[go: up one dir, main page]

JPS60173875A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60173875A
JPS60173875A JP59029824A JP2982484A JPS60173875A JP S60173875 A JPS60173875 A JP S60173875A JP 59029824 A JP59029824 A JP 59029824A JP 2982484 A JP2982484 A JP 2982484A JP S60173875 A JPS60173875 A JP S60173875A
Authority
JP
Japan
Prior art keywords
film
pattern
conductive material
silicon layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59029824A
Other languages
Japanese (ja)
Inventor
Tatsuo Noguchi
達夫 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59029824A priority Critical patent/JPS60173875A/en
Publication of JPS60173875A publication Critical patent/JPS60173875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • H10D30/6725Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device having supplementary regions or layers for improving the flatness of the device

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To reduce the difference in pattern conversion by a method wherein a semiconductor layer formed on an insulation substrate is selectively removed by etching by using an oxidation resistant film as a mask, thus forming a semiconductor layer pattern; then, only its side wall is provided with a conductive material film, and next oxidizing treatment is carried out after removal of the oxidation resistant film pattern. CONSTITUTION:After an Si layer and the first SiO2 film are formed on a sapphire 21, an SiO2 film pattern 23 and an Si layer pattern 24 are formed by selectively removing this film and this layer by using an Si nitride film 22 as a mask. Next, the second SiO2 film 25 is formed on the side surface of the Si layer pattern 24 by thermal oxidizing treatment. Then, a polycrystalline Si film 26 doped with an impurity at a high concentration is formed over the surface including the nitride film 22. A polycrystalline Si film 27 is left only on the side walls of the nitride film 22, SiO2 film pattern 23, and Si layer pattern 24 by etching the Si film 26 by RIE. Finally, thermal oxidizing treatment is carried out after removal of the nitride film 22 and the SiO2 film pattern 23.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、絶縁基板上の半導体層に素子を形成した半導
体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device in which elements are formed in a semiconductor layer on an insulating substrate.

〔発明の技術的背景とその間鴇点〕[Technical background of the invention and its highlights]

周知の如く、サファイア青の絶縁基板上にシリコン層を
形成したS OS (Si l1con 0nSapp
hire ) 構造のMO8型トランジスタが知られて
いる。
As is well known, SOS (Silicon OnSapp) is a silicon layer formed on a sapphire blue insulating substrate.
MO8 type transistors with the following structure are known.

従来、かかるl・ランジスタは、第1図に示す如くサフ
ァイア1上にシリコン層2をJt?成した後、いわゆる
コプラナ法によりフィールド晒化膜3を形成して該酸化
膜3とこの酸化1193で分離される島状のシリコン層
2の高さをそろえ、更にr−ト電極4をダート絶縁膜5
を介して形成し、しかる後ダート′電極4をマスクとし
てシリコンIf!2に不純物をイオン注入しソース、ド
レイン領域(夫々図示せず)等を形成することにより製
造されている。
Conventionally, such an L transistor has a silicon layer 2 on a sapphire 1 as shown in FIG. After that, a field exposure film 3 is formed by the so-called coplanar method, and the heights of the oxide film 3 and the island-shaped silicon layer 2 separated by this oxide 1193 are made equal, and the r-to electrode 4 is further insulated by dirt. membrane 5
Then, using the dirt' electrode 4 as a mask, the silicon If! It is manufactured by ion-implanting impurities into 2 to form source and drain regions (not shown in the drawings).

