JPS60191268A - Photoreceptor member - Google Patents
Photoreceptor memberInfo
- Publication number
- JPS60191268A JPS60191268A JP59046859A JP4685984A JPS60191268A JP S60191268 A JPS60191268 A JP S60191268A JP 59046859 A JP59046859 A JP 59046859A JP 4685984 A JP4685984 A JP 4685984A JP S60191268 A JPS60191268 A JP S60191268A
- Authority
- JP
- Japan
- Prior art keywords
- light
- layer
- receiving member
- member according
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108091008695 photoreceptors Proteins 0.000 title 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 10
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 229
- 239000007789 gas Substances 0.000 description 47
- 238000000034 method Methods 0.000 description 27
- 125000005843 halogen group Chemical group 0.000 description 23
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 19
- 238000000151 deposition Methods 0.000 description 17
- 230000008021 deposition Effects 0.000 description 16
- 239000002994 raw material Substances 0.000 description 15
- -1 IF7 Chemical class 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 7
- 229910052732 germanium Inorganic materials 0.000 description 7
- 229910052986 germanium hydride Inorganic materials 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 150000002366 halogen compounds Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 150000003377 silicon compounds Chemical class 0.000 description 6
- 206010034972 Photosensitivity reaction Diseases 0.000 description 5
- 238000000149 argon plasma sintering Methods 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 230000036211 photosensitivity Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 238000011017 operating method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910001120 nichrome Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910004014 SiF4 Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 229910052990 silicon hydride Inorganic materials 0.000 description 2
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 235000010893 Bischofia javanica Nutrition 0.000 description 1
- 240000005220 Bischofia javanica Species 0.000 description 1
- 229910014264 BrF Inorganic materials 0.000 description 1
- 229910014263 BrF3 Inorganic materials 0.000 description 1
- 229910014271 BrF5 Inorganic materials 0.000 description 1
- 229910020323 ClF3 Inorganic materials 0.000 description 1
- 101100441092 Danio rerio crlf3 gene Proteins 0.000 description 1
- 229910006109 GeBr4 Inorganic materials 0.000 description 1
- 229910006158 GeF2 Inorganic materials 0.000 description 1
- 229910006160 GeF4 Inorganic materials 0.000 description 1
- 229910006149 GeI4 Inorganic materials 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910007260 Si2F6 Inorganic materials 0.000 description 1
- 229910003676 SiBr4 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- XHVUVQAANZKEKF-UHFFFAOYSA-N bromine pentafluoride Chemical compound FBr(F)(F)(F)F XHVUVQAANZKEKF-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- GGJOARIBACGTDV-UHFFFAOYSA-N germanium difluoride Chemical compound F[Ge]F GGJOARIBACGTDV-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- VJHDVMPJLLGYBL-UHFFFAOYSA-N tetrabromogermane Chemical compound Br[Ge](Br)(Br)Br VJHDVMPJLLGYBL-UHFFFAOYSA-N 0.000 description 1
- PPMWWXLUCOODDK-UHFFFAOYSA-N tetrafluorogermane Chemical compound F[Ge](F)(F)F PPMWWXLUCOODDK-UHFFFAOYSA-N 0.000 description 1
- CUDGTZJYMWAJFV-UHFFFAOYSA-N tetraiodogermane Chemical compound I[Ge](I)(I)I CUDGTZJYMWAJFV-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- SDNBGJALFMSQER-UHFFFAOYSA-N trifluoro(trifluorosilyl)silane Chemical compound F[Si](F)(F)[Si](F)(F)F SDNBGJALFMSQER-UHFFFAOYSA-N 0.000 description 1
- FQFKTKUFHWNTBN-UHFFFAOYSA-N trifluoro-$l^{3}-bromane Chemical compound FBr(F)F FQFKTKUFHWNTBN-UHFFFAOYSA-N 0.000 description 1
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08221—Silicon-based comprising one or two silicon based layers
- G03G5/08228—Silicon-based comprising one or two silicon based layers at least one with varying composition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/10—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices being sensitive to infrared radiation, visible or ultraviolet radiation, and having no potential barriers, e.g. photoresistors
- H10F30/15—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices being sensitive to infrared radiation, visible or ultraviolet radiation, and having no potential barriers, e.g. photoresistors comprising amorphous semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/413—Optical elements or arrangements directly associated or integrated with the devices, e.g. back reflectors
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Light Receiving Elements (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明は、光(ここでは仏義の光で紫外線。[Detailed description of the invention] The present invention is based on light (here, ultraviolet rays are light in the Buddhist sense).
可視光線、赤外線、X線、γ線等を示す)の様な電磁波
に感受性のある光受容部材に関する。The present invention relates to a light-receiving member that is sensitive to electromagnetic waves such as visible light, infrared rays, X-rays, γ-rays, etc.
さらに詳しくは、レーザー光などの可干渉性光を用いる
のに適した光受容部材に関する。More specifically, the present invention relates to a light receiving member suitable for using coherent light such as laser light.
デジタル画像情報を画像として記録する方法として、デ
ジタル画像情報に応じて変調したレーザー光で光受容部
材を光学的に走査することにより静電潜像を形成し、次
いで該潜像を現像、必要に応じて転写、定着などの処理
を行ない、画像を記録する方法がよく知られている。As a method for recording digital image information as an image, an electrostatic latent image is formed by optically scanning a light-receiving member with a laser beam modulated according to the digital image information, and then the latent image is developed and A well-known method is to record an image by performing processes such as transfer and fixing accordingly.
中でも電子写真法を使用した画像形成法では、レーザー
としては小型で安価なHe−Neレーザーあるいは半導
体レーザー(通常は650〜820nmの発光波長を有
する)で像記録を行なうことが一般である。Among these, in image forming methods using electrophotography, image recording is generally performed using a small and inexpensive He--Ne laser or semiconductor laser (usually having an emission wavelength of 650 to 820 nm).
特に、半導体レーザーを用いる場合に適した電子写真用
の光受容部材としては、その光感度領域の整合性が他の
種類の光受容部材と比べて格段に優れている点に加えて
、ビッカース硬度が高く、社会的には無公害である点で
、例えば特開昭54−86341号公報や特開昭56−
83746号公報に開示されているシリコン原子を含む
非晶質材料(以後r A −SiJと略記する)から成
る光受容部材が注目されている。In particular, as a light-receiving member for electrophotography that is suitable when using a semiconductor laser, it has a much better consistency in the photosensitivity region than other types of light-receiving members, and also has a Vickers hardness. For example, JP-A No. 54-86341 and JP-A-Sho 56-
A light-receiving member made of an amorphous material containing silicon atoms (hereinafter abbreviated as rA-SiJ) disclosed in Japanese Patent No. 83746 has been attracting attention.
面乍ら、光受容層を単層構成のA−9i層とすると、そ
の高光感度を保持しつつ、電子写真用として要求される
1012Ωcat以上の暗抵抗を確保するには、水素原
子やハロゲン原子或いはこれ等に加えてポロン原子とを
特定の量範囲で層中に制御された形で構造的に含有させ
る必要性がある為に、層形成のコントロールを厳密に行
う必要がある等、光受容部材の設計に於ける許容度に可
成りの制限がある。Of course, if the photoreceptive layer is a single-layer A-9i layer, in order to maintain its high photosensitivity and ensure a dark resistance of 1012 Ωcat or more required for electrophotography, hydrogen atoms and halogen atoms are required. In addition to these, it is necessary to structurally contain poron atoms in a specific amount range in a controlled manner in the layer, so layer formation must be strictly controlled. There are considerable limitations on tolerances in component design.
この設計上の許容度を拡大出来る、詰り、ある程瓜低暗
抵抗であっても、その高光感度を有効に利用出来る様に
したものとしては、例えば、特開昭54−121743
号公報、特開昭57−4053号公報、特開昭57−4
172号公報に記載されである様に光受容層を伝導特性
の異なる層を積層した二層以上の層構成として、光受容
層内部に空乏層を形成したり、或いは特開昭57−52
178号、同52179号、同52180号、同581
59号、同58160号、同58161号の各公報に記
載されである様に支持体と光受容層の間、又は/及び光
受容層の上部表面に障壁層を設けた多層構造としたりし
て、見掛は上の暗抵抗を高めた光受容部材が提案されて
いる。For example, Japanese Patent Application Laid-Open No. 54-121743 is an example of a device that can expand this design tolerance and make effective use of its high light sensitivity even if it is clogged or has a certain degree of low dark resistance.
No. 1, JP-A-57-4053, JP-A-57-4
As described in Japanese Patent Publication No. 172, the photoreceptive layer may have a layer structure of two or more layers having different conductivity characteristics, and a depletion layer may be formed inside the photoreceptive layer.
No. 178, No. 52179, No. 52180, No. 581
59, No. 58160, and No. 58161, a multilayer structure in which a barrier layer is provided between the support and the photoreceptive layer or/and on the upper surface of the photoreceptive layer is used. , a light-receiving member with apparently increased dark resistance has been proposed.
この様な提案によって、A −9i系先光受容材はその
商品化設計上の許容度に於いて、或いは製造上の管理の
容易性及び生産性に於いて飛躍的に進展し、商品化に向
けての開発スピードが急速化している。Through such proposals, A-9i-based photoreceptive materials have made dramatic progress in terms of commercialization design tolerances, ease of manufacturing management, and productivity, and are expected to be commercialized. The speed of development towards this goal is accelerating.
この様な光受容層が多層構造の光受容部材を用いてレー
ザー記録を行う場合、各層の層厚に斑がある為に、レー
ザー光が可干渉性の単色光であるので、光受容層のレー
ザー光照射側自由表面、光受容層を構成する各層及び支
持体と光受容層との層界面(以後、この自由表面及び層
界面の両者を併せた意味で「界面」と称す)より反射し
て来る反射光の夫々が干渉を起す可能性がある。When laser recording is performed using a light-receiving member with such a multilayered light-receiving layer, the thickness of each layer is uneven, and the laser light is coherent monochromatic light, so the light-receiving layer is Reflected from the free surface of the laser beam irradiation side, each layer constituting the light-receiving layer, and the layer interface between the support and the light-receiving layer (hereinafter, both the free surface and the layer interface are collectively referred to as the "interface"). There is a possibility that each of the reflected lights may cause interference.
この干−渉現象は、形成される可視画像に於いて、所謂
、干渉縞模様となって現われ、画像不良の要因となる。This interference phenomenon appears as a so-called interference fringe pattern in the formed visible image, causing image defects.
殊に階調性の高い中間調の画像を形成する場合には、画
像の見悪くさは顕著となる。Particularly when forming a half-tone image with high gradation, the image becomes noticeably unsightly.
まして、使用する半導体レーザー光の波長領域が長波長
になるにつれ光受容層に於ける該レーザー光の吸収が減
少してざるので前記の干渉現象は顕著である。Furthermore, as the wavelength range of the semiconductor laser light used becomes longer, the absorption of the laser light in the photoreceptive layer decreases, so the above-mentioned interference phenomenon is remarkable.
この点を図面を以って説明する6
第1図に、光受容部材の光受容層を構成するある層に入
射した光Ioと上部界面102で反射した反射光R1,
下部界面101で反射した反射光R2を示ルている。This point will be explained with reference to the drawings.6 Figure 1 shows the light Io incident on a certain layer constituting the light-receiving layer of the light-receiving member, the reflected light R1 reflected at the upper interface 102,
The reflected light R2 reflected at the lower interface 101 is shown.
