[go: up one dir, main page]

JPS6241162B2 - - Google Patents

Info

Publication number
JPS6241162B2
JPS6241162B2 JP15715783A JP15715783A JPS6241162B2 JP S6241162 B2 JPS6241162 B2 JP S6241162B2 JP 15715783 A JP15715783 A JP 15715783A JP 15715783 A JP15715783 A JP 15715783A JP S6241162 B2 JPS6241162 B2 JP S6241162B2
Authority
JP
Japan
Prior art keywords
powder
surface area
specific surface
reaction tower
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15715783A
Other languages
Japanese (ja)
Other versions
JPS6051616A (en
Inventor
Motohiko Yoshizumi
Daisuke Shibuta
Hideo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP15715783A priority Critical patent/JPS6051616A/en
Publication of JPS6051616A publication Critical patent/JPS6051616A/en
Publication of JPS6241162B2 publication Critical patent/JPS6241162B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、黒色系の微細な有色粉末に関し、特
に顔料,導電材料及びセラミツク原料として好適
な有色粉末に関する。 従来,黒色顔料としてはカーボンブラツク粉末
と四三酸化鉄粉末が知られている。カーボンブラ
ツク粉末は,黒色顔料としての着色性(即ち,黒
色度)の点ばかりでなく、導電材料としての導電
性の点でも優れた材料である(比抵抗10-2〜10゜
Ω・cm)。しかし、樹脂によつてはなじみにくく
て分散し難く、また極微量ではあるが製造原料に
由来する発癌性の3,4―ベンズピレンを伴うた
め、化粧品の分野では安全性が問われている。さ
らに、他の種類の顔料に比べ比表面積がはるかに
大きいため、それらと混合して用いても液体媒質
中で均一な分散状態を安定して維持することが困
難である。一方、四三酸化鉄粉末は強磁性のため
分散性が劣り、また熱安定性が低い(大気中で
150℃以上に加熱するとγ−Fe2O3に酸化され
る)。 これに対し、二酸化チタン粉末の還元生成物
で、低次酸化チタンと呼ばれる物質(一般式
TioO2o-1,n≧2で表される)の粉末は、樹脂と
のなじみ、樹脂中での分散性、耐熱性(300〜400
℃)、安全性に優れている。この粉末は、導電性
を還元度によつて10-2〜103Ω・cmと広範囲に変
えることが出来、色調も灰白、青灰、青黒、紫
黒、茶黒、赤茶、と変えることが出来るという利
点を有する。しかし、この低次酸化チタン粉末
は、従来の製法(金属チタン粉末又は水素ガスを
還元剤として、二酸化チタンを還元する)により
限り、粉末粒子の粗大化(平均粒径1.0μm以
上、比表面積1.5m2/g以下)が避けられなかつ
た。即ち、これらの製法では1000℃以上の処理温
度が不可欠であるため、粒子の焼結、成長が生ず
るのである。こうして、顔料、導電材料として適
〓〓〓
する微細な粉末(比表面積20m2/g以上)は事実
上得られなかつた。 本発明の目的は、上記従来の種々の有色粉末あ
るいはそれらの製法の欠点を解消することにあ
り、樹脂とのなじみがよく、無毒で安全性が高
く、しかも微細な有色粉末の工業的製法を提供す
ることである。 本発明者らは、二酸化チタン粉末をアンモニア
雰囲気中で加熱すると、500〜950℃という比較的
低い温度でも、X線回折による構造解析の結果、
二酸化チタンの一酸化チタンへの還元が進行し、
導電性及び色彩の点では前記低次酸化チタンと同
等な有色粉末が得られ、しかも粉末粒子の焼結、
成長がほとんど起らないことを見出した。この方
法によれば、還元を十分に進ませた時には一酸化
チタン粉末が得られ、還元を適宜の段階で止めれ
ば一酸化チタンと二酸化チタンからなる複合体粉
末が得られる。そして、いずれの場合も一酸化チ
タンには窒素(N)が1〜15重量%固溶している
ことが乾式の定量分析から判明した。即ち、複合
体粉末の場合は、酸素が一部窒素で置換されてい
る立方晶系NaCl型構造の一酸化チタンと正方晶
系の二酸化チタンとから構成されている。還元度
(TiO/TiO2の比に相当)の高い程、粉末の導電
性が高まつて比抵抗は103〜10-2Ω・cmの範囲で
変わり、色彩は緑灰,青灰,青黒,黒,紫黒,青
銅色と様々に変化する。また、還元度が高い程、
生成TiO中の窒素含有率も高まる。 上記方法を、原料をボートに充填して水平に静
置する反応装置で行うと、黒色度でL値を19以下
とするにはNH3原単位が100〜300KgNH3/製品Kg
であるが、本発明者らの考案に係る下記に詳述す
る縦型円筒状反応塔を有する反応装置で行うと、
NH3原単位が5〜25KgNH3/製品Kgと低くなる。
したがつて、工業的にこの方法を実施するために
は、生産性を高め、生産コストを低減するために
流動床反応装置の利用が是非望まれる。しかし、
この縦型反応塔の反応装置を利用した場合には、
静置式反応装置を使用した場合には起らない焼結
が起り易く、比表面積30m2/g以上の二酸化チタ
ン粉末を用いても、比表面積20m2/g以上の製品
粉末を得ることが困難であることがわかつた。 そこで本発明者らが、工業的規模で前記方法を
実施し、高い生産性、良好な経済性をもつて所望
の微細な有色粉末を得る目的で、該方法の諸条件
を検討した結果、原料として、湿式の加水分解に
より製造した二酸化チタン粉末を採用することに
より、この問題を解消することができた。 即ち、本発明によると、湿式の加水分解により
製造した二酸化チタン粉末であつて比表面積30
m2/g以上のものを、 縦型円筒状の反応塔であつてその下部が逆截頭
円すい状に狭さくしていて、底に上方へアンモニ
アガスを分散させる手段を有し、内部に滞留する
二酸化チタン粉末を撹拌する手段を有するもの
と;前記アンモニアガス分散手段へ連絡するアン
モニアガス供給路と;該供給路の冷却手段と;前
記反応塔を外部より加熱する手段とを備えてなる
反応装置を使用して、 アンモニアガス雰囲気中、500°〜950℃で、前
記撹拌手段で撹拌しながら加熱する、ことからな
る比表面積20m2/g以上の微細な有色粉末の製法
が提供される。 微細な二酸化チタン粉末は現在次の2つの方法
で製造される。 1 乾式法 四塩化チタンを酸水素炎中において加水分解さ