しかしながら、この製造方法によれば、フイ−ルド岐化
膜3の形成時に島状のシリコン層2のエツジ部(点線部
分)6に馬の口はし状の領域いわゆるバーズビーブが形
成され、設計したチャネル長と実際のチャネル長の間に
変換差が生じる。また、島状のシリコン層2に厚いフィ
ールド酵化膜3がノ13成されるため、γ線等の多[1
1の放射線を受ける環境で動作させた場合、フィールド
敵化膜3中に多量のトラップを発生し、MOS )ラン
マスクのしきい値電圧を友化させてしまう1゜ また、従来、第2図に示−r7A<サファイア1上に島
状のシリコン層2をjb成した後、全面ば化を行なって
シリコン層2の表面にダート絶縁膜7を形成し、ダート
電極8、ソース、ドレイン領域(夫々図示せず)等を形
成することによりMO8型トランジスタを製造する代表
的な方法が知られている。この方法によれば、前述した
第1図のトランジスタの場合と比べ、変換差はほとんど
生じないとともに、耐環境性にも優れている。しかしな
がら、ダート絶縁膜7形成時に島状のシリコン層2の側
面でサファイア1に近い部分9のダート絶縁膜7の膜厚
は他の部分のそれと比べて薄くなるため、ダート耐圧が
低下するという問題を生ずる。また、ダート電極8に電
圧を印加した場合、島状のシリコン層2のエツジ部分1
0で電界の集中がおこり、しきい値電圧が低下する、い
わゆる逆狭チャネル効果と呼ばれる現象がおこる。
However, according to this manufacturing method, when forming the field branching film 3, a horse's mouth-shaped region, so-called bird's beave, is formed at the edge portion (dotted line portion) 6 of the island-shaped silicon layer 2, which is not designed. A conversion difference occurs between the channel length and the actual channel length. In addition, since a thick field fermentation film 3 is formed on the island-shaped silicon layer 2, many [1
When operated in an environment exposed to radiation as shown in Fig. 1, a large amount of traps are generated in the field hostile film 3, which changes the threshold voltage of the MOS run mask. After forming an island-shaped silicon layer 2 on the sapphire 1, the entire surface is exposed to form a dirt insulating film 7 on the surface of the silicon layer 2, and a dirt electrode 8, source and drain regions (respectively) are formed. A typical method for manufacturing an MO8 type transistor is known. According to this method, as compared with the case of the transistor shown in FIG. 1 described above, almost no difference in conversion occurs, and the transistor has excellent environmental resistance. However, when the dirt insulating film 7 is formed, the thickness of the dirt insulating film 7 on the side surface of the island-shaped silicon layer 2 near the sapphire 1 is thinner than that on other parts, so there is a problem that the dirt breakdown voltage decreases. will occur. Furthermore, when a voltage is applied to the dirt electrode 8, the edge portion 1 of the island-shaped silicon layer 2
At zero, electric field concentration occurs and the threshold voltage decreases, a phenomenon called the so-called reverse narrow channel effect.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、・やターン
変換差を少なくするとともに、ダート耐圧を向上しかつ
しきい値電圧を高められる半導体装置の製造方法を提供
することを目的とするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a semiconductor device that can reduce the turn conversion difference, improve the dirt breakdown voltage, and increase the threshold voltage. It is.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁基板(例えばサファイア)上に形成され
た半導体層(シリコン層)を耐酸化性膜をマスクとして
選択的にエツチング除去し半導体層パターンを形成する
工程と、この半導体層パターンの側面に絶縁膜を形成す
る工程と、前記耐酸化性膜を含む基板全面に導電性材料
膜例えば不純物を高濃度にドレープした多結晶シリコン
膜を形成する工程と、この尋′m性材料を異方性エツチ
ングして半導体層パターン及び耐酸化性膜の側壁のみに
該導電性材料膜を残存させる工程と、前記耐酸化性膜パ
ターンを除去した後酸化処理を施して残存する導電性材
料膜の表面を絶縁化する工程とを具備することを特徴と
し、前述した目的を達成するものである。
The present invention involves a process of selectively etching and removing a semiconductor layer (silicon layer) formed on an insulating substrate (for example, sapphire) using an oxidation-resistant film as a mask to form a semiconductor layer pattern, and a process for forming a semiconductor layer pattern. a step of forming an insulating film on the substrate, a step of forming a conductive material film, such as a polycrystalline silicon film draped with impurities at a high concentration, on the entire surface of the substrate including the oxidation-resistant film, and an anisotropic treatment of the ultrasonic material. a step of etching the conductive material film to leave it only on the sidewalls of the semiconductor layer pattern and the oxidation-resistant film; and after removing the oxidation-resistant film pattern, oxidation treatment is performed on the surface of the remaining conductive material film. The method is characterized by comprising a step of insulating the material, thereby achieving the above-mentioned object.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をSO8構造のMO8型トラン (マスク
の製造に適用した場合について第3図(a)〜(f)及
び第54図を参照して説明する。
Hereinafter, the present invention will be explained with reference to FIGS. 3(a) to 3(f) and FIG. 54 regarding the case where the present invention is applied to the manufacture of an MO8 type transformer (mask) having an SO8 structure.