層の平均層厚をd、屈折率をn、光の波長をλとして、
ある層の層厚がなだらかに一以上 n
の層厚差で不均一であると、反射光R1、R2が2 n
d=mλ(mは整数、反射光は強め合う)と2 n
d = m +−)入(mは整数、反射光は弱め合う)
の条件のどちらに合うかによって、ある層の吸収光量お
よび透過光量に変化を生じる。The average layer thickness of the layer is d, the refractive index is n, and the wavelength of light is λ,
If the thickness of a certain layer is uneven with a gradual thickness difference of 1 or more n, the reflected lights R1 and R2 will be 2 n
d=mλ (m is an integer, reflected light strengthens each other) and 2 n
d = m +-) (m is an integer, reflected light weakens each other)
Depending on which of the following conditions is met, the amount of absorbed light and transmitted light of a certain layer will change.
多層構成の光受容部材においては、第1図に示す干渉効
果が各層で起り、第2図に示すように、それぞれの干渉
による相乗的悪影響が生じる。その為に該干渉縞模様に
対応した干渉縞が転写部材上に転写、定着された可視画
像に現われ、不良画像の原因となっていた。In a multilayered light-receiving member, the interference effect shown in FIG. 1 occurs in each layer, and as shown in FIG. 2, a synergistic adverse effect occurs due to each interference. Therefore, interference fringes corresponding to the interference fringe pattern appear in the visible image transferred and fixed onto the transfer member, causing a defective image.
この不都合を解消する方法としては、支持体表面をダイ
ヤモンド切削して、±500λ〜± 〜roooolの
凹凸を設けて光散乱面を形成する方法(例えば特開昭5
8−162975号公報)アルミニウム支持体表面を黒
色アルマイト処理したり、或いは、樹脂中にカーボン、
着色顔料、染料を分散したりして光吸収層を設ける方法
(例えば特開昭57−165845号公報)、アルミニ
ウム支持体表面を梨地状のアルマイト処理したり、サン
ドブラストにより砂目状の微細凹凸を設けたりして、支
持体表面に光散乱反射防止層を設ける方法(例えば特開
昭57−16554号公報)等が提案されている。A method for solving this problem is to diamond-cut the surface of the support and provide unevenness of ±500λ to ± to roooool to form a light scattering surface (for example, in Japanese Patent Laid-Open No. 5
No. 8-162975) The surface of the aluminum support is treated with black alumite, or carbon or carbon is added to the resin.
A method of providing a light absorbing layer by dispersing colored pigments or dyes (for example, Japanese Patent Application Laid-open No. 57-165845), applying a satin-like alumite treatment to the surface of an aluminum support, or sandblasting to create fine grain-like irregularities. A method has been proposed in which a light scattering and antireflection layer is provided on the surface of a support (for example, Japanese Patent Application Laid-Open No. 16554/1983).
面乍ら、これ等従来の方法では、画像上に現われる干渉
縞模様を完全に解消することが出来なかった。Unfortunately, these conventional methods have not been able to completely eliminate the interference fringe pattern that appears on images.
即ち、第1の方法は支持体表面を特定の大きさの凹凸が
多数設けられただけである為、確かに光散乱効果による
干渉縞模様の発現防止にはなっているが、光散乱として
は依然として正反射光成分が残存している為に、該正反
射光による干渉縞模様が残存することに加えて、支持体
表面での光散乱効果の為に照射スポットに拡がりが生じ
、実質的な解像度低下の要因となっていた。In other words, in the first method, the surface of the support is simply provided with a large number of irregularities of a specific size, so although it does prevent the appearance of interference fringes due to the light scattering effect, it does not affect the light scattering. Since the specularly reflected light component still remains, in addition to the remaining interference fringe pattern due to the specularly reflected light, the irradiation spot spreads due to the light scattering effect on the support surface, resulting in a substantial This was a cause of a decrease in resolution.
第2の方法は、黒色アルマイト処理程度では、完全吸収
は無理であって、支持体表面での反射光は残存する。又
、着色顔料分散樹脂層を設ける場合はA−9i層を形成
する際、樹脂層よLl /7−1111!S & 11
4b J、(Iト 1” JK 南 ’f−kl 場
b /”!−#EdMm品質が著しく低下すること、樹
脂層がA−9i層形成の際のプラズマによってダメージ
を受けて、本来の吸収機能を低減させると共に、表面状
態の悪化によるその後のA−3i層の形成に悪影響を与
えること等の不都合さを有する。In the second method, complete absorption is impossible with the black alumite treatment, and the reflected light on the surface of the support remains. In addition, when forming a colored pigment-dispersed resin layer, when forming the A-9i layer, the resin layer should be Ll /7-1111! S & 11
4b J, (Ito 1" JK south 'f-kl field b /"!-#EdMm quality is markedly degraded, the resin layer is damaged by the plasma during the formation of the A-9i layer, and the original absorption is lost. This has disadvantages such as a reduction in functionality and an adverse effect on the subsequent formation of the A-3i layer due to deterioration of the surface condition.
支持体表面を不規則に荒す第3方法の場合には、第3図
に示す様に、例えば入射光IQは、光受容層302の表
面でその一部が反射されて反射光R1となり、残りは、
光受容層302の内部に進入して透過光11となる。透
過光■lは、支持体302の表面に於いて、その一部は
、光散乱されて拡散光Kl、に2.に3 ・・となり、
残りが正反射されて反射光R2となり、その一部が出射
光R3となって外部に出て行く。従って、反射光R1と
干渉する成分である出射光R3が残留する為、依然とし
て干渉縞模様は完全に消すことが出来ない。In the case of the third method of irregularly roughening the surface of the support, as shown in FIG. teeth,
The light enters the inside of the light-receiving layer 302 and becomes transmitted light 11. A part of the transmitted light (1) is scattered on the surface of the support 302 and becomes diffused light (K1).2. 3...and
The rest is specularly reflected and becomes reflected light R2, and a part of it becomes emitted light R3 and goes outside. Therefore, since the emitted light R3, which is a component that interferes with the reflected light R1, remains, the interference fringe pattern cannot be completely erased.
又、干渉を防止して光受容層内部での多重反射を防止す
る為に支持体301の表面の拡散性を増加させると、光
受容層内で光が拡散してハレーションを生ずる為解像度
が低下するという欠点もあった。Furthermore, if the diffusivity of the surface of the support 301 is increased in order to prevent interference and multiple reflections inside the light-receiving layer, the resolution decreases because light is diffused within the light-receiving layer and causes halation. There was also the drawback of doing so.
特に、多層構成の光受容部材においては、第4図に示す
ように、支持体401表面を不JJI則的に荒しても、
第1層402での表面での反射光R2,第2層での反射
光R1、支持体401面での正反射光R3の夫々が干渉
して、光受容部材の各層厚にしたがって干渉縞模様が生
じる。従って、多層構成の光受容部材においては、支持
体401表面を不規則に荒すことでは、干渉縞を完全に
防止することは不可能であった。In particular, in a light-receiving member having a multilayer structure, as shown in FIG. 4, even if the surface of the support 401 is irregularly roughened,
The reflected light R2 on the surface of the first layer 402, the reflected light R1 on the second layer, and the specularly reflected light R3 on the surface of the support 401 interfere with each other, resulting in an interference fringe pattern depending on the thickness of each layer of the light-receiving member. occurs. Therefore, in a multilayer light-receiving member, it is impossible to completely prevent interference fringes by irregularly roughening the surface of the support 401.
又、サンドブラスト等の方法によって支持体表面を不規
則に荒す場合は、その粗面度がロット間に於いてバラツ
キが多く、且つ同一ロットに於いても粗面度に不均一が
あって、製造管理上具合が悪かった。加えて、比較的大
きな突起がランダムに形成される機会が多く、斯かる大
きな突起が光受容層の局所的ブレークダウンの原因とな
っていた。Furthermore, when the surface of the support is irregularly roughened by methods such as sandblasting, the degree of roughness varies greatly between lots, and even within the same lot, the degree of roughness is uneven, making it difficult to manufacture. Management was not good. In addition, relatively large protrusions are frequently formed randomly, and such large protrusions cause local breakdown of the photoreceptive layer.
又、単に支持体表面501を規則的に荒した場合、第5
図に示すように、通常、支持体501表面の凹凸形状に
沿って、光受容層502が堆積するため、支持体501
の凹凸の傾斜面と光受容層502の凹凸の傾斜面とが平
行になる。In addition, if the support surface 501 is simply roughened regularly, the fifth
As shown in the figure, the light-receiving layer 502 is usually deposited along the uneven shape of the surface of the support 501.
The sloped surface of the unevenness of the light-receiving layer 502 becomes parallel to the sloped surface of the unevenness of the light-receiving layer 502.
したがって、その部分では入射光は2nd1= m 入
または2 n dl = (m+y2)λが成立ち、夫
々明部または暗部となる。また、光受容層全体では光受
容層の層厚di、d2.d3、な層厚の不均一性がある
ため明暗の縞模様が現われる。Therefore, in that part, the incident light satisfies 2nd1=m incidence or 2ndl=(m+y2)λ, which becomes a bright part or a dark part, respectively. In addition, in the entire photoreceptive layer, the layer thickness di, d2. d3, due to the non-uniformity of the layer thickness, a light and dark striped pattern appears.
従って、支持体501表面を規則的に荒しただけでは、
干渉縞模様の発生を完全に防ぐことはできない。Therefore, just by regularly roughening the surface of the support 501,
It is not possible to completely prevent the occurrence of interference fringes.
又、表面を規則的に荒した支持体上に多層構成の光受容
層を堆積させた場合にも、第3図において、一層構成の
光受容部材で説明した支持体表面での正反射光と、光受
容層表面での反射光との干渉の他に、各層間の界面での
反射光による干渉が加わるため、一層構成の光受容部材
の干渉縞模様発現度合より一層複雑となる。Furthermore, even when a multi-layered light-receiving layer is deposited on a support whose surface is regularly roughened, the specularly reflected light on the surface of the support as explained for the single-layered light-receiving member in FIG. In addition to the interference with the reflected light on the surface of the light-receiving layer, interference due to the reflected light at the interface between each layer is added, so that the degree of interference fringe pattern development becomes more complicated than that of a light-receiving member with a single-layer structure.
本発明の目的は、前述の欠点を解消した光に感受性のあ
る新規な光受容部材を提供することである。It is an object of the present invention to provide a new light-sensitive light-receiving member which eliminates the above-mentioned drawbacks.
本発明の別の目的は、可干渉性単色光を用いる画像形成
に適すると共゛に製造管理が容易である光受容部材を提
供することである。Another object of the present invention is to provide a light-receiving member that is suitable for image formation using coherent monochromatic light and that is easy to manufacture and control.
本発明の更に別の目的は1画像形成時に現出する干渉縞
模様と反転現像時の斑点の現出を同時にしかも完全に解
消することができる光受容部材を提供することでもある
。Still another object of the present invention is to provide a light-receiving member that can simultaneously and completely eliminate the interference fringe pattern that appears during image formation and the appearance of spots during reversal development.
本発明の光受容部材は、シリコン原子とゲルマニウム原
゛子とを含む非晶質材料で構成された第1の層と、シリ
コン原子を含む非晶質材料で構成され、光導電性を示す
第2の層とが支持体側より順に設けられた多層構成の光
受容層とを有する光受容部材に於いて、前記光受容層が
ショートレンジ内に1対以上の非平行な界面を有し、該
非平行な界面が層厚方向と垂直な面内の少なくとも一方
向に多数配列している事を特徴とする。The light-receiving member of the present invention includes a first layer made of an amorphous material containing silicon atoms and germanium atoms, and a first layer made of an amorphous material containing silicon atoms and exhibiting photoconductivity. In the light-receiving member, the light-receiving layer has a multilayer structure in which the second layer and the second layer are provided in order from the support side, and the light-receiving layer has one or more pairs of non-parallel interfaces within a short range, and the non-parallel It is characterized by a large number of parallel interfaces arranged in at least one direction within a plane perpendicular to the layer thickness direction.