せる。 2 湿式法 硫酸チタンもしくは四塩化チタンの水溶液を煮
沸、アルカリ中和によつて加水分解させ、生成し
た水酸化チタンを大気中で脱水焼成する。 TiO2+(aq)+2H2O(l)
→TiO(OH)2(s)+2H+(aq) TiO(OH)2(s)→TiO2(s)+H2O(g) これら2種類の粉末の還元をNH3雰囲気下、
500゜〜950℃で行つたところ、乾式法による
TiO2粉末(比表面積50m2/g(平均粒子径0.03
μm))は焼結が著しく、還元条件を種々変化し
ても、還元粉末の比表面積は、10m2/g(平均粒
子径0.2μm)前後となり、目的とする微細な生
成物は得られなかつた。一方、湿式法で製造した
粉末(40m2/g(平均粒子径0.04μm))は、比
表面積20m2/g以上(平均粒子径0.08μm)の生
〓〓〓
成物が得られ、還元時の焼結が少ないことがわか
つた。 本発明の方法は500〜950℃の温度で行われる。
500℃未満では還元が進行し難く、950℃を超える
と焼結が無視し得ない程顕著になる。600〜850℃
が特に好ましい。 処理中、アンモニアガスは、線速度0.5cm/sec
以上の気流で供給することが好ましい。0.5cm/
sec未満だと、粉末の還元が不均一となり易い。
処理に要する時間は大体3〜8時間である。 本発明の方法に使用する反応装置は反応帯域に
撹拌手段を備えていて、NH3ガスと粉末の良好な
接触が行われる。 本発明の方法により得られる有色粉末は、前述
のように還元度とともに色彩が変化するが、その
中の黒色酸化チタン粉末は比表面積が大きい程、
黒色度(L値)(スガ試験機製カラーコンピユー
タSM―3で測定)と着色力が増加することがわ
かつている。したがつて顔料としては比表面積20
m2/g以上の粉末が望ましいが、本発明の方法に
より容易に製造できる。このように、本発明の有
色粉末の黒色のものは黒色度が高く、着色力が優
れているため、顔料としてプラスチツクなどに添
加した場合少量で効果がでる。また有害な物質を
含まないので化粧品等の材料としても使用でき
る。また、比抵抗が10-2〜103Ω・cm(10Kg/cm2
圧粉体)であるので、導電材料として静電防止用
や抵抗ペーストとして使用できる。さらに、本発
明の方法で得られた有色粉末を原料としてセラミ
ツク焼結体を製造すると黄金色を呈し、装飾用に
利用できる。 添付図面を参照して、本発明に使用する装置を
具体的に説明する。図示の装置は、反応塔1、冷
却手段4を備えたアンモニアガス供給路2、反応
塔1を加熱するための手段17よりなつている。
反応塔の上部には二酸化チタンの投入口8が設け
られており、下端は逆截頭円すい状に狭さくし、
底は気体分散板3によつて閉鎖されている。気体
分散板は目皿のようなものでよい。 気体分散板3は支持棒15によつて支持され
て、逆截頭円すいの底面に保持されているが、支
持棒を下げることによつて反応済みチタン酸化物
を取り出すことができる。 反応塔には回転軸に固定された撹拌翼6,
6′,6″が設けられ、塔外のモーター5にによつ
て回転させられる。塔頂には気体排出管10が設
けられ、該排出管はサイクロン11に連絡し、気
体に随拌して来た粉塵は分離され、粉体はスクリ
ユーコンベアー12によつて反応塔に戻され、気
体は導管16から排出される。 撹拌翼は好ましくピツチの大きい竹とんぼの羽
を3枚重ねたようなもの、即ち、図面において上
端の翼6と下端の翼6′は右半分と左半分は逆の
ピツチに傾いており、真中の翼6″は手前半分と
向う側半分が逆のピツチに傾いている。そしてさ
らに翼には酸化チタンが通路し得る孔を多数設け
ておくのが好ましい。 反応塔の下方には、生成物の排出道を兼ねたア
ンモニア供給管2が設けられている。このアンモ
ニア供給管2は冷却手段(通水ジヤケツトでよ
い)4を有する。図示の態様ではその上端は直接
反応塔に連結せず、反応塔との間に空間が形成さ
れているが、気体分散板の操作を妨げないよう
に、逆円すい状部に接してもよい。その場合は気
体分散板に近い部分に予熱帯を設けなければなら
ない。 また図示の態様では気体分散板3の支持棒15
を操作可能に支持するために生成物排出管を兼ね
るアンモニア供給管は斜めに折れている。生成物
排出管は受器13に終り、ここに貯留した生成物
はロータリーバルブ14で逐次排出される。 加熱手段17は電気抵抗熱が好都合である。図
示の態様においては冷却手段4と加熱装置17の
間には断熱材7が設けてあるが、設計によつては
この断熱材は不要である。 この装置は、炉芯管として高温部が窒化され難
い材料が良く、Ni系のインコネルが最善である
が、SUS310Sでも十分使用することができる。
化学工学の通常の知識を有するものが容易に製作
することができるから、設計製作の詳細について
記載する必要はない。 本発明の方法を行うとき、撹拌翼の回転速度は
重要である。適切な速度は翼の具体的形状、寸法
などによるが、回転速度が遅すぎると所望の微細
粒子は得難い。反応塔1内に滞留させられた二酸
化チタン粉末16は、撹拌翼6,6′,6″により
撹拌させられ、同時に気体分散板3からのNH3
接触させられる。このとき加熱手段17による加
〓〓〓
熱で還元が進む。 実施例 以下の実施例では、内径30cm、高さ13cmの反応
塔を備えた添付図面に示したごとき構成の縦型反
応装置を使用した。三段に交互に重ねられてい
る。回転翼は各々縦方向の幅が75mmで、垂直に対
して60゜傾いたプロペラ状であり、各翼と反応塔
の器壁との間隙が1.5cmとなるような長さであ
る。 実施例 (1) 比較面積40m2/g(平均粒子径0.04μm)の二
酸化チタン微粉末(帝国化工社製、商標名
MT500B、湿式法)を反応塔に3Kg装入し、炉内
線速度2cm/secのアンモニアガスを分散板を通
して流し、撹拌翼を15rpmで回転させて粉末を撹
拌しながら、炉内温度700℃、5時間の還元を行
つた。回収した粉末は2.3Kgで青黒色を呈してお
り、L値10、比表面積29m2/g(平均粒径0.05μ
m)、比抵抗2×10-1Ω・cm(10Kg/cm2圧粉体)
であつた。またX線回折によればTiO2/TiO
(N)の比は1/10である。 実施例 (2)〜(5) 実施例(1)の二酸化チタン粉末を用い、同一の反
応装置を使い、還元条件を変えて還元を行つた。
表1に反応条件とその結果を示す。 なお、これら実施例で用いた反応装置の場合
は、撹拌翼の回転は10rpm以上が好ましく、特に
20rpm以上が好ましかつた。 比較例 (1) 比表面積50m2/gr(平均粒子径0.03μm)の二
酸化チタン微粉末(西独デクサ社製、商標名P―
25、乾式法で製造)を実施例(1)で用いた反応装置
に3Kg装入し、炉内線速度2cm/secのアンモニ
アガスを流し、撹拌翼を15rpmで回転して粉末を
撹拌しながら、炉内温度700℃、5時間の還元を
行つた。回収した粉末の比表面積は10m2/g(平
均粒子径0.15μm)となり焼結がかなりみられ
た。 比較例(2)〜(3) 比較例(1)の二酸化チタン粉末を用い、同一の反
応装置を使つて還元条件を変えて還元を行つた。 表1に条件とその結果を示す。
