンを水素還元により低
次酸化チタンTiOn(n<2)とした後、アンモニ
ア・水素混合気体で短時間処理することによつて
も同様の生成物を得ることができる。この方法に
よりアンモニアの必要量を減らすことができる。
また最も良好な黒色顔料はこの方法で得られた。
混合気体の流量は反応を均一に進行させるために
試料の飛散および反応系の温度の低下が生じない
範囲内で大きいことが望まれる。また混合気体を
予熱するこことも必要である。使用する反応炉は
同様の目的から、静置式のものよりは試料の回転
機構を有する炉が望ましい。
It is desirable that the ammonia/hydrogen mixture has an ammonia ratio of at least 50%. By increasing the proportion of ammonia, the color of the product can be changed from brown to dark brown to blue-black. A similar product can also be obtained by reducing titanium dioxide or hydrous titanium oxide to lower titanium oxide TiOn (n<2) by hydrogen reduction, and then treating it with an ammonia/hydrogen mixed gas for a short time. This method can reduce the amount of ammonia required.
The best black pigment was also obtained by this method.
In order for the reaction to proceed uniformly, the flow rate of the mixed gas is desirably large within a range that does not cause scattering of the sample or a drop in the temperature of the reaction system. It is also necessary to preheat the gas mixture. For the same purpose, it is preferable to use a reactor with a sample rotation mechanism rather than a stationary reactor.

実施例 1 粒子径0.04μの二酸化チタン微粒子(ルチル型、
帝国化工製商標名MT―500B、比表面積40m2
g)10gをボートに入れ、温度1000℃、アンモニ
ア流量1500ml/min、水素流量500ml/minの石
英反応管の中に挿入し、1時間窒化処理を行つ
た。その後同一の気体雰囲気でボートを室温の部
分に引き出し冷却後、窒素ガスにて反応管内を洗
浄した後生成物を採取した。得られた生成物は黒
褐色を呈し、X線回析によるTiN/TiO2(ルチ
ル)のピーク強度比は5/11であつた。
Example 1 Titanium dioxide fine particles (rutile type,
Teikoku Kako trade name MT-500B, specific surface area 40m 2 /
g) 10 g was placed in a boat and inserted into a quartz reaction tube with a temperature of 1000°C, an ammonia flow rate of 1500 ml/min, and a hydrogen flow rate of 500 ml/min, and nitriding treatment was performed for 1 hour. Thereafter, the boat was taken out to room temperature in the same gas atmosphere, cooled, and the inside of the reaction tube was washed with nitrogen gas, and then the product was collected. The obtained product exhibited a blackish brown color, and the peak intensity ratio of TiN/TiO 2 (rutile) by X-ray diffraction was 5/11.

CNコーダーによる窒素分析の結果TiNとして
20%相当の窒素が確認された。また比抵抗は1.5
Ω・cmであり、電顕写真による平均粒子径は
0.05μであつた。
Results of nitrogen analysis using CN coder as TiN
Nitrogen equivalent to 20% was confirmed. Also, the specific resistance is 1.5
Ω・cm, and the average particle diameter according to electron micrograph is
It was 0.05μ.

実施例 2 実施例1で使用した二酸化チタン微粒子10gを
反応温度1000℃、アンモニア流量1500ml/min、
水素流量200ml/minで反応時間1時間で処理し
たところ、生成物は黒色を呈し、X線回析による
TiN/TiO2(ルチル)のピーク強度比は5/4で
あつた。
Example 2 10 g of the titanium dioxide fine particles used in Example 1 were heated at a reaction temperature of 1000°C, an ammonia flow rate of 1500 ml/min,
When the reaction time was 1 hour at a hydrogen flow rate of 200 ml/min, the product exhibited a black color and was determined by X-ray diffraction.
The peak intensity ratio of TiN/TiO 2 (rutile) was 5/4.

また比抵抗は0.5Ω・cmであつた。 Moreover, the specific resistance was 0.5Ω·cm.