〔1〕 まず、絶縁基板としてのサファイア21上にエ
ビタギシャル成長によりシリコン層(半導体層)、第1
の8102膜を形成した後、耐酸化膜としてのシリコン
窒化膜22をマスクとしてS i O2膜、シリコン層
を反応性イオンエツチング(R工E)により選択的に除
去し、S i 0211Q ハ9−ン23、シリコン層
ノ(ターン24を形成した(第3図(a)図示)。なお
、前記5io2膜パターン23は、次の工程の熱酸化時
の歪み防止の役割を果たす。つづいて、高温で熱酸化処
理を施してシリコン層パターン24の側面に厚さ100
〜500X程度の第2の8i02 膜25を形成した(
第3図(b)図示)。次いで、シリコン窒化膜22を含
む全面に、リン又は砒素等のn型不純物を高濃度にドー
グされた多結晶シリコン膜(桿)料膜)26を形成した
(第3図(C)図示)。
[1] First, a silicon layer (semiconductor layer), a first
After forming the 8102 film, the SiO2 film and the silicon layer are selectively removed by reactive ion etching (R process E) using the silicon nitride film 22 as an oxidation-resistant film as a mask, and the S i 0211Q Ha9- A turn 23 and a silicon layer (turn 24) were formed (as shown in FIG. 3(a)).The 5io2 film pattern 23 serves to prevent distortion during thermal oxidation in the next step. A thermal oxidation treatment is applied to the side surface of the silicon layer pattern 24 to a thickness of 100 mm.
A second 8i02 film 25 of ~500X was formed (
FIG. 3(b) (illustrated). Next, a polycrystalline silicon film (rod material film) 26 doped with n-type impurities such as phosphorus or arsenic at a high concentration was formed on the entire surface including the silicon nitride film 22 (as shown in FIG. 3(C)).

■ 次に、この多結晶シリコン膜26をRI rvによ
りエツチング除去して該多結晶シリコン膜27をシリコ
ン窒化IF+ 22.5ho2膜パターン23及びシリ
コン層パターン24の側壁のみに残存させた(第3図(
d)図示)。つづいて、熱リン酸を用いてシリコン窒化
膜22をエツチング除去した後、 5i0211帖ノ”
ターン23をエツチング除去した。この際、残存する多
結晶シリコン膜27も幾分エツチングされた(第3図(
e)図示)。次いで、熱酸化処理を施して露出したシリ
コン層24上にダート絶縁膜28を形成すると同時に、
残存多結晶シリコン膜27表向にも酸化膜29を形成し
た。しかる後、ダート絶縁膜28上に例えば多結晶シリ
コンまたはM OS + 2 のようなシリサイドから
なるダート電極30を形成した。
(2) Next, the polycrystalline silicon film 26 was removed by etching using RI RV, leaving the polycrystalline silicon film 27 only on the side walls of the silicon nitride IF+ 22.5ho2 film pattern 23 and the silicon layer pattern 24 (see Fig. 3). (
d) As shown). Next, after etching and removing the silicon nitride film 22 using hot phosphoric acid,
Turn 23 was removed by etching. At this time, the remaining polycrystalline silicon film 27 was also etched to some extent (Fig. 3 (
e) As shown). Next, a dirt insulating film 28 is formed on the exposed silicon layer 24 by thermal oxidation treatment, and at the same time,
An oxide film 29 was also formed on the surface of the remaining polycrystalline silicon film 27. Thereafter, a dirt electrode 30 made of, for example, polycrystalline silicon or silicide such as MOS + 2 was formed on the dirt insulating film 28 .

更に、このダート”f4f極30をマスクとして前記シ
リコン層パターン24にn型不純物例えばリンを所定の
条件でイオン注入し、N 型のソース、ドレイン領域3
1 、 、? 2を形成してMO8型トランジスタを製
造した(第3図(f)及び第4図図示)。ここで、第4
図は第3図(f)の平面図である。
Furthermore, using the dirt F4F pole 30 as a mask, an n-type impurity such as phosphorus is ion-implanted into the silicon layer pattern 24 under predetermined conditions to form an N-type source and drain region 3.
1, ,? 2 was formed to manufacture an MO8 type transistor (as shown in FIGS. 3(f) and 4). Here, the fourth
The figure is a plan view of FIG. 3(f).

しかして、本発明によれば、サファイア21上にシリコ
ン窒化膜22をマスクとしてシリコン層パターン24.
5i02膜パターン23を形成し、更にこれらの側壁の
みに多結晶シリコン積27を残存させた後、シリコン窒
化膜22、slo、膜パターン23を除去し、しかる後
熱処理を施すことによってダート絶縁膜28、酸化膜2
9”y、;形成するため、第1図のトランジスタの場合
のように・Pターン鹿換差な生じることなく、サブミク
ロンデバイスの作製もh」能となる。
According to the present invention, the silicon layer pattern 24 is formed on the sapphire 21 using the silicon nitride film 22 as a mask.
After forming the 5i02 film pattern 23 and leaving the polycrystalline silicon layer 27 only on these side walls, the silicon nitride film 22, slo, and film pattern 23 are removed, and then heat treatment is performed to form the dirt insulating film 28. , oxide film 2
Since the structure is 9"y, it is possible to fabricate submicron devices without causing P-turn displacement as in the case of the transistor shown in FIG.