The present invention relates to a fine black colored powder, and particularly to a colored powder suitable as a pigment, a conductive material, and a raw material for ceramics. Conventionally, carbon black powder and triiron tetroxide powder are known as black pigments. Carbon black powder is an excellent material not only in terms of colorability (i.e. blackness) as a black pigment but also in terms of conductivity as a conductive material (specific resistance 10 -2 to 10゜Ωcm). . However, because some resins are difficult to adapt and disperse, and because they contain a very small amount of carcinogenic 3,4-benzpyrene derived from manufacturing raw materials, their safety is being questioned in the cosmetics field. Furthermore, since it has a much larger specific surface area than other types of pigments, it is difficult to stably maintain a uniform dispersion state in a liquid medium even when used in combination with other pigments. On the other hand, triiron tetroxide powder has poor dispersibility due to its ferromagnetic nature, and also has low thermal stability (in the atmosphere
When heated above 150℃, it is oxidized to γ-Fe 2 O 3 ). On the other hand, it is a reduction product of titanium dioxide powder and is a substance called lower titanium oxide (general formula:
Ti o O 2o-1 , n≧2) powder has excellent compatibility with resin, dispersibility in resin, and heat resistance (300 to 400
°C), and has excellent safety. The conductivity of this powder can be varied over a wide range from 10 -2 to 10 3 Ω・cm depending on the degree of reduction, and the color tone can be varied from gray-white, blue-gray, blue-black, purple-black, brown-black, and red-brown. It has the advantage of being possible. However, this low-order titanium oxide powder can be produced only by the conventional manufacturing method (reducing titanium dioxide using metallic titanium powder or hydrogen gas as a reducing agent), which results in coarse powder particles (average particle size of 1.0 μm or more, specific surface area of 1.5 m 2 /g or less) was unavoidable. In other words, since these manufacturing methods require a processing temperature of 1000°C or higher, sintering and growth of particles occur. In this way, it is suitable as a pigment and conductive material.
It was virtually impossible to obtain a fine powder (specific surface area of 20 m 2 /g or more). The purpose of the present invention is to eliminate the drawbacks of the various conventional colored powders and methods for producing them, and to develop an industrial method for producing fine colored powders that are compatible with resins, non-toxic, and highly safe. It is to provide. As a result of structural analysis by X-ray diffraction, the present inventors found that when titanium dioxide powder is heated in an ammonia atmosphere, even at a relatively low temperature of 500 to 950°C,
The reduction of titanium dioxide to titanium monoxide progresses,
A colored powder equivalent to the above-mentioned lower titanium oxide in terms of conductivity and color can be obtained, and in addition, sintering of powder particles,