実施例 3 メタチタン酸(帝国化工、工程中間体)10gを
反応温度800℃、アンモニア流量1000ml/min、
水素流量100ml/minで反応時間3時間で処理し
たところ、得られた生成物は黒青色を呈し、X線
回析によるTiN/TiO2(アナターゼ)のピーク強
度比は1/4であつた。また比抵抗は4Ω・cmで
あり、平均粒子径は0.05μであつた。
Example 3 10 g of metatitanic acid (Teikoku Kako, process intermediate) was reacted at a reaction temperature of 800°C and an ammonia flow rate of 1000 ml/min.
When treated at a hydrogen flow rate of 100 ml/min for a reaction time of 3 hours, the obtained product exhibited a black-blue color, and the TiN/TiO 2 (anatase) peak intensity ratio by X-ray diffraction was 1/4. Further, the specific resistance was 4Ω·cm, and the average particle diameter was 0.05μ.

比較例 1 実施例3と同様のメタチタン酸10gを反応温度
1000℃、水素流量900ml/minで1時間処理した
ところ、得られた生成物は青黒色を呈し、X線回
析より低次酸化チタン(Ti6O11主相)であつた。
また電顕写真による平均粒子径は約0.5μであつ
た。
Comparative Example 1 10g of metatitanic acid similar to Example 3 was reacted at
When treated at 1000° C. for 1 hour at a hydrogen flow rate of 900 ml/min, the obtained product exhibited a blue-black color and was determined by X-ray diffraction to be lower titanium oxide (Ti 6 O 11 main phase).
Further, the average particle diameter as determined by electron micrograph was approximately 0.5μ.

実施例 4 比較例1と同様の条件で1時間処理した後、反
応気体を、水素流量900ml/min、アンモニア流
量900ml/minに変え5分間処理した。得られた
生成物は黒色を呈し、X線回析よるTiN/TiO2
(ルチル)のピーク強度比は1/6であり、電顕
写真による平均粒子径は約0.5μであつた。また比
抵抗は3Ω・cmであつた。
Example 4 After processing for 1 hour under the same conditions as in Comparative Example 1, the reaction gas was changed to a hydrogen flow rate of 900 ml/min and an ammonia flow rate of 900 ml/min, and the treatment was continued for 5 minutes. The obtained product has a black color and is TiN/TiO 2 by X-ray diffraction.
The peak intensity ratio of (rutile) was 1/6, and the average particle diameter by electron micrograph was about 0.5μ. Further, the specific resistance was 3Ω·cm.

実施例 5 特開昭60−11560号公報実施例1の方法で作成
した焼成前の含水酸化チタン被覆雲母5gを反応
温度1000℃、アンモニア流量1500ml/min、水素
流量200ml/minで反応時間1時間で処理したと
ころ、生成物は黒褐色を呈した。また比抵抗は2
Ω・cmであつた。
Example 5 5 g of hydrous titanium oxide coated mica before firing prepared by the method of JP-A-60-11560 Example 1 was reacted for 1 hour at a reaction temperature of 1000°C, an ammonia flow rate of 1500 ml/min, and a hydrogen flow rate of 200 ml/min. When treated, the product took on a dark brown color. Also, the specific resistance is 2
It was Ω・cm.

Claims (1)

【特許請求の範囲】 1 二酸化チタンおよび/または含水酸化チタン
をアンモニアおよび水素を含む気流中800〜1000
℃の温度で加熱処理することを特徴とする窒化チ
タン・酸化チタン複合体の製造法。 2 二酸化チタンおよび/または含水酸化チタン
が薄片状雲母上に被覆として担持されている第1
項の方法。 3 アンモニアおよび水素の混合気体を用い、ア
ンモニアの混合比率が少なくとも50%である第1
項または第2項の方法。 4 二酸化チタンおよび/または含水酸化チタン
を最初水素によつて還元して低次酸化チタン
TiOn(n<2)とした後、次にアンモニアを多く
含む気流中で処理する第1項または第2項の方
法。
[Claims] 1 Titanium dioxide and/or hydrated titanium oxide in an air stream containing ammonia and hydrogen at a concentration of 800 to 1000
A method for producing a titanium nitride/titanium oxide composite, which is characterized by heat treatment at a temperature of °C. 2 A first structure in which titanium dioxide and/or hydrous titanium oxide is supported on flaky mica as a coating.
Section method. 3 A first method using a gas mixture of ammonia and hydrogen, with a mixture ratio of ammonia of at least 50%.
Section or method of Section 2. 4 Titanium dioxide and/or hydrous titanium oxide are first reduced with hydrogen to produce lower titanium oxide.
The method of item 1 or item 2, in which after TiOn (n<2) is formed, the treatment is performed in an air stream containing a large amount of ammonia.
JP12110084A 1984-06-12 1984-06-12 Production of titanium nitride powder Granted JPS60264313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12110084A JPS60264313A (en) 1984-06-12 1984-06-12 Production of titanium nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12110084A JPS60264313A (en) 1984-06-12 1984-06-12 Production of titanium nitride powder