また、ケ゛−ト絶縁膜28形成の際、シリコン1mパタ
ーン24の側壁が第2の5in2膜25を介して残存す
る多結晶シリコy*¥1−22によって囲まれており、
かつこの多結晶シリコン時27の酸化速度がシリコン層
パターン24のそれと比べて大きいため、サファイア1
に近い多結晶シリコン嘩27部分まで均一な酸化膜29
が形成される。したがって、第2図のトランジスタと比
較してタート耐圧が向上する。
Further, when forming the gate insulating film 28, the side wall of the silicon 1m pattern 24 is surrounded by the remaining polycrystalline silicon y*¥1-22 via the second 5in2 film 25,
Moreover, since the oxidation rate of this polycrystalline silicon layer 27 is higher than that of the silicon layer pattern 24, the sapphire 1
Uniform oxide film 29 up to the polycrystalline silicon layer 27
is formed. Therefore, the initial breakdown voltage is improved compared to the transistor shown in FIG.

更に、シリコン層パターン24と接する第2の8i02
膜25の膜厚を第1図のコプラナ法によるトランジスタ
の場合と比べ1桁以上(100〜500X)薄<できる
ため、γ線等の放射線の影響もなく、しきい値電圧の低
下を阻止できる。また、シリコン層パターン24と酸化
膜29の間に導電性材料膜である多結晶シリコンR臭2
7を挟みこむため、ダート電極30に電圧を印加した場
合に生ずる電界が多結晶シリコン層27によってシール
ドされ、シリコン層パターン24の側面まで及ばない1
.従って、しきい値電圧の低下を阻止できる。
Furthermore, a second 8i02 in contact with the silicon layer pattern 24
Since the thickness of the film 25 can be reduced by more than an order of magnitude (100 to 500X) compared to the case of the transistor using the coplanar method shown in FIG. 1, there is no influence of radiation such as γ-rays, and a decrease in the threshold voltage can be prevented. . Further, a polycrystalline silicon R odor 2 which is a conductive material film is provided between the silicon layer pattern 24 and the oxide film 29.
7 is sandwiched between them, the electric field generated when a voltage is applied to the dart electrode 30 is shielded by the polycrystalline silicon layer 27 and does not reach the sides of the silicon layer pattern 24.
.. Therefore, it is possible to prevent the threshold voltage from decreasing.

なお、上記実施例では、導電性材料膜としてリン又は砒
素等のn型不純物を高濃度にドープされた多結晶シリコ
ン膜を用いたが、これに限らない。また、この多結晶シ
リコン脈は予め上記n型不純物を高濃度にドーグさせた
が、第3図(d)の工程後、n型不純物を多結晶シリコ
ン膜にイオン注入法、又は熱拡散法によりドーグさせて
もよい。
In the above embodiment, a polycrystalline silicon film heavily doped with an n-type impurity such as phosphorus or arsenic was used as the conductive material film, but the present invention is not limited to this. In addition, this polycrystalline silicon vein was doped with the n-type impurity at a high concentration in advance, but after the step shown in FIG. You can make it a dawg.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、ケ゛−ト耐圧の向上
、パターン斐換差の減少及びしきい値電圧の向上をなし
得る高信頼性の半導体装置を製造する方法を提供できる
ものである。
As detailed above, according to the present invention, it is possible to provide a method for manufacturing a highly reliable semiconductor device that can improve gate breakdown voltage, reduce pattern exchange difference, and improve threshold voltage. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々従来のSO8構造のMO8型ト
ランジスタの断面図、第3図(a)〜(fj)は本発明
の一実施例に係るSOS構造のMO8型トランジスタの
製造方法を工程順に示す断面図、第4図は第3図(狗の
平面図である。 21°°°サフアイア(絶縁基板)、22・・・シリコ
ン窒化膜(耐酸化膜)、23・・・5in2膜パターン
、24・・・シリコン層ノぐターン、25・・・5IO
2膜、26.27・・・多結晶シリコン膜(導電性材料
膜)、28・・・ダート絶縁膜、29・・・酸化膜、3
0・・・ケ゛−ト電極、3ノ・・・N型のソース領域、
32・・・N型のドレイン領域。
FIGS. 1 and 2 are cross-sectional views of conventional MO8 transistors with an SO8 structure, and FIGS. 3(a) to (fj) show a method for manufacturing an MO8 transistor with an SOS structure according to an embodiment of the present invention. Cross-sectional views shown in the order of steps, Figure 4 is a plan view of Figure 3 (dog). 21°°° Sapphire (insulating substrate), 22... silicon nitride film (oxidation resistant film), 23... 5in2 film Pattern, 24...Silicon layer nog turn, 25...5IO
2 film, 26. 27... Polycrystalline silicon film (conductive material film), 28... Dirt insulating film, 29... Oxide film, 3
0: gate electrode, 3: N-type source region,
32...N type drain region.