以下、本発明を図面に従って具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to the drawings.
第6図は、本発明の基本原理を説明するための説明図で
ある。FIG. 6 is an explanatory diagram for explaining the basic principle of the present invention.
本発明は装置の要求解像力よりも微小な凹凸形状を有す
る支持体(不図示)上に、その凹凸の傾斜面に沿って多
層構成の光受容層を有し、該光受容層は第6図の一部に
拡大して示されるように、第2層602の層厚がd5か
らd6と連続的に変化している為に、界面603と界面
604とは互いに傾向きを有している。従って、この微
小部分(ショートレンジ)文に入射した可干渉性光は、
該微小部公文に於て干渉を起し、微小な干渉縞模様を生
ずる。The present invention has a light-receiving layer having a multilayer structure along the slope of the unevenness on a support (not shown) having an uneven shape smaller than the required resolution of the device, and the light-receiving layer is shown in FIG. As shown in a partially enlarged view, since the layer thickness of the second layer 602 changes continuously from d5 to d6, the interface 603 and the interface 604 have a tendency toward each other. Therefore, the coherent light incident on this minute (short range) sentence is
Interference occurs in the minute portions, producing a minute interference fringe pattern.
又、第7図に示す様に第1層701と第2層702の界
1面703と第2層702の自由表面704とが非平行
であると、第7図の(A)に示す様に入射光IQに対す
る反射光R1と出射光R3とはその進行方向が互いに異
る為、界面703ζΔt04とが平行な場合(第7図の
r (B) J )に較べて干渉の度合が減少する。Moreover, as shown in FIG. 7, if the interface 703 between the first layer 701 and the second layer 702 and the free surface 704 of the second layer 702 are non-parallel, as shown in FIG. Since the traveling directions of the reflected light R1 and the emitted light R3 with respect to the incident light IQ are different from each other, the degree of interference is reduced compared to the case where the interface 703ζΔt04 is parallel (r (B) J in Fig. 7). .
従って、第7図の(C)に示す様に、一対の界面が平行
な関係にある場合(r (B) J )よりも非平行な
場合(r(’A)J)は干渉しても干渉縞模様の明暗の
差が無視し得る程度に小さくなる。その結果、微小部分
の入射光量は平均化される。Therefore, as shown in Figure 7 (C), when a pair of interfaces are non-parallel (r('A)J) than when they are parallel (r(B)J), even if they interfere, The difference in brightness of the interference fringe pattern becomes negligible. As a result, the amount of light incident on the minute portions is averaged.
このことは、第6図に示す様に第2層602の層厚がマ
クロ的にも不均一(d7’=、dB)でも同様に云える
為、全層領域に於て入射光量が均一になる(第6図のr
(D)J参照)。This is true even if the thickness of the second layer 602 is macroscopically non-uniform (d7'=, dB) as shown in FIG. 6, so the amount of incident light is uniform over the entire layer area. (r in Figure 6)
(D) See J).
また、光受容層が多層構成である場合に於いて照射側か
ら第2層まで可干渉性光が透過した場合に就いて本発明
の効果を述べれば、第8図に示す様に、入射光IQに対
して、反射光R1,R2,R3,R4,R5が存在する
。Furthermore, to describe the effects of the present invention in the case where coherent light is transmitted from the irradiation side to the second layer when the light-receiving layer has a multilayer structure, as shown in FIG. Reflected lights R1, R2, R3, R4, and R5 exist for IQ.
その為各々の層で第7図を似って前記に説明したことが
生ずる。Therefore, in each layer, what is described above similar to FIG. 7 occurs.
従って、光受容層全体で考えると干渉は夫々の層での相
乗効果となる為、本発明によれば、光受容層を構成する
層の数が増大するにつれ、より一層干渉効果を防止する
ことが出来る。Therefore, when considering the entire photoreceptive layer, interference is a synergistic effect in each layer, so according to the present invention, as the number of layers constituting the photoreceptive layer increases, the interference effect can be further prevented. I can do it.
又、微小部分内に於て生ずる干渉縞は、微小部分の大き
さが照射光スポット径より小さい為、即ち、解像度限界
より小さい為、画像に現われることはない。又、仮に画
像に現われているとしても眼の分解能以下なので実質的
には何等支障を生じない。Further, interference fringes generated within the minute portion do not appear in the image because the size of the minute portion is smaller than the irradiation light spot diameter, that is, smaller than the resolution limit. Moreover, even if it appears in the image, it will not cause any substantial trouble because it is below the resolution of the eye.
本発明に於いて、凹凸の傾斜面は反射光を一方向へ確実
に揃える為に、鏡面仕上げとされるのが望ましい。In the present invention, the uneven inclined surface is desirably mirror-finished in order to reliably align the reflected light in one direction.
本発明に適した微小部分の大きさ文(凹凸形状の一周期
分)は、照射光のスポット径をLとすれば、文≦Lであ
る。The size of the minute portion (one period of the uneven shape) suitable for the present invention is ≦L, where L is the spot diameter of the irradiation light.
又本発明の目的をより効果的に達成する為には微小部分
立に於ける層厚の差(dB−dB)は、照射光の波長を
入とすると、
dB−d8≧ 71
(n:第2層602の屈折率)
であるのが望ましい。In addition, in order to achieve the object of the present invention more effectively, the difference in layer thickness (dB-dB) in a minute portion should be dB-d8≧71 (n: the th It is desirable that the refractive index of the two layers 602 is as follows.
本発明に於ては、多層構造の光受容層の微小部分立の層
厚内(以後「微小カラム」と称す)に於て、少なくとも
いずれか2つの層界面が非ゼ行な関係にある様に各層の
層厚が微小カラム内に於て制御されるが、この条件を満
足するならば該微小カラム内にいずれか2つの層界面が
・[1行な関係にあっても良い。In the present invention, within the layer thickness of a microscopic portion of a multilayered photoreceptive layer (hereinafter referred to as a "microcolumn"), at least any two layer interfaces are in a non-zero relationship. The layer thickness of each layer is controlled within the microcolumn, but as long as this condition is satisfied, any two layer interfaces may be in a one-row relationship within the microcolumn.
但し、平行な層界面を形成する層は、任意の2つの位置
に於ける層厚の差が
入
2n (n’層の屈折率)
以下である様に全領域に於て均一層厚に形成されるのが
望ましい。However, the layers forming parallel layer interfaces are formed to have a uniform layer thickness over the entire area so that the difference in layer thickness at any two positions is 2n (refractive index of the n' layer) or less. It is desirable that
光受容層を構成するシリコン原子とゲルマニウム原子を
含む第1の層とシリコン原子を含む第2の層の形成には
本発明の目的をより効果的且つ容易に達成する為に、層
厚を光学的レベルで正確に制御できることからプラズマ
気相法(PCVD法)、光CVD法、熱CVD法が採用
される。The first layer containing silicon atoms and germanium atoms and the second layer containing silicon atoms constituting the photoreceptive layer are formed by controlling the layer thickness to an optical value in order to more effectively and easily achieve the object of the present invention. Plasma vapor phase method (PCVD method), optical CVD method, and thermal CVD method are adopted because they can be accurately controlled at a target level.
支持体表面に設けられる凹凸は、7字形状の切刃を有す
るバイトをフライス盤、旋盤等の切削加工機械の所定位
置に固定し、例えば円筒状支持体を予め所望に従って設
計されたプログラムに従って回転させながら規則的に所
定方向に移動させることにより、支持体表面を正確に切
削加工することで所望の凹凸形状、ピッチ、深さで形成
される。この様な切削加工法によって形成される凹凸が
作り出す逆V字形線状突起部は、円筒状支持体の中心軸
を中心にした螺線構造を有する。逆V字形突起部の螺線
構造は、二重、三重の多重螺線構造、又は交叉螺線描造
とされても差支えない。The unevenness provided on the surface of the support can be achieved by fixing a cutting tool having a 7-shaped cutting edge in a predetermined position on a cutting machine such as a milling machine or lathe, and rotating the cylindrical support according to a program designed in advance as desired. However, by regularly moving in a predetermined direction, the surface of the support can be accurately cut to form a desired uneven shape, pitch, and depth. The inverted V-shaped linear protrusion created by the unevenness formed by such a cutting method has a spiral structure centered on the central axis of the cylindrical support. The spiral structure of the inverted V-shaped protrusion may be a double or triple spiral structure, or a crossed spiral structure.
或いは、螺線構造に加えて中心軸に沿った直線構造を導
入しても良い6
支持体表面に設けられる凹凸の凸部の縦断面形状は形成
される各層の微小カラム内に於ける層厚の管理された不
均一化と、支持体と該支持体りに直接設けられる層との
間の良好な密着性や所望の電気的接触性を確保する為に
逆V字形とされるが、好ましくは第9図に示される様に
実質的に二等辺三角形、直角三角形成いは不等辺三角形
とされるのが望ましい。これ等の形状の中殊に二等辺三
角形、直角三角形が望ましい。Alternatively, in addition to the spiral structure, a linear structure along the central axis may be introduced.6 The vertical cross-sectional shape of the uneven convex portion provided on the surface of the support is determined by the layer thickness within the microcolumn of each layer formed. The inverted V-shape is preferably used to ensure controlled non-uniformity and good adhesion and desired electrical contact between the support and the layer applied directly to the support. As shown in FIG. 9, it is desirable that the shape is substantially an isosceles triangle, a right triangle, or a scalene triangle. Of these shapes, isosceles triangles and right triangles are particularly desirable.
本発明に於ては、管理された状態で支持体表面に設けら
れる凹凸の各ディメンジョンは、以下の点を考慮した上
で、本発明の目的を結果的に達成出来る様に設定される
。In the present invention, the dimensions of the irregularities provided on the surface of the support in a controlled manner are set in such a way that the object of the present invention can be achieved as a result, taking into account the following points.
即ち、第1は光受容層を構成するA−9i層は、層形成
される表面の状態に構造敏感であって、表面状態に応じ
て層品質は大きく変化する。That is, firstly, the A-9i layer constituting the photoreceptive layer is structurally sensitive to the condition of the surface on which the layer is formed, and the layer quality changes greatly depending on the surface condition.
従って、A−9i層の層品質の低下を招来しない様に支
持体表面に設けられる凹凸のディメンションを設定する
必要がある。Therefore, it is necessary to set the dimensions of the irregularities provided on the surface of the support so as not to cause deterioration in the layer quality of the A-9i layer.
第2には光受容層の自由表面に極端な凹凸があると、画
像形成後のクリーニングに於てクリーニングを完全に行
なうことが出来なくなる。Secondly, if the free surface of the photoreceptive layer is extremely uneven, it becomes impossible to perform cleaning completely after image formation.
また、ブレードクリーニングを行う場合、ブレードのい
たみが早くなるという問題がある。Further, when cleaning the blade, there is a problem that the blade becomes damaged quickly.
−1二記した層堆積上の問題点、電子写真法のプロセス
上の問題点および、干渉縞模様を防ぐ条件を検討した結
果、支持体表面の凹部のピッチは、好ましくは500
#L、m 〜0 、37zm、より好ましくは200g
m〜1ルm、最適には50pLm〜5gmであるのが望
ましい。-1 As a result of examining the problems in layer deposition mentioned above, the process problems in electrophotography, and the conditions for preventing interference fringes, the pitch of the recesses on the surface of the support is preferably 500.
#L, m ~ 0, 37zm, more preferably 200g
m to 1 lm, optimally from 50 pLm to 5 gm.
又凹部の最大の深さは、好ましくは0.IJLm〜5g
m、より好ましくは0.3pLm〜3 pLm 、最適
には0.6gm〜2JLmとされるのが望ましい。支持
体表面の凹部のピッチと最大深さが上記の範囲にある場
合、凹部(又は線上突起部)の傾斜面の傾きは、好まし
くは1度〜20度、より好ましくは3度〜15度、最適
には4度〜10度とされるのが望ましい。Further, the maximum depth of the recess is preferably 0. IJLm~5g
m, more preferably 0.3 pLm to 3 pLm, optimally 0.6 gm to 2 JLm. When the pitch and maximum depth of the recesses on the surface of the support are within the above range, the slope of the slope of the recesses (or linear protrusions) is preferably 1 degree to 20 degrees, more preferably 3 degrees to 15 degrees, The optimum angle is preferably 4 degrees to 10 degrees.
又、この様な支持体上に堆積される各層の層厚の不均一
性に基く層厚差の最大は、同一ピッチ内で好ましくは0
.1pm〜2 g m 、より好ましくは0.1gm−
1,5JLm、最適には0 、2 JLm” l pm
とされるのが望ましい。Further, the maximum difference in layer thickness due to the non-uniformity of the layer thickness of each layer deposited on such a support is preferably 0 within the same pitch.
.. 1 pm to 2 gm, more preferably 0.1 gm-
1,5 JLm, optimally 0,2 JLm”l pm
It is desirable that this is done.
さらに本発明の光受容部材における光受容層はシリコン
原子とゲルマニきラム原子とを含む非晶質材料で構成さ
れた第1の層とシリコン原子を含む非晶質材料で構成さ
れ、光導電性を示す第2の層とが支持体側より順に設け
られた多層構成となっているため極めて優れた電気的、
光学的、光導電的特性、電気的耐圧性及び使用環境特性
を示す。Furthermore, the photoreceptive layer in the photoreceptive member of the present invention is composed of a first layer made of an amorphous material containing silicon atoms and germanium atoms, and an amorphous material containing silicon atoms, and has photoconductivity. It has a multilayer structure in which the second layer showing the
Indicates optical, photoconductive properties, electrical pressure resistance, and usage environment properties.
殊に、電子写真用光受容部材として適用させた場合には
、画像形成への残留電位の影響が全くなく、その電気的
特性が安定しており高感度で、高SN比を有するもので
あって、耐光疲労、繰返し使用特性に長け、濃度が高く
、ハーフトーンが鮮明に出て、且つ解像度の高い高品質
の画像を安定して繰返し得ることができる。In particular, when applied as a light-receiving member for electrophotography, there is no influence of residual potential on image formation, its electrical characteristics are stable, it is highly sensitive, and it has a high signal-to-noise ratio. Therefore, it has excellent light fatigue resistance and repeated use characteristics, and can stably and repeatedly produce high-quality images with high density, clear halftones, and high resolution.
更に、本発明の光受容部材は、全可視光域に於いて光感
度が高く、また、特に長波長側の光感度特性に優れてい
るため殊に半導体レーザとのマツチングに優れ、且つ光
応答が速い。Furthermore, the light-receiving member of the present invention has high photosensitivity in the entire visible light range, and is particularly excellent in photosensitivity characteristics on the long wavelength side, so it is particularly excellent in matching with semiconductor lasers, and has excellent optical response. is fast.
以下、図面に従って′、本発明の光受容部材に就て詳細
に説明する。Hereinafter, the light receiving member of the present invention will be explained in detail with reference to the drawings.
第10図は、本発明の実施態様例の光受容部材の層構成
を説明するために模式的に示した模式的構成図である。FIG. 10 is a schematic configuration diagram schematically shown to explain the layer configuration of a light receiving member according to an embodiment of the present invention.
第10図に示す光受容部材1004は、光受容部材用と
しての支持体1001の上に、光受容層1000を有し
、該光受容層1oooは自由表面1005を一方の端面
に有している。A light-receiving member 1004 shown in FIG. 10 has a light-receiving layer 1000 on a support 1001 for the light-receiving member, and the light-receiving layer 1ooo has a free surface 1005 on one end surface. .
光受容層1000は支持体1001側よりゲルマニウム
原子を含有するa−3t(H,X)(以後ra−3iG
e (H,X)Jと略記する)で構成された第1の層(
G)1002とa−3t(H,X)で構成され、光導電
性を有する第2の層(S)1003とが順に積層された
層構造を有する。第1の層(G)1002中に含有され
るゲルマニウム原子は、該第1の層(G)1002の層
厚方向及び支持体の表面と平行な面内方向に連続的であ
って且つ均一な分布状態となる様に前記第1の層(G)
1002中に含有される。The photoreceptive layer 1000 is a-3t(H,X) (hereinafter ra-3iG) containing germanium atoms from the support 1001 side
e The first layer (abbreviated as (H,X)J)
G) 1002 and a second layer (S) 1003, which is composed of a-3t(H,X) and has photoconductivity, are laminated in this order. The germanium atoms contained in the first layer (G) 1002 are continuous and uniform in the layer thickness direction of the first layer (G) 1002 and in the in-plane direction parallel to the surface of the support. The first layer (G) so as to be in a distributed state.
Contained in 1002.
本発明に於いては、第1の層CG)上に設けられる第2
の層(S)中には、ゲルマニウム原子は含有されておら
ず、この様な層構造に光受容層を形成することによって
、可視光領域をふくむ比較的短波長から比較的短波長迄
の全領域の波長の光に対して光感度が優れている光導電
部材として得るものである。In the present invention, the second layer provided on the first layer CG)
The layer (S) does not contain germanium atoms, and by forming a light-receiving layer in such a layer structure, it can absorb all wavelengths from relatively short wavelengths to relatively short wavelengths, including the visible light region. The present invention provides a photoconductive member having excellent photosensitivity to light having wavelengths in the range.
又、第1の層(G)中に於けるゲルマニウム原子の分布
状態は全層領域にゲルマニウム原子が連続的に分布して
いるので、半導体レーザ等を使用した場合の、第2の層
(S)では殆ど吸収しきれない長波長側の光を第1の層
(G)に於いて、実質的に完全に吸収することが出来、
支持体面からの反射による干渉を防止することが出来る
。In addition, the distribution state of germanium atoms in the first layer (G) is such that germanium atoms are continuously distributed over the entire layer region, so when a semiconductor laser or the like is used, the second layer (S ) can substantially completely absorb light on the long wavelength side, which is almost completely absorbed in the first layer (G).
Interference due to reflection from the support surface can be prevented.
又、本発明の光受容部材に於いては、第1の層(G)と
第2の層(S)とを構成する非晶質材料の夫々がシリコ
ン原子という共通の構成要素を有しているので積層界面
に於いて化学的な安定性の確保が充分酸されている。Further, in the light-receiving member of the present invention, each of the amorphous materials constituting the first layer (G) and the second layer (S) has a common constituent element of silicon atoms. Therefore, the laminated interface is sufficiently acidified to ensure chemical stability.
本発明において、第1の層中に含有されるゲルマニウム
原子の含有量としては、本発明の目的が効果的に達成さ
れる様に所望に従って適宜法められるが、好ましくは1
〜9.5X105atomic ppm、より好ましく
は100〜8XIO5at omic ppm、最適に
は500−1.7X10”atomic ppmとされ
るのが望ましいものである。In the present invention, the content of germanium atoms contained in the first layer is determined as desired so as to effectively achieve the object of the present invention, but is preferably 1.
Desirably, the range is ~9.5X105 atomic ppm, more preferably 100-8XIO5 atomic ppm, optimally 500-1.7X10" atomic ppm.
本発明に於いて、第1の層(G)と第2の層(S)との
層厚は、本発明の目的を効果的に達成させる為の重要な
因子の1つであるので形成される光受容部材に所望の特
性が充分与えられる様に、光受容部材の設計の際に充分
なる注意が払われる必要がある。In the present invention, the layer thickness of the first layer (G) and the second layer (S) is one of the important factors for effectively achieving the object of the present invention. Considerable care must be taken in the design of the light-receiving member to ensure that the desired properties are fully imparted to the light-receiving member.
本発明に於いて、第1の層CG)の層厚TBは、好まし
くは30人〜50W、より好ましくは、40人〜40p
L、最適には、50人〜30牌とされるのが望ましい。In the present invention, the layer thickness TB of the first layer CG) is preferably 30 to 50W, more preferably 40 to 40P.
L: Optimally, it is desirable to have 50 people to 30 tiles.
又、第2の層(’S)の層厚Tは、好ましくは0.5〜
90ル、より好ましくは1〜80pL最適には2〜50
#Lとされるのが望ましい。Further, the layer thickness T of the second layer ('S) is preferably 0.5 to
90 pL, more preferably 1-80 pL optimally 2-50 pL
It is desirable to set it to #L.
第1の層(G)の層厚TBと第2の層(S)の層厚Tの
和(TB+T)としては、両層領域に要求される特性と
光受容層全体に要求される特性との相互間の有機的関連
性に基いて、光受容部材の層設針の際に所望に従って、
適宜決定される。The sum (TB+T) of the layer thickness TB of the first layer (G) and the layer thickness T of the second layer (S) is based on the characteristics required for both layer regions and the characteristics required for the entire photoreceptive layer. Based on the organic relationship between the
To be determined accordingly.
本発明の光受容部材に於いては、上記の(TB+T)の
数値範囲としては、好ましくは1〜toog、より好適
には1〜80ル、最適には2〜50Pとされるのが望ま
しい。In the light-receiving member of the present invention, the numerical range of (TB+T) is preferably 1 to toog, more preferably 1 to 80 P, and most preferably 2 to 50 P.
本発明のより好ましい実施態様例に於いては、上記の層
厚TB及び層厚Tとしては、好ましくはTB/T≦1な
る関係を満足する際に、夫々に対して適宜適切な数値が
選択されるのが望ましい。In a more preferred embodiment of the present invention, the above-mentioned layer thickness TB and layer thickness T preferably have appropriate values selected for each when satisfying the relationship TB/T≦1. It is desirable that
上記の場合に於ける層厚TB及び層厚Tの数値の選択の
於いて、より好ましくは、TB/T≦0.9.最適には
TB /T≦0.8なる関係が満足される様に層厚TB
及び層厚Tの値が決定されるのが望ましいものである。In selecting the numerical values of layer thickness TB and layer thickness T in the above case, it is more preferable that TB/T≦0.9. Optimally, the layer thickness TB is adjusted so that the relationship TB /T≦0.8 is satisfied.
It is desirable that the values of and the layer thickness T be determined.
本発明に於いて、第1の層(G)中に含有されるゲルマ
ニウム原子の含有量がIX1lX105ato ppm
以上の場合には、第1の層(G)の層厚TBとしては、
可成り薄くされるのが望ましく、好ましくは30P以下
、より好ましくは25ル以下、最適には20p以下とさ
れるのが望ましいものである。In the present invention, the content of germanium atoms contained in the first layer (G) is IX11X105ato ppm
In the above case, the layer thickness TB of the first layer (G) is
It is desirable that the thickness be considerably thin, preferably 30 P or less, more preferably 25 P or less, most preferably 20 P or less.
本発明において、必要に応じて光受容層を構成する第1
の層(G)及び第2の層(S)中に含有されるハロゲン
原子(X)としては、具体的には、フッ素、塩素、臭素
、ヨウ素が挙げられ、殊にフッ素、塩素を好適なものと
して挙げることが出来る。In the present invention, if necessary, the first
Specific examples of the halogen atoms (X) contained in the layer (G) and the second layer (S) include fluorine, chlorine, bromine, and iodine, with fluorine and chlorine being particularly preferred. It can be mentioned as such.
本発明において、a−5i Ge (H、X)で構成さ
れる第1の層(G)を形成するには例えばグロー放電法
、スパッタリング法、或いはイオンブレーティング法等
の放電現象を利用する真空堆積法によって成される。例
えば、グロー放電法によッテ、a−3i Ge (H、
X) テ構成される第1の層(G)を形成するには、基
本的には、シリコン原子(Si)を供給し得るSi供給
用の原料ガスとゲルマニウム原子(Ge)を供給し得る
Ge供給用の原料カスと必要に応じて水素原子(H)導
入用の原料ガス又は/及びハロゲン原子(X)導入用の
原料ガスを、内部が減圧にし得る堆積室内に所望のガス
圧状IEで導入して、該堆積室内にグロー放電を生起さ
せ、予め所定位置に設置されである所定の支持体表面上
にa−3i Ge (H、X)から成る層を形成させれ
ば良い。又、スパッタリング法で形成する場合には、例
えばAr、He等の不活性カス又はこれ等のガスをベー
スとした混合ガスの雰囲気中でSiで構成されたターゲ
ットとGeで構成されたターゲットの二枚を使用して、
又はSiとGeの混合されたターゲットを使用してスパ
ッタリングする際、必要に応じて水素原子(H)又は/
及びハロゲン原子(X)導入用のガスをスパッタリング
用の堆積室に導入してやれば良い。In the present invention, the first layer (G) composed of a-5i Ge (H, It is done by a deposition method. For example, a-3i Ge (H,
X) To form the first layer (G) composed of The raw material scraps for supply and, if necessary, the raw material gas for introducing hydrogen atoms (H) and/or the raw material gas for introducing halogen atoms (X) are heated to a desired gas pressure IE in a deposition chamber whose interior can be reduced in pressure. The a-3i Ge (H, In addition, when forming by sputtering method, for example, a target made of Si and a target made of Ge are formed in an atmosphere of inert gas such as Ar or He or a mixed gas based on these gases. using a
Or when sputtering using a mixed target of Si and Ge, hydrogen atoms (H) or /
Then, a gas for introducing halogen atoms (X) may be introduced into a deposition chamber for sputtering.
本発明において使用されるSi供給用の原料ガスと成り
得る物質としては、SiH4゜Si2H6,5i3HB
、5i4H1□等のガス状態の又ガス化し得る水素化
硅素(シラン類)が有効に使用されるものとして挙げら
れ、殊に、層作成作業時の取扱い易さ、Si供給効率の
良さ等の点でSiH4,5f2HB 、か好ましいもの
として挙げられる。Substances that can be used as raw material gas for supplying Si used in the present invention include SiH4゜Si2H6,5i3HB
, 5i4H1□, and other gaseous silicon hydrides (silanes) that can be gasified are mentioned as being effectively used, especially in terms of ease of handling during layer creation work, good Si supply efficiency, etc. Preferred examples include SiH4,5f2HB.
Ge供給用の原料ガスと成り得る物質としては、GeH
4、’Ge2 He 、Ge3 HB 。As a material that can be a source gas for supplying Ge, GeH
4, 'Ge2 He, Ge3 HB.
Ge4 Hoo、Ge5 H12,Ge6 H14,G
e7H1B、GeB H18,Ge9 H20等のガス
状態ノ又はガス化し得る水素化ゲルマニウムが有効に使
用されるものとして挙げられ、殊に、層作成作業時の取
扱い易さ、Ge供給効率の良さ等の点で、G e H4
、G e2”H6、G e3 HBが好ましいものとし
て挙げられる。Ge4 Hoo, Ge5 H12, Ge6 H14, G
Germanium hydride in a gaseous state or capable of being gasified, such as e7H1B, GeB H18, and Ge9 H20, can be effectively used, especially in terms of ease of handling during layer creation work, good Ge supply efficiency, etc. So, G e H4
, G e2''H6, and G e3 HB are preferred.
本発明において使用されるハロゲン原子導入用の原料ガ
スとして有効なのは、多くのハロゲン化合物が挙げられ
、例えばハロゲンガス、ハロゲン化合物、ハロゲン間化
合物、ハロゲンで置換されたシラン誘導体等のガス状態
の又はガス化し得るハロゲン化合物が好ましく挙げられ
る。Many halogen compounds are effective as the raw material gas for introducing halogen atoms used in the present invention, such as halogen gas, halogen compounds, interhalogen compounds, halogen-substituted silane derivatives, etc. Preferred examples include halogen compounds that can be converted into
又、更には、シリコン原子とハロゲン原子とを構成要素
とするガス状fgの又はガス化し得る、ハロゲン原子を
含む水素化硅素化合物も有効なものとして本発明におい
ては挙げることが出来る。Furthermore, silicon hydride compounds containing halogen atoms, which are gaseous fg or can be gasified and which have silicon atoms and halogen atoms as constituent elements, can also be mentioned as effective in the present invention.
本発明において好適に使用し得るハロゲン化合物として
は、具体的には、フッ素、塩素、臭素、ヨウ素のハロゲ
ンガス、BrF 、CIF 。Specifically, halogen compounds that can be suitably used in the present invention include halogen gases such as fluorine, chlorine, bromine, and iodine, BrF, and CIF.
ClF3 、BrF5 、BrF3 、IF3 。ClF3, BrF5, BrF3, IF3.
IF7 、IC1、IBr等のハロゲン間化合物を挙げ
ることが出来る。Examples include interhalogen compounds such as IF7, IC1, and IBr.
ハロゲン原子を含む硅素化合物、所謂、ハロゲン原子で
置換されたシラン誘導体とじては、具体的には例えばS
iF4 、Si2 F6 。Specifically, silicon compounds containing halogen atoms, so-called silane derivatives substituted with halogen atoms, include, for example, S
iF4, Si2F6.
Si0文4.SiBr4等のハロゲン化硅素が好ましい
ものとして挙げる事が出来る。Si0 sentence 4. Silicon halides such as SiBr4 are preferred.
この「\ロゲン原子を含む硅素化合物を採用してグロー
放電法によって本発明の特徴的な光導電部材を形成する
場合には、Ge供給用の原料ガスと共にSiを供給し得
る原料ガスとしての水素硅素ガスを使用しなくとも、所
望の支持体上にハロゲン原子を含むa−3iGeから成
る第1の層(G)を形成する事が出来る。When a photoconductive member, which is characteristic of the present invention, is formed by a glow discharge method using a silicon compound containing a ``\rogen atom, hydrogen is used as a raw material gas that can supply Si together with a raw material gas for supplying Ge. The first layer (G) made of a-3iGe containing halogen atoms can be formed on a desired support without using silicon gas.
グロー放電法に従って、ハロゲン原子を含む第1の層C
G)を作成する場合、基本的には、例えばSi供給用の
原料ガスとなるハロゲン化硅素とGe供給用の原料ガス
となる水素化ゲルマニウムとAr、H2,He等のガス
等を所定の混合比とカス流量になる様にして第1の層(
G)を形成する堆積室に導入し、グロー放電を生起して
これ等のガスのプラズマ雰囲気を形成することによって
、所望の支持体上に第1の層(G)を形成し得るもので
あるが、水素原子の導入割合の制御を一層容易になる様
に計る為にこれ等のガスに更に水素ガス又は水素原子を
含む硅素化合物のガスも所望量混合して層構成しても良
い。A first layer C containing halogen atoms according to a glow discharge method
G), basically, for example, a predetermined mixture of silicon halide, which is a raw material gas for supplying Si, germanium hydride, which is a raw material gas for Ge supply, and gases such as Ar, H2, He, etc. The first layer (
The first layer (G) can be formed on the desired support by introducing the first layer (G) into a deposition chamber for forming the gas and generating a glow discharge to form a plasma atmosphere of these gases. However, in order to more easily control the introduction ratio of hydrogen atoms, a desired amount of hydrogen gas or a silicon compound gas containing hydrogen atoms may be mixed with these gases to constitute a layer.
又、各ガスは単独種のみでなく所定の混合比で複数種混
合して使用しても差支えないものである。Moreover, each gas may be used not only as a single species but also as a mixture of multiple species at a predetermined mixing ratio.
反応スパッタリング法或いはイオンブレーティング法に
依ッテa−3iGe (H、X)から成る第1の層領域
(G)を形成するには、例えばスパッタリング法の場合
にはSiから成るターゲットとGeから成るターゲット
の二枚を、或いはSiとGeから成るターゲットを使用
して、これを所望のカスプラズマ雰囲気中でスパッタリ
ングし、イオンブレーティング法の場合には、例えば、
多結晶シリコン又は単結晶シリコンと多結晶ゲルマニウ
ム又は単結晶ゲルマニウムとを夫々蒸発源として蒸着ポ
ートに収容し、この蒸発源を抵抗加熱法或いはエレクト
ロンビーム法(EB法)等によって加熱蒸発させ飛翔蒸
発物を所望のガスプラズマ雰囲気中を通過させる事で行
う事が出来る。In order to form the first layer region (G) made of a-3iGe (H, In the case of the ion blating method, for example, sputtering is performed using two targets made of Si and Ge or a target made of Si and Ge in a desired gas plasma atmosphere.
Polycrystalline silicon or single-crystal silicon and polycrystalline germanium or single-crystal germanium are respectively accommodated as evaporation sources in the evaporation port, and the evaporation sources are heated and evaporated by a resistance heating method, an electron beam method (EB method), etc. to produce flying evaporates. This can be done by passing through a desired gas plasma atmosphere.
この際、スパッタリング法、イオンブレーティング法の
何れの場合にも形成される層中にハロゲン原子を導入す
るには、前記のハロゲン化合物又は前記のハロゲン原子
を含む硅素化合物のカスを堆積室中に導入して該ガスの
プラズマ雰囲気を形成してやれば良いものである。At this time, in order to introduce halogen atoms into the layer formed by either the sputtering method or the ion blasting method, the scum of the above-mentioned halogen compound or the above-mentioned silicon compound containing halogen atoms is placed in the deposition chamber. It is sufficient to introduce the gas to form a plasma atmosphere of the gas.
又、水素原子を導入する場合には、水素原子導入用の原
料ガス、例えば、H2、或いは前記したシラン類又は/
及び水素化ゲルマニウム等のカス類をスパッタリング用
の堆積室中に導入して該カス類のプラズマ雰囲気を形成
してやれば良い。In addition, when introducing hydrogen atoms, a raw material gas for hydrogen atom introduction, such as H2, or the above-mentioned silanes or/
A plasma atmosphere of the dregs may be formed by introducing scum such as germanium hydride into a deposition chamber for sputtering.
木発、明においては、ハロゲン原子導入用の原料ガスと
して上記されたハロゲン化合物或いはハロゲンを含む硅
素化合物が有効なものとして使用されるものであるが、
その他に、HF。In Mokuka and Akira, the above-mentioned halogen compounds or halogen-containing silicon compounds are used as effective raw material gases for introducing halogen atoms.
In addition, HF.
H0文、HBr、HI等のハロゲン化水素、S iH2
F2 、 S i、H2I2 、 S iH20文2゜
5iHCu3 .5iH2Br2,5iHBr3等のハ
ロゲン置換水素化硅素、及びGeHF3゜GeB2 F
2.、GeB3 F、GeHCJlj3 。Hydrogen halides such as H0, HBr, HI, S iH2
F2, S i, H2I2, S iH20 sentence 2゜5iHCu3. Halogen-substituted silicon hydride such as 5iH2Br2, 5iHBr3, and GeHF3゜GeB2 F
2. , GeB3 F, GeHCJlj3.
GeB2.CM2 、GeB3 CM、GeHBr3゜
GeB2 Br2 、GeB3 Br、GeHI3 。GeB2. CM2, GeB3 CM, GeHBr3°GeB2 Br2, GeB3 Br, GeHI3.
GeB2 I2 、GeB3 I等の水素化ハロゲン化
ゲルマニウム等の水素原子を構成要素の1つとするハロ
ゲン化物、GeF4 、Ge0M4 。Halides containing hydrogen atoms as one of their constituent elements, such as hydrogenated germanium halides such as GeB2 I2 and GeB3 I, GeF4 and Ge0M4.
GeB r4 、Ge I4 、GeF2 、GeCu
2゜GeB r2 、Ge I2 等のハロゲン化ゲル
マニウム、等々のガス状態の或いはカス化し得る物質も
有効な第1の層CG)形成用の出発物質ととして挙げる
事が出来る。GeBr4, GeI4, GeF2, GeCu
Germanium halides such as 2°GeB r2 , Ge I2, etc., gaseous or scalable substances can also be mentioned as useful starting materials for the formation of the first layer CG).
これ等の物質の中、水素原子を含むハロゲン化物は、第
1の層(G)形成の際に層中にハロゲン原子の導入と同
時に電気的或いは光電的特性の制御に極めて有効な水素
原子も導入されるので、本発明においては好適なハロゲ
ン導入用の原料として使用される。Among these substances, halides containing hydrogen atoms introduce halogen atoms into the layer when forming the first layer (G), and at the same time introduce hydrogen atoms, which are extremely effective in controlling electrical or photoelectric properties. Therefore, in the present invention, it is used as a suitable raw material for introducing halogen.
水素原子を第1の層(G)中に構造的に導入するには、
上記の他にH2、或いはSiH4゜Si2 H6、Si
3 HB 、Si4 Hlo等の水素化硅素をGeを供
給する為のゲルマニウム又はゲルマニウム化合物と、或
いは、GeH4゜Ge2 H6、Ge3 HB 、Ge
4 Hlo、Ge5H12,Ge8 H,14= Ge
7 H1B= GeB H18゜G e 9H20等の
水素化ゲルマニウムとSiを供給する為のシリコン又は
シリコン化合物と、を堆積室中に共存させて放電を生起
させる事でも行う事が出来る。To structurally introduce hydrogen atoms into the first layer (G),
In addition to the above, H2, or SiH4゜Si2 H6, Si
3 HB , Si4 Hlo or other silicon hydride with germanium or a germanium compound for supplying Ge, or GeH4゜Ge2 H6, Ge3 HB , Ge
4 Hlo, Ge5H12, Ge8 H,14= Ge
This can also be achieved by causing germanium hydride such as 7 H1B=GeB H18°G e 9H20 and silicon or a silicon compound for supplying Si to coexist in a deposition chamber to generate a discharge.
本発明の好ましい例において、形成される光受容層を構
成する第1の層(G)中に含有される水素原子(H)の
量又はハロゲン原子(X)の量又は水素原子とハロゲン
原子の量の和(H+X)は、好ましくは0.01〜40
a t o m i c%、より好適には0.05〜
30 a t o m i c%、最適には0.1〜2
5 a t o m i c%とされるのが望ましい。In a preferred example of the present invention, the amount of hydrogen atoms (H) or the amount of halogen atoms (X) contained in the first layer (G) constituting the photoreceptive layer to be formed, or the amount of hydrogen atoms and halogen atoms The sum of the amounts (H+X) is preferably 0.01 to 40
atom ic%, more preferably 0.05~
30 atom ic%, optimally 0.1-2
It is desirable that the amount is 5 atom ic%.
第1の層(G)中に含有される水素原子(H)又は/及
びハロゲン原子(X)の量を制御するには、例えば支持
体温度又は/及び水素原子(H)、或いはハロゲン原子
(X)を含有させる為に使用される出発物質の堆積装置
系内へ導入する量、放電々力等を制御してやれば良い。In order to control the amount of hydrogen atoms (H) and/or halogen atoms (X) contained in the first layer (G), for example, the support temperature or/and the amount of hydrogen atoms (H) or halogen atoms ( The amount of the starting material used to contain X) introduced into the deposition system, the discharge force, etc. may be controlled.
本発明に於いて、a−St(H,X)で構成される第2
の層(S)を形成するには、前記した第1の層(G)形
成用の出発物質(I)の中より、G供給用の原料ガスと
なる出発物質を除いた出発物質〔第2の層(S)形成用
の出発物質(II))を使用して、第1の層(G)を形
成する場合と、同様の方法と条件に従って行うことが出
来る。In the present invention, the second
To form the layer (S), starting materials [second It can be carried out according to the same method and conditions as in the case of forming the first layer (G) using the starting material (II)) for forming the layer (S).
即ち、本発明において、a−St(H,X)で構成され
る第2の層(S)を形成するには例えばグロー放電法、
スパッタリング法、或いはイオンブレーティング法等の
放電現象を利用する真空堆積法によって成される0例え
ば、グロー放電法によってa−5i(H,X)で構成さ
れる第2の層(S)を形成するには、基本的には前記し
たシリコン原子(Si)を供給し得るSi供給用の原料
ガスと共に、必要に応じて水素原子(H)導入用の又は
/及びハロゲン原子(X)導入用の原料ガスを、内部が
減圧にし得る堆積室内に導入して、該堆積室内にグロー
放電を生起させ、予め所定位置に設置されである所定の
支持体表面上にa−5t(H,X)からなる層を形成さ
せれば良い。又、スパッタリング法で形成する場合には
、例えばAr、He等の不活性ガス又はこれ等のガスを
ベースとした混合ガスの雰囲気中でSiで構成されたタ
ーゲットをスパッタリングする際、水素原子(H)又は
/及びハロゲン原子(X)導入用のカスをスパッタリン
グ用の堆積室に導入しておけば良い。That is, in the present invention, to form the second layer (S) composed of a-St(H,X), for example, a glow discharge method,
For example, a second layer (S) composed of a-5i (H, In order to do this, basically, along with the raw material gas for supplying Si that can supply the silicon atoms (Si) described above, if necessary, a gas for introducing hydrogen atoms (H) and/or for introducing halogen atoms (X) is used. A raw material gas is introduced into a deposition chamber whose interior can be reduced in pressure, a glow discharge is generated in the deposition chamber, and a-5t (H, It is sufficient to form a layer. In addition, when forming by sputtering, for example, when sputtering a target made of Si in an atmosphere of an inert gas such as Ar or He or a mixed gas based on these gases, hydrogen atoms (H ) or/and dregs for introducing halogen atoms (X) may be introduced into the deposition chamber for sputtering.
本発明に於いて、形成される光受容層を構成する$2層
(S)中に含有される水素原子(H)の量又はハロゲン
原子(X)の量又は水素原子とハロゲン原子の量の和(
H+X)は、好ましくは1〜40atomic%、より
好適には5〜30 a t o m i c%、最適に
は5〜25atomic%とされるのが望ましい。In the present invention, the amount of hydrogen atoms (H), the amount of halogen atoms (X), or the amounts of hydrogen atoms and halogen atoms contained in the $2 layer (S) constituting the photoreceptive layer to be formed is sum(
H+X) is preferably 1 to 40 atomic%, more preferably 5 to 30 atomic%, most preferably 5 to 25 atomic%.
本発明において使用される支持体としては、導電性でも
電気絶縁性であっても良い、導電性支持体としては、例
えば、NiCr、ステンレス、AM、Cr、Mo、Au
、Nb、Ta。The support used in the present invention may be electrically conductive or electrically insulating. Examples of the electrically conductive support include NiCr, stainless steel, AM, Cr, Mo, and Au.
, Nb, Ta.
V、Ti、Pt、Pd等の金属又はこれ等の合金が挙げ
られる。Examples include metals such as V, Ti, Pt, and Pd, and alloys thereof.
電気絶縁性支持体としては、ポリエステル。Polyester is used as the electrically insulating support.
ポリエチレン、ポリカーボネート、セルロースアセテー
ト、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリ
デン、ポリスチレン、ポリアミド等の合成樹脂のフィル
ム又はシート、ガラス、セラミック、紙等が通常使用さ
れる。Films or sheets of synthetic resins such as polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used.
これ等の電気絶縁性支持体は、好適には少なくともその
一方の表面を導電処理され、該導電処理された表面側に
他の層が設けられるのが望ましい。Preferably, at least one surface of these electrically insulating supports is conductively treated, and another layer is preferably provided on the conductively treated surface side.
例えば、ガラスであれば、その表面に、NiCr、Ai
、Cr、Mo、Au、Ir、Nb。For example, if it is glass, NiCr, Ai
, Cr, Mo, Au, Ir, Nb.
T iiL 、 V 、 T i、P t 、 P d
* I n 203 +S n02 、 I To
(I n203 +S n02 )等から成る11Mを
設けることによって導電性が付与され、或いはポリエス
テルフィルム等の合成樹脂フィルムであれば、NiCr
、AM。T iiL, V, T i, P t, P d
* I n 203 + S n02 , I To
Conductivity is imparted by providing 11M consisting of (I n203 +S n02 ), etc., or if it is a synthetic resin film such as a polyester film, NiCr
, A.M.
Ag、Pb、Zn、Ni、Au、Cr、Mo。Ag, Pb, Zn, Ni, Au, Cr, Mo.
Ir、Nb、Ta、V、Ti、Pt等の金属の薄膜を真
空蒸着、電子ビーム蒸着、スパッタリング等でその表面
に設け、又は前記金属でその表面をラミネート処理して
、その表面に導電性が付与される。支持体の形状として
は、円筒状、ベルト状、板状等任意の形状とし得、所望
によって、その形状は決定されるが、例えば、第1θ図
の光受容部材1004を電子写真用光受容部材として使
用するのであれば連続高速複写の場合には、無端ベルト
状又は円筒状とするのが望ましい、支持体の厚さは、所
望通りの光受容部材が形成される様に適宜決定されるが
、光受容部材として可撓性が要求される場合には、支持
体としての機能が充分発揮される範囲内であれば可能な
限り薄くされる。丙午ら、この様な場合支持体の製造上
及び取扱い上、機械的強度等の点から、好ましくは10
.以上とされる。A thin film of metal such as Ir, Nb, Ta, V, Ti, Pt, etc. is provided on the surface by vacuum evaporation, electron beam evaporation, sputtering, etc., or the surface is laminated with the above metal to make the surface conductive. Granted. The shape of the support may be any shape such as a cylinder, a belt, or a plate, and the shape is determined as desired. For example, the light-receiving member 1004 in FIG. In the case of continuous high-speed copying, it is preferable to use an endless belt or cylindrical shape.The thickness of the support is determined as appropriate so that the desired light-receiving member is formed. When flexibility is required as a light-receiving member, it is made as thin as possible within a range that allows it to function as a support. In such a case, from the viewpoint of manufacturing and handling of the support, mechanical strength, etc., preferably 10
.. This is considered to be the above.
次に本発明の光受容部材の製造方法の一例の概略につい
て説明する。Next, an outline of an example of the method for manufacturing the light receiving member of the present invention will be explained.
第11図に光受容部材の製造装置の一例を示す。FIG. 11 shows an example of a light-receiving member manufacturing apparatus.
図中1102〜1106のガスボンベには、本発明の光
受容部材を形成するための原料カスが密封されており、
その−例してたとえば1102は、SiH4ガス(純度
99.999%。In the gas cylinders 1102 to 1106 in the figure, raw material waste for forming the light receiving member of the present invention is sealed.
For example, 1102 is SiH4 gas (purity 99.999%).
以下SiH4と略す)ボンベ、1103はGeH4ガス
(純度99.999%、以下G e H4と略す)ボン
ベ、1104はSiF4ガス(純度99.99%、以下
S i F4と略す)ボンベ、1105はHeガス(純
度99.999%)ボンベ、1106はH2ガス(純度
99゜999%)ボンベである。1103 is a GeH4 gas (purity 99.999%, hereinafter abbreviated as G e H4) cylinder, 1104 is a SiF4 gas (purity 99.99%, hereinafter abbreviated as SiF4) cylinder, 1105 is He Gas cylinder (purity 99.999%) 1106 is a H2 gas cylinder (purity 99°999%).
これらのガスを反応室1totに流入させるにはガスボ
ンベ1102〜1106のバルブ1122〜1126、
リークバルブ1135が閉じられていることを確認し、
また、流入バルブ1112〜1116、流出バルブ11
17〜1121、補助バルブ1132.1133が開か
れていることを確認して、先ずメインバルブ1134を
開いて反応室1lO1、及び各ガス配管内を排気する。In order to flow these gases into 1 tot of reaction chambers, valves 1122 to 1126 of gas cylinders 1102 to 1106,
Make sure the leak valve 1135 is closed,
In addition, inflow valves 1112 to 1116 and outflow valve 11
After confirming that 17 to 1121 and auxiliary valves 1132 and 1133 are open, first open the main valve 1134 to exhaust the reaction chamber 11O1 and each gas pipe.
次に真空計1136の読みが約5X10−8torrに
なった時点で補助バルブ1132,1133、流出バル
ブ1117〜1121を閉じる。Next, when the reading on the vacuum gauge 1136 reaches approximately 5×10 −8 torr, the auxiliary valves 1132 and 1133 and the outflow valves 1117 to 1121 are closed.
次にシリンダー状基体1137上に非晶質層を形成する
場合の1例をあげると、ガス;ttン<1102よりS
iH4ガス、ガスボンベ1103よりGeH4ガスをバ
ルブ1122゜1123を開いて出口圧ゲージ1127
.1123の圧を1Kg/cm2に調整し、流入バルブ
1l12,1113を徐々に開けて、マスフロコントロ
ーラ1107.1108内に夫々流入させる。引き続い
て流出バルブ1117゜1118、補助バルブ1132
を徐々に開いて夫々のガスを反応室1101に流入させ
る。このときのSiH4ガス流量とGeH4ガス流量と
の比が所望の値になるように流出バルブ1117.11
18を調整し、また、反応室1101内の圧力が所望の
値になるように真空語−1136の読みを見ながらメイ
ンバルブ1134の開口を調整する。そして、基体11
37の温度が加熱ヒーター1138により50〜400
℃の範囲の温度に設定されていることを確認された後、
電源1140を所望の電力に設定して反応室1101内
にグロー放電を生起させて形成される層中にゲルマニウ
ム原子を含有させる。Next, to give an example of forming an amorphous layer on the cylindrical substrate 1137, gas;
iH4 gas, GeH4 gas from the gas cylinder 1103, open the valve 1122° 1123 and check the outlet pressure gauge 1127.
.. The pressure of 1123 is adjusted to 1 Kg/cm2, and the inflow valves 1112 and 1113 are gradually opened to allow the water to flow into the mass flow controllers 1107 and 1108, respectively. Subsequently, outflow valve 1117°1118, auxiliary valve 1132
are gradually opened to allow each gas to flow into the reaction chamber 1101. At this time, the outflow valve 1117.11
18, and also adjust the opening of the main valve 1134 while checking the reading of the vacuum word 1136 so that the pressure in the reaction chamber 1101 reaches the desired value. And the base 11
The temperature of 37 is set to 50 to 400 by heating heater 1138.
After confirming that the temperature is set in the range of °C,
The power source 1140 is set to a desired power to generate a glow discharge in the reaction chamber 1101, and germanium atoms are contained in the layer formed.
上記の様にして所望時間グロー放電を維持して、所望層
厚に、基体1137上に第1の層(G)を形成する。所
望層厚に第1の層(G)が形成された段階に於て、流出
バルブ1118を完全に閉じること及び必要に応じて放
電条件を変える以外は、同様な条件と手順に従って所望
時間グロー放電を維持することで第1の層(G)上にゲ
ルマニウム原子の実質的に含有されない第2の層(S)
を形成することが出来る。The glow discharge is maintained for a desired time in the manner described above to form the first layer (G) on the base 1137 to a desired layer thickness. At the stage where the first layer (G) has been formed to a desired layer thickness, glow discharge is performed for a desired time under the same conditions and procedures, except for completely closing the outflow valve 1118 and changing the discharge conditions as necessary. By maintaining the second layer (S) containing substantially no germanium atoms on the first layer (G)
can be formed.
層形成を行っている間は層形成の均一化を計るためき基
体1137はモーター1139により一定速度で回転さ
せてやるのか望ましい。During layer formation, the substrate 1137 is preferably rotated at a constant speed by a motor 1139 in order to ensure uniform layer formation.
以下実施例について説明する。Examples will be described below.
史施例1
旋盤で、AIL支持体を第1表のNo、101の表面性
に加工した。HISTORY EXAMPLE 1 An AIL support was machined on a lathe to a surface roughness of No. 101 in Table 1.
次に、第11図の堆積装置を使用し、第2表に示す条件
で種々の操作手順にしたがって、A−3iの電子写真用
光受容部材を前述のAIL支持体上に堆積した。Next, the electrophotographic light-receiving member of A-3i was deposited on the above-mentioned AIL support using the deposition apparatus shown in FIG. 11 and according to various operating procedures under the conditions shown in Table 2.
このようにして作製したA−5i:Hの電子写真用光受
容部材の層厚分布を電子J11微鏡で測定したところ、
平均層厚差は、A−Ge:H層の中央と両端で0.II
Lm 、 A−5i : H層の中央と両端で27zm
であり、また、微小部分の層厚差はA−3iGe:8層
で0.02gm。The layer thickness distribution of the A-5i:H electrophotographic light-receiving member produced in this way was measured using an electron J11 microscope.
The average layer thickness difference between the center and both ends of the A-Ge:H layer is 0. II
Lm, A-5i: 27zm at the center and both ends of the H layer
Also, the difference in layer thickness in the minute portion is 0.02 gm for A-3iGe: 8 layers.
A−5i:8層で0.3pLmテあツタ。A-5i: 0.3 pLm with 8 layers.
以上のような電子写真用の光受容部材について、第13
図に示す装M(レーザー光の波長780 n m 、ス
ポット径80川m)で、画像露光を行い、それを現像、
転写して画像を得た。Regarding the light-receiving member for electrophotography as described above, the thirteenth
Image exposure was performed using the device M shown in the figure (laser light wavelength 780 nm, spot diameter 80 m), which was then developed and
An image was obtained by transfer.
画像には、干渉縞模様は観察されず、実用に十分なもの
であった。No interference fringe pattern was observed in the image, which was sufficient for practical use.
実施例2
実施例1と同様に、旋盤で、A文支持体を第1表のNo
−102の表面性に加工した。Example 2 In the same way as Example 1, use a lathe to turn the A pattern support into No.
Processed to have a surface roughness of -102.
次に、第11図の膜堆積装置を使用し、第3表に示す条
件で、実施例1と同様な操作手順にしたがって、A−3
tの電子写真用光受容部材を前述のA文支持体上に堆積
した。Next, using the film deposition apparatus shown in FIG. 11 and following the same operating procedure as in Example 1 under the conditions shown in Table 3, A-3
An electrophotographic light-receiving member of t was deposited on the A pattern support described above.
このようにして作製したA−5i:Hの電子写真用光受
容部材の層厚分布を電子顕微鏡で測定したところ、平均
層厚差は、A−3iGe:8層の中央と両端で0.1#
Lm 、 A−3i : 8層の中央と両端で2gmで
あり、また、微小部分の層厚差はA−5iGe:H層テ
0.03 。When the layer thickness distribution of the thus produced A-5i:H electrophotographic light-receiving member was measured using an electron microscope, the average layer thickness difference was 0.1 between the center and both ends of the A-3iGe:8 layer. #
Lm, A-3i: 2 gm at the center and both ends of the 8 layers, and the difference in layer thickness at minute portions is 0.03 for the A-5iGe:H layer.
A−3i:8層でo、agmであった口以」二のような
、電子写真用の光受容部材について、第13図に示す装
置(レーザー光の波長780 n m 、スポット径8
0gm)で画像露光を行い、それを現像、転写して画像
を得た。画像には干渉縞模様は観測されず、実用に十分
なものであった。A-3i: Regarding a light-receiving member for electrophotography such as ``2, which has 8 layers and has an o, agm,'' the device shown in FIG.
Image exposure was carried out at 0 gm), and the image was developed and transferred to obtain an image. No interference fringe pattern was observed in the image, which was sufficient for practical use.
実施例3
実施例1と同様に、旋盤で、A文支持体を第1表のNo
、103の表面性に加工した。Example 3 In the same manner as in Example 1, use a lathe to turn the A pattern support into No.
, processed to have a surface roughness of 103.
次に、第11図の膜堆積装置を使用し、第4表に示す条
件で、実施例1と同様な操作手順にしたがって、A−3
tの電子写真用光受容部材を前述のAfL支持体上に堆
積した。Next, using the film deposition apparatus shown in FIG. 11 and following the same operating procedure as in Example 1 under the conditions shown in Table 4, A-3
An electrophotographic light receiving member of t was deposited on the AfL support described above.
このようにして作製したA−5i:Hの電子写真用光受
容部材の層厚分布を電子顕微鏡で測定したところ、平均
層厚差はA−SiGe:8層の中央と両端で0.6層m
、A−3i:8層の中央と両端で2pLmであり、また
、微小部分の層厚差はA−3iGe:8層で0.1gm
A−5i :8層で0.3μmであった。When the layer thickness distribution of the thus produced A-5i:H electrophotographic light-receiving member was measured using an electron microscope, the average layer thickness difference was 0.6 layers between the center and both ends of the A-SiGe: 8 layers. m
, A-3i: 2 pLm at the center and both ends of the 8 layers, and the difference in layer thickness at the minute part is 0.1 gm for the A-3iGe: 8 layers.
A-5i: 8 layers and 0.3 μm.
以上のような電子写真用の光受容部材について、第13
図に示す装置(レーザー光の波長780 nm 、スポ
ット径80JLm)で画像露光を行い、それを現像、転
写して画像を得た。画像には干渉縞模様は観測されず、
実用に十分なものであった。Regarding the light-receiving member for electrophotography as described above, the thirteenth
Image exposure was performed using the apparatus shown in the figure (laser light wavelength: 780 nm, spot diameter: 80 JLm), and the image was developed and transferred to obtain an image. No interference fringe pattern was observed in the image,
It was sufficient for practical use.
実施例4
実施例1と同様に旋盤でA文支持体を第1表のNo、1
04の表面性に加工した。Example 4 In the same way as Example 1, the A pattern support was prepared using a lathe with No. 1 in Table 1.
Processed to have a surface roughness of 04.
次に、第11図の膜堆積装置を使用し、第5表に示す条
件で、実施例1と同様な操作手順にしたがって、A−3
iの電子写真用光受容部材を前述のA文支持体上に堆積
した。Next, using the film deposition apparatus shown in FIG. 11 and following the same operating procedure as in Example 1 under the conditions shown in Table 5, A-3
The electrophotographic light-receiving member of Example 1 was deposited on the A-pattern support described above.
このようにして作製したA−3i:Hの電子写真用光受
容部材の層厚分布を電子顕微鏡で測定したところ、平均
層厚差は、A−5iGe:8層の中央と両端で0.8g
m 、 A−3i : 8層の中央と両端で2jLmで
あり、又、微小部分の層厚差はA−3iGe:8層でO
,15g m 、 A −53:8層で0.3ルmであ
った。When the layer thickness distribution of the thus produced A-3i:H electrophotographic light-receiving member was measured using an electron microscope, the average layer thickness difference was 0.8 g between the center and both ends of the A-5iGe: 8 layers.
m, A-3i: 2jLm at the center and both ends of the 8 layers, and the difference in layer thickness at minute portions is O in the A-3iGe: 8 layers.
, 15 g m, A-53: 0.3 l m for 8 layers.
以上のような電子写真用の光受容部材について、第13
図に示す装置(レーザー光の波長780 n m 、ス
ポット径80JLm)で画像露光を行い、それを現像、
転写して画像を得た。画像には干渉縞模様は観察されず
、実用に十分なものであった。Regarding the light-receiving member for electrophotography as described above, the thirteenth
Image exposure was performed using the apparatus shown in the figure (laser light wavelength 780 nm, spot diameter 80 JLm), and the image was developed and
An image was obtained by transfer. No interference fringe pattern was observed in the image, which was sufficient for practical use.
第1表 第2表 第 3 表 第4表 第5表Table 1 Table 2 Table 3 Table 4 Table 5
第1図は、干渉縞の一般的な説明図である。
第2図は、多層の光受容部材の場合の干渉縞の説明図で
ある。
第3図は散乱光による干渉縞の説明図である。
第4図は、多層の光受容部材の場合の散乱光による干渉
縞の説明図である。
第5図は、光受容部材の各層の界面が平行な場る場合と
非平行である場合の反射光強度の比較の説明図である。
第8図は、各層の界面が非平行である場合の干渉縞が現
われないことの説明図である。
第9図(A)(B)(C)はそれぞれ代表的な支持体の
表面状態の説明図である。
第1θ図は、光受容部材の層構成の説明図である。
第11図は、実施例で用いた光受容層の堆積装置の説明
図である。
第12図は、実施例で用いたA文支持体の表面ある。
1000・・・・・・・・・・・・・・・・・・光受容
層1001・・・・・・・・・・・・・・・・・・A文
支持体1002・・・・・・・・・・・・・・・・・・
第1の層1003・・・・・・・・・・・・・・・・・
・第2の層1004・・・・・・・・・・・・・・・・
・・光受容部材1005・・・・・・・・・・・・・・
・・・・光受容部材の自由表面1301・・・・・・・
・・・・・・・・・・・電子写真用光受容部材1302
・・・・・・・・・・・・・・・・・・半導体レーザー
1303・・・・・・・・・・・・・・・・・・fθレ
ンズ1304・・・・・・・・・・・・・・・・・・ポ
リゴンミラー1305・・・・・・・・・・・・・・・
・・・露光装置の平面図1306・・・・・・・・・・
・・・・・・・・露光装置の側面図第3[21
第4園
1x!
(C)
工く
イ立2直
oosFIG. 1 is a general explanatory diagram of interference fringes. FIG. 2 is an explanatory diagram of interference fringes in the case of a multilayer light receiving member. FIG. 3 is an explanatory diagram of interference fringes due to scattered light. FIG. 4 is an explanatory diagram of interference fringes due to scattered light in the case of a multilayer light receiving member. FIG. 5 is an explanatory diagram of a comparison of reflected light intensity when the interfaces of each layer of the light-receiving member are parallel and non-parallel. FIG. 8 is an explanatory diagram showing that no interference fringes appear when the interfaces of each layer are non-parallel. FIGS. 9(A), 9(B), and 9(C) are explanatory diagrams of the surface conditions of typical supports, respectively. FIG. 1θ is an explanatory diagram of the layer structure of the light receiving member. FIG. 11 is an explanatory diagram of a photoreceptive layer deposition apparatus used in Examples. FIG. 12 shows the surface of the A pattern support used in Examples. 1000......Photoreceptive layer 1001...A-text support 1002...・・・・・・・・・・・・・・・
First layer 1003・・・・・・・・・・・・・・・
・Second layer 1004・・・・・・・・・・・・・・・
・・Light receiving member 1005・・・・・・・・・・・・・・
...Free surface 1301 of light-receiving member...
......Light receiving member for electrophotography 1302
・・・・・・・・・・・・・・・・・・Semiconductor laser 1303・・・・・・・・・・・・・・・Fθ lens 1304・・・・・・・・・・・・・・・・・・Polygon mirror 1305・・・・・・・・・・・・・・・
... Plan view of exposure device 1306 ......
・・・・・・・・・Side view of exposure device No. 3 [21 4th garden 1x! (C) Work 2 shift oos
Claims (1)
材料で構成された第1の層と、シリコン原子を含む非晶
質材料で構成され、光導電性を示す第2の層とが支持体
側より順に設けられた多層構成の光受容層を有する光受
容部材に於いて、前記光受容層がショートレンジ内に1
対以上の非平行な界面を有し、該非平行な界面が層厚方
向と垂直な面内の少なくとも一方向に多数配列している
事を特徴とする光受容部材。 (2)前記配列が規則的である特許請求の範囲第1項に
記載の光受容部材。 (3)前記配列が周期的である特許請求の範囲第1項に
記載の光受容部材。 (4)前記ショートレンジが0.3〜500ルである特
許請求の範囲第1項に記載の光受容部材。 (5)前記非平行な界面は前記支持体の表面に設けられ
た゛規則的に配列している凹凸に基づいて形成されてい
る特許請求の範囲第1項に記載の光受容部材。 (6)前記凹凸が逆V字形線状突起によって形成されて
いる特許請求の範囲第5項に記載の先受・容部材。 (7)前記逆V字形線状突起の縦断面形状が実質的に二
等辺三角形である特許請求の範囲第6項に記載の光受容
部材。 (8)前記逆V字形線状突起の縦断面形状が実質的に直
角三角形である特許請求の範囲第6項に記載の光受容部
材。 (9)前記逆V字形線状突起の縦断面形状が実質的に不
等辺三角形である特許請求の範囲第6項に記載の光受容
部材。 (10)前記支持体が円筒状である特許請求の範囲第1
項に記載の光受容部材。 (11)逆■字形線状突起が前記支持体の面内に於いて
螺線構造を有する特許請求の範囲第10項に記載の光受
容部材。 (12)前記螺線構造が多重螺線構造である特許請求の
範囲第11項に記載の光受容部材。 (13)前記逆V字形線状突起がその稜線方向に於いて
区分されている特許請求の範囲第6項に記載の光受容部
材。 (I4)前記逆V字形線状突起の稜線方向が円筒状支持
体の中心軸に沿っている特許請求の範囲第10項に記載
の光受容部材。 (15)前記凹凸は傾斜面を有する特許請求の範囲第5
項に記載の光受容部材。 (16)前記傾斜面が鏡面仕上げされている特許請求の
範囲第15項に記載の光受容部材。 (17)光受容層の自由表面には、支持体表面に設けら
れた凹凸と同一のピッチで配列された凹凸が形成されて
いる特許請求の範囲第5項に記載の光受容部材。[Scope of Claims] (1) A first layer made of an amorphous material containing silicon atoms and germanium atoms, and a second layer made of an amorphous material containing silicon atoms and exhibiting photoconductivity. In a photoreceptive member having a multilayer photoreceptive layer in which the photoreceptive layer is provided in order from the support side, the photoreceptive layer has one layer within a short range.
A light-receiving member characterized in that it has a pair or more of non-parallel interfaces, and a large number of the non-parallel interfaces are arranged in at least one direction in a plane perpendicular to the layer thickness direction. (2) The light receiving member according to claim 1, wherein the arrangement is regular. (3) The light receiving member according to claim 1, wherein the arrangement is periodic. (4) The light receiving member according to claim 1, wherein the short range is 0.3 to 500 l. (5) The light-receiving member according to claim 1, wherein the non-parallel interface is formed based on regularly arranged irregularities provided on the surface of the support. (6) The pre-receiving/receiving member according to claim 5, wherein the unevenness is formed by an inverted V-shaped linear protrusion. (7) The light-receiving member according to claim 6, wherein the vertical cross-sectional shape of the inverted V-shaped linear protrusion is substantially an isosceles triangle. (8) The light-receiving member according to claim 6, wherein the vertical cross-sectional shape of the inverted V-shaped linear protrusion is substantially a right triangle. (9) The light-receiving member according to claim 6, wherein the vertical cross-sectional shape of the inverted V-shaped linear protrusion is substantially a scalene triangle. (10) Claim 1, wherein the support body is cylindrical.
The light-receiving member described in 2. (11) The light-receiving member according to claim 10, wherein the inverted ■-shaped linear protrusion has a spiral structure within the plane of the support. (12) The light-receiving member according to claim 11, wherein the spiral structure is a multi-spiral structure. (13) The light-receiving member according to claim 6, wherein the inverted V-shaped linear protrusion is divided in the direction of its ridgeline. (I4) The light receiving member according to claim 10, wherein the ridgeline direction of the inverted V-shaped linear protrusion is along the central axis of the cylindrical support. (15) Claim 5, wherein the unevenness has an inclined surface.
The light-receiving member described in 2. (16) The light-receiving member according to claim 15, wherein the inclined surface is mirror-finished. (17) The light-receiving member according to claim 5, wherein the free surface of the light-receiving layer has projections and depressions arranged at the same pitch as the projections and depressions provided on the surface of the support.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59046859A JPS60191268A (en) | 1984-03-12 | 1984-03-12 | Photoreceptor member |
CA000476023A CA1258395A (en) | 1984-03-12 | 1985-03-08 | Light receiving member |
US06/709,888 US4675263A (en) | 1984-03-12 | 1985-03-08 | Member having substrate and light-receiving layer of A-Si:Ge film and A-Si film with non-parallel interface with substrate |
AU39717/85A AU589356B2 (en) | 1984-03-12 | 1985-03-11 | Light receiving member |
EP85301654A EP0160369B1 (en) | 1984-03-12 | 1985-03-11 | Light receiving member |
DE8585301654T DE3567974D1 (en) | 1984-03-12 | 1985-03-11 | Light receiving member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59046859A JPS60191268A (en) | 1984-03-12 | 1984-03-12 | Photoreceptor member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60191268A true JPS60191268A (en) | 1985-09-28 |
Family
ID=12759062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59046859A Pending JPS60191268A (en) | 1984-03-12 | 1984-03-12 | Photoreceptor member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60191268A (en) |
-
1984
- 1984-03-12 JP JP59046859A patent/JPS60191268A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60191268A (en) | Photoreceptor member | |
JPS60213956A (en) | Photoreceptive member | |
JPS6125151A (en) | Photoreceptive member | |
JPH0234025B2 (en) | ||
JPS6159342A (en) | light receiving member | |
JPS6123156A (en) | Photoreceiving member | |
JPS60212769A (en) | Light receiving member | |
JPH0238944B2 (en) | ||
JPH0234023B2 (en) | ||
JPS6126050A (en) | Light receiving member | |
JPS60192953A (en) | light receiving member | |
JPH0234026B2 (en) | ||
JPS60260055A (en) | Photoreceiving member | |
JPS6127554A (en) | Photoreceptive member | |
JPS60260959A (en) | Photoreceptive member | |
JPS6126046A (en) | Light receiving member | |
JPH0235298B2 (en) | ||
JPS6127557A (en) | Photoreceptive member | |
JPS61113066A (en) | Photoreceptive member | |
JPH0234027B2 (en) | ||
JPS60213957A (en) | Photoreceptive member | |
JPS61107252A (en) | Light receiving member for electrophotography | |
JPS612160A (en) | Photoreceiving member | |
JPS60201356A (en) | light receiving member | |
JPS60205458A (en) | light receiving member |