It was found that almost no growth occurred. According to this method, titanium monoxide powder is obtained when the reduction is sufficiently advanced, and when the reduction is stopped at an appropriate stage, a composite powder consisting of titanium monoxide and titanium dioxide is obtained. In both cases, dry quantitative analysis revealed that 1 to 15% by weight of nitrogen (N) was solidly dissolved in titanium monoxide. That is, the composite powder is composed of titanium monoxide having a cubic NaCl structure in which oxygen is partially replaced with nitrogen and titanium dioxide having a tetragonal structure. The higher the reduction degree (corresponding to the ratio of TiO/TiO 2 ), the higher the conductivity of the powder, and the specific resistance changes in the range of 10 3 to 10 -2 Ω・cm, and the colors are green-gray, blue-gray, blue-black, and blue-black. It varies in color from black to purple-black to bronze. In addition, the higher the degree of reduction,
The nitrogen content in the produced TiO also increases. If the above method is carried out using a reactor in which raw materials are filled into a boat and left standing horizontally, the NH 3 consumption rate will be 100 to 300 Kg NH 3 /Kg of product in order to achieve a blackness L value of 19 or less.
However, when carried out using a reaction apparatus having a vertical cylindrical reaction tower devised by the present inventors and detailed below,
The NH 3 basic unit becomes low at 5 to 25 Kg NH 3 /Kg of product.
Therefore, in order to implement this method industrially, it is highly desirable to utilize a fluidized bed reactor in order to increase productivity and reduce production costs. but,
When using this vertical reactor reactor,
Sintering, which does not occur when using a static reactor, is likely to occur, and even if titanium dioxide powder with a specific surface area of 30 m 2 /g or more is used, it is difficult to obtain a product powder with a specific surface area of 20 m 2 /g or more. It turns out that it is. Therefore, the present inventors carried out the above method on an industrial scale and studied the various conditions of the method in order to obtain the desired fine colored powder with high productivity and good economic efficiency. This problem could be solved by using titanium dioxide powder produced by wet hydrolysis. That is, according to the present invention, titanium dioxide powder produced by wet hydrolysis has a specific surface area of 30
m 2 /g or more, it is a vertical cylindrical reaction tower whose lower part is narrowed in the shape of an inverted truncated cone, and has a means at the bottom to disperse ammonia gas upward, and the ammonia gas stagnates inside. a means for stirring titanium dioxide powder; an ammonia gas supply path communicating with the ammonia gas dispersion means; a cooling means for the supply path; and a means for externally heating the reaction tower. There is provided a method for producing a fine colored powder having a specific surface area of 20 m 2 /g or more, which comprises heating the powder at 500° to 950° C. in an ammonia gas atmosphere while stirring with the stirring means using an apparatus. Fine titanium dioxide powder is currently produced in two ways. 1 Dry method Titanium tetrachloride is hydrolyzed in an oxyhydrogen flame. 2. Wet method An aqueous solution of titanium sulfate or titanium tetrachloride is hydrolyzed by boiling and alkali neutralization, and the resulting titanium hydroxide is dehydrated and calcined in the atmosphere. TiO 2+ (aq) + 2H 2 O (l)
→TiO(OH) 2 (s) + 2H + (aq) TiO(OH) 2 (s) → TiO 2 (s) + H 2 O(g) The reduction of these two types of powders was carried out in an NH 3 atmosphere.
When carried out at 500° to 950°C, it was found that the dry method
TiO 2 powder (specific surface area 50m 2 /g (average particle size 0.03
µm)), the sintering was significant, and even if the reduction conditions were varied, the specific surface area of the reduced powder was around 10 m 2 /g (average particle size 0.2 µm), and the desired fine product could not be obtained. Ta. On the other hand, the powder produced by the wet method (40 m 2 /g (average particle size 0.04 μm)) has a specific surface area of 20 m 2 /g or more (average particle size 0.08 μm).
It was found that sintering during reduction was small. The method of the invention is carried out at temperatures of 500-950°C.
At temperatures below 500°C, reduction is difficult to proceed, and at temperatures above 950°C, sintering becomes so pronounced that it cannot be ignored. 600~850℃
is particularly preferred. During processing, ammonia gas has a linear velocity of 0.5cm/sec.
It is preferable to supply the air with the above air flow. 0.5cm/
If it is less than sec, reduction of the powder tends to be uneven.
The time required for the treatment is approximately 3 to 8 hours. The reactor used in the method of the invention is equipped with stirring means in the reaction zone to ensure good contact between the NH 3 gas and the powder. The color of the colored powder obtained by the method of the present invention changes with the degree of reduction as described above, and the larger the specific surface area of the black titanium oxide powder, the more
It is known that blackness (L value) (measured with Suga Test Instruments Color Computer SM-3) and tinting power increase. Therefore, as a pigment, the specific surface area is 20
A powder having a particle size of m 2 /g or more is desirable, and can be easily produced by the method of the present invention. As described above, the black colored powder of the present invention has a high degree of blackness and excellent tinting power, so when it is added to plastics as a pigment, a small amount is effective. Also, since it does not contain harmful substances, it can be used as a material for cosmetics, etc. In addition, the specific resistance is 10 -2 to 10 3 Ω・cm (10Kg/cm 2
Since it is a compacted powder, it can be used as a conductive material for antistatic purposes and as a resistance paste. Furthermore, when a ceramic sintered body is produced using the colored powder obtained by the method of the present invention as a raw material, it exhibits a golden color and can be used for decorative purposes. The apparatus used in the present invention will be specifically described with reference to the accompanying drawings. The illustrated apparatus comprises a reaction tower 1, an ammonia gas supply line 2 equipped with cooling means 4, and means 17 for heating the reaction tower 1.
A titanium dioxide inlet 8 is provided in the upper part of the reaction tower, and the lower end is narrowed in the shape of an inverted truncated cone.
The bottom is closed by a gas distribution plate 3. The gas distribution plate may be something like a perforated plate. The gas distribution plate 3 is supported by a support rod 15 and held on the bottom surface of the inverted truncated cone, and the reacted titanium oxide can be taken out by lowering the support rod. The reaction tower has a stirring blade 6 fixed to a rotating shaft.
6', 6'' are provided and rotated by a motor 5 outside the tower. A gas discharge pipe 10 is provided at the top of the tower, and this discharge pipe communicates with a cyclone 11 to agitate the gas. The incoming dust is separated, the powder is returned to the reaction tower by the screw conveyor 12, and the gas is discharged from the conduit 16.The stirring blades are preferably made of three stacked bamboo dragonfly wings with a large pitch. That is, in the drawing, the right half and the left half of the upper end wing 6 and the lower end wing 6' are inclined at opposite pitches, and the front half and the opposite half of the middle wing 6'' are inclined at opposite pitches. Furthermore, it is preferable to provide the blade with a large number of holes through which titanium oxide can pass. An ammonia supply pipe 2, which also serves as a product discharge path, is provided below the reaction tower. This ammonia supply pipe 2 has a cooling means 4 (which may be a water jacket). In the illustrated embodiment, the upper end is not directly connected to the reaction tower and a space is formed between it and the reaction tower, but it may be in contact with the inverted conical portion so as not to interfere with the operation of the gas distribution plate. In that case, a preheating zone must be provided near the gas distribution plate. Further, in the illustrated embodiment, the support rod 15 of the gas distribution plate 3
The ammonia supply pipe, which also serves as a product discharge pipe, is bent diagonally to support the process. The product discharge pipe ends in a receiver 13, and the product stored there is sequentially discharged by a rotary valve 14. The heating means 17 are conveniently electrical resistance heat. In the embodiment shown, a heat insulating material 7 is provided between the cooling means 4 and the heating device 17, but depending on the design this heat insulating material is not required. For this device, it is best to use a material that does not easily nitride the high-temperature part of the furnace core tube, and Ni-based Inconel is the best, but SUS310S can also be used satisfactorily.
It is not necessary to describe the details of the design and manufacture since it can be easily manufactured by someone with ordinary knowledge of chemical engineering. When carrying out the method of the invention, the rotational speed of the stirring blades is important. The appropriate speed depends on the specific shape and dimensions of the blade, but if the rotation speed is too slow, it will be difficult to obtain the desired fine particles. The titanium dioxide powder 16 retained in the reaction tower 1 is stirred by the stirring blades 6, 6', 6'' and is simultaneously brought into contact with NH 3 from the gas distribution plate 3. At this time, the titanium dioxide powder 16 is heated by the heating means 17. 〓〓〓
Reduction progresses with heat. Examples In the following examples, a vertical reactor having a configuration as shown in the attached drawings was used, which was equipped with a reaction column having an inner diameter of 30 cm and a height of 13 cm. They are stacked alternately in three tiers. The rotor blades each have a longitudinal width of 75 mm, are propeller-shaped and inclined at 60 degrees to the vertical, and are long enough to provide a gap of 1.5 cm between each blade and the wall of the reaction column. Example (1) Titanium dioxide fine powder (manufactured by Teikoku Kako Co., Ltd., trade name) with a comparative area of 40 m 2 /g (average particle size 0.04 μm)
3 kg of MT500B (wet method) was charged into the reaction tower, ammonia gas was flowed through the dispersion plate at a linear velocity of 2 cm/sec, and the stirring blade was rotated at 15 rpm to stir the powder. I gave back my time. The recovered powder weighs 2.3 kg, exhibits a blue-black color, has an L value of 10, and a specific surface area of 29 m 2 /g (average particle size of 0.05 μm).
m), specific resistance 2×10 -1 Ω・cm (10Kg/cm 2 compacted powder)
It was hot. Also, according to X-ray diffraction, TiO 2 /TiO
The ratio of (N) is 1/10. Examples (2) to (5) Using the titanium dioxide powder of Example (1), reduction was carried out using the same reaction apparatus and changing the reduction conditions.
Table 1 shows the reaction conditions and results. In addition, in the case of the reaction apparatus used in these examples, the rotation of the stirring blade is preferably 10 rpm or more, and especially
A speed of 20 rpm or more was preferable. Comparative example (1) Fine titanium dioxide powder with a specific surface area of 50 m 2 /gr (average particle size 0.03 μm) (manufactured by Dexa, Germany, trade name: P-)
25, produced by a dry method) was charged into the reactor used in Example (1), ammonia gas was flowed at a linear velocity of 2 cm/sec in the furnace, and the stirring blade was rotated at 15 rpm to stir the powder. Reduction was carried out at a furnace temperature of 700°C for 5 hours. The specific surface area of the recovered powder was 10 m 2 /g (average particle size 0.15 μm), and sintering was considerably observed. Comparative Examples (2) to (3) Using the titanium dioxide powder of Comparative Example (1), reduction was carried out using the same reaction apparatus but under different reduction conditions. Table 1 shows the conditions and results.

【表】 〓〓〓〓
[Table] 〓〓〓〓

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明に使用する装置例を示す概念
図である。 図において、1:反応塔、2:アンモニアガス
供給管、3:気体分散板、4:冷却手段、17:
加熱手段。 〓〓〓〓
The accompanying drawings are conceptual diagrams showing examples of devices used in the present invention. In the figure, 1: reaction tower, 2: ammonia gas supply pipe, 3: gas distribution plate, 4: cooling means, 17:
heating means. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 湿式の加水分解により製造した二酸化チタン
粉末であつて比表面積30m2/g以上のものを、縦
型円筒状の反応塔であつてその下部が逆さい頭円
錐状に狭さくしていて、底に上方へアンモニアガ
スを分散させる手段を有し、内部に滞留する二酸
化チタン粉末を撹拌する手段を有するものと;前
記アンモニアガス分散手段へ連絡するアンモニア
ガス供給路と、該供給路の冷却手段と;前記反応
塔を外部より加熱する手段とを備えてなる反応装
置を使用して、 アンモニアガス雰囲気中、500〜950℃で前記撹
拌手段で撹拌しながら加熱する、ことからなる比
表面積20m2/g以上の微細な有色粉末の製法。
[Scope of Claims] 1. Titanium dioxide powder produced by wet hydrolysis and having a specific surface area of 30 m 2 /g or more is grown in a vertical cylindrical reaction tower, the lower part of which is shaped like an inverted truncated cone. an ammonia gas supply path communicating with the ammonia gas dispersion means; Using a reaction apparatus comprising a means for cooling the supply path; and a means for heating the reaction tower from the outside, the reaction tower is heated at 500 to 950°C in an ammonia gas atmosphere while being stirred by the stirring means. A method for producing fine colored powder with a specific surface area of 20 m 2 /g or more.
JP15715783A 1983-08-30 1983-08-30 Manufacturing method of fine colored powder Granted JPS6051616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15715783A JPS6051616A (en) 1983-08-30 1983-08-30 Manufacturing method of fine colored powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15715783A JPS6051616A (en) 1983-08-30 1983-08-30 Manufacturing method of fine colored powder

Publications (2)

Publication Number Publication Date
JPS6051616A JPS6051616A (en) 1985-03-23
JPS6241162B2 true JPS6241162B2 (en) 1987-09-01

Family

ID=15643427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15715783A Granted JPS6051616A (en) 1983-08-30 1983-08-30 Manufacturing method of fine colored powder

Country Status (1)

Country Link
JP (1) JPS6051616A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132971A (en) * 1986-10-31 1988-06-04 アメリカン テレフォン アンド テレグラフ カムパニー Composition containing light stable pigment
GB8809651D0 (en) * 1988-04-23 1988-05-25 Tioxide Group Plc Nitrogen compounds
JP6866184B2 (en) * 2017-02-28 2021-04-28 三菱マテリアル電子化成株式会社 Blue-white titanium nitride powder and its manufacturing method

Also Published As

Publication number Publication date
JPS6051616A (en) 1985-03-23

Similar Documents

Publication Publication Date Title
US5340417A (en) Process for preparing silicon carbide by carbothermal reduction
US4898843A (en) Titanate powder and process for producing the same
US5320782A (en) Acicular or platy titanium suboxides and process for producing same
JPH0351645B2 (en)
JPH10218609A (en) Spherical colored pigment, its production method and its use
JPS5950604B2 (en) Manufacturing method of titanium oxide powder
CN100408480C (en) A kind of preparation method of nano zinc oxide powder
CN111484050B (en) A kind of preparation method of spherical α-phase nano-alumina
CN100457632C (en) Method for preparing nano active calcium carbonate
CN109336143B (en) Method for preparing nano magnesium oxide by one-step pyrolysis method
CN107150127A (en) The preparation method of spherical cobalt powder
JP2022069551A (en) Perovskite type composite oxide powder and manufacturing method therefor
JPS6241162B2 (en)
JPH0353255B2 (en)
AU765840B2 (en) Highly white zinc oxide fine particles and method for preparation thereof
JP2002201382A (en) Zinc oxide microparticle for ultraviolet screening
CA2045526C (en) Process for preparing silicon carbide
JPH05163022A (en) Spherical anatase titanium oxide and its production
JP2528462B2 (en) Method for producing sodium hexatitanate fine particle powder
JP2721705B2 (en) Sodium hexatitanate fine particle powder and method for producing the same
JPH0791063B2 (en) Method for producing ultrafine particulate low-order titanium oxide powder having black color
CN109942018B (en) A kind of preparation method of nano-scale strontium titanate powder
JPH0525812B2 (en)
JPS6189262A (en) Carbon black refining method
JP2009091206A (en) Fine particle titanium monoxide composition and method for producing the same