Claims (2)

【特許請求の範囲】[Claims] (1) 絶縁基板」二に形成された半導体層を耐r抜化
性1模をマスクとして選択的にエツチング除去し半導体
1yQ /9ターンを形成する工程と、この半44体層
・やターンの側面に絶縁膜を形成する工程と、前記耐酸
化性膜を含む基板全面に導電性材料1模を形成する工程
と、この導電性材料膜を異方性エツチングして半導体層
パターン及び1制酸化性膜の側がとのみに該、・$′市
性祠料膜を残存させる工程と、前記耐酸化性1[ソ1を
除去した後酸化処理を施して残存する導電性材料膜の表
面を絶縁化する工程とを具備することを特徴とする半導
体装置の製造方法。
(1) The process of selectively etching and removing the semiconductor layer formed on the insulating substrate 2 using the oxidation resistance pattern 1 as a mask to form semiconductor 1yQ/9 turns, and the process of forming the semi-conductor layer and turns. A step of forming an insulating film on the side surface, a step of forming a conductive material pattern 1 on the entire surface of the substrate including the oxidation-resistant film, and anisotropic etching of this conductive material film to form a semiconductor layer pattern and an antioxidation layer pattern. The surface of the remaining conductive material film is insulated by performing an oxidation treatment after removing the oxidation resistance 1 [So 1], and insulating the surface of the remaining conductive material film. 1. A method for manufacturing a semiconductor device, comprising the steps of:
(2)!ふ電性材料膜として不純物を高濃度にドープし
た多結晶シリコン膜を用いることを特徴とする特許請求
の範囲第1項記載の半導体装置の製造方法。
(2)! 2. The method of manufacturing a semiconductor device according to claim 1, wherein a polycrystalline silicon film doped with impurities at a high concentration is used as the electrostatic material film.
JP59029824A 1984-02-20 1984-02-20 Manufacture of semiconductor device Pending JPS60173875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59029824A JPS60173875A (en) 1984-02-20 1984-02-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59029824A JPS60173875A (en) 1984-02-20 1984-02-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60173875A true JPS60173875A (en) 1985-09-07

Family

ID=12286767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59029824A Pending JPS60173875A (en) 1984-02-20 1984-02-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60173875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033367A (en) * 1989-05-31 1991-01-09 Nec Corp Manufacture of mis type semiconductor device
JPH0923010A (en) * 1995-06-30 1997-01-21 Hyundai Electron Ind Co Ltd Semiconductor device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033367A (en) * 1989-05-31 1991-01-09 Nec Corp Manufacture of mis type semiconductor device
JPH0923010A (en) * 1995-06-30 1997-01-21 Hyundai Electron Ind Co Ltd Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN107731918B (en) Semiconductor structure and manufacturing method thereof
JPS60173875A (en) Manufacture of semiconductor device
JPH0370139A (en) Optical recording and reproducing method
JPS6326553B2 (en)
JPH06232163A (en) Vertical type mosfet device and its manufacture
JPH0298939A (en) Manufacturing method of semiconductor device
JPS62274665A (en) Manufacture of semiconductor device
JPH01181566A (en) Insulated gate field effect transistor and its manufacture
JPH0779101B2 (en) Manufacturing method of semiconductor device
JPH04196341A (en) Manufacturing method of semiconductor device
JPS6376480A (en) Semiconductor device and manufacture thereof
JP3061892B2 (en) Method for manufacturing semiconductor device
KR0147255B1 (en) MOSFET manufacturing method
JPH0243339B2 (en)
JP2021086949A (en) Method for manufacturing semiconductor device and semiconductor device
JPS60136377A (en) Manufacture of semiconductor device with insulated gate
TWI224367B (en) HV device with improved punch through voltage and a method integrated with a LV device process for forming the same
JPS63129664A (en) Manufacturing method of semiconductor device
JPH05259446A (en) Method for manufacturing semiconductor device
JPH03181136A (en) Manufacture of semiconductor device
JPH09129876A (en) Method for manufacturing semiconductor device
JPS63240068A (en) Manufacture of semiconductor device
JPS62263658A (en) Semiconductor device and manufacture thereof
JPS61214472A (en) Manufacture of semiconductor element
JPH04297037A (en) Semiconductor device and manufacture thereof