Publications (2)

Publication Number Publication Date
JPS60264313A JPS60264313A (en) 1985-12-27
JPH0525812B2 true JPH0525812B2 (en) 1993-04-14

Family

ID=14802872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12110084A Granted JPS60264313A (en) 1984-06-12 1984-06-12 Production of titanium nitride powder

Country Status (1)

Country Link
JP (1) JPS60264313A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064803B2 (en) * 1986-01-31 1994-01-19 ぺんてる株式会社 Black pigment ink
EP0443229A1 (en) * 1990-02-20 1991-08-28 Ebonex Technologies, Inc. Electrically conductive composition and use thereof
JP4484195B2 (en) * 2003-09-16 2010-06-16 テイカ株式会社 Method for producing titanium oxide
US7368523B2 (en) 2004-11-12 2008-05-06 Eastman Chemical Company Polyester polymer and copolymer compositions containing titanium nitride particles
US7300967B2 (en) 2004-11-12 2007-11-27 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic titanium particles
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
JP4931011B2 (en) * 2007-10-10 2012-05-16 テイカ株式会社 Fine particle low-order zirconium oxide / zirconium nitride composite and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065069A (en) * 1983-09-21 1985-04-13 Mitsubishi Metal Corp Black pigment
JPS60200827A (en) * 1984-03-22 1985-10-11 Mitsubishi Metal Corp Black powder manufacturing method

Also Published As

Publication number Publication date
JPS60264313A (en) 1985-12-27

Similar Documents

Publication Publication Date Title
US4668501A (en) Process for preparing a titanium oxide powder
JP2728294B2 (en) Particularly, a method for producing a bluish pearlescent pigment
US3488291A (en) Process and composition for the production of cemented metal carbides
JPH0329010B2 (en)
US3510292A (en) Process for making metal/metal oxide compositions
US3014815A (en) Method of providing articles with metal oxide layers
KR100444142B1 (en) ITO fine powder and method for producing the same
JPH0525812B2 (en)
JP3242469B2 (en) Method for producing conductive zinc oxide
JP5486751B2 (en) Rod-shaped indium tin oxide powder and method for producing the same
JP2002114521A (en) Method for manufacturing cobalt-based black pigment
JPS61106414A (en) Fine powder of electroconductive titanium oxide of low oxidation state and its preparation
JPH05193942A (en) Production of black titanium oxide powder
JPH0699125B2 (en) Black powder and method for producing the same
US5520900A (en) Method of manufacturing a fine monodisperse oxide powder, a fine monodisperse oxide powder, a ceramic composition and their use of same
JPH0292824A (en) Acicular low oxidized titanium and production thereof
JPH0242773B2 (en)
JP5486752B2 (en) Heat ray shielding composition containing rod-shaped indium tin oxide powder and method for producing the same
JP2593112B2 (en) Method for producing composite carbonitride
JP3340772B2 (en) Method for producing low order titanium oxide
JP3186789B2 (en) Method for producing titanium suboxide
JPS63206315A (en) Production of ultrafine particulate low-order titanium oxide powder having black color
US1061058A (en) Process of producing fine tungstous oxids.
JPS6037080B2 (en) Method for manufacturing CR2O3 whiskers
DE3910781A1 (en) METHOD FOR PRODUCING LOW-CARBON, FINE-PART CERAMIC POWDER

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees