[go: up one dir, main page]

JPS5988889A - semiconductor light emitting device - Google Patents

semiconductor light emitting device

Info

Publication number
JPS5988889A
JPS5988889A JP19927482A JP19927482A JPS5988889A JP S5988889 A JPS5988889 A JP S5988889A JP 19927482 A JP19927482 A JP 19927482A JP 19927482 A JP19927482 A JP 19927482A JP S5988889 A JPS5988889 A JP S5988889A
Authority
JP
Japan
Prior art keywords
layer
type
gaas
absorption layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19927482A
Other languages
Japanese (ja)
Inventor
Katsuto Shima
島 克人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19927482A priority Critical patent/JPS5988889A/en
Publication of JPS5988889A publication Critical patent/JPS5988889A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the liquid epitaxial growth of a clad layer and an active layer by a method wherein a Ga1-xAlxAs current block layer and a GaAs photo absorption layer are laminated and grown on a GaAs substrate, a groove in band form coming into the substrate from the surfaces of the layers is bored, and, while it is filled, a Ga1-yAlyAs clad layer and a Ga1-xAlxAs active layer are provided over the entire surface. CONSTITUTION:The P type Ga0.7Al0.3As current block layer 22 and the P type or N type GaAs photo absorption layer 23 are laminated and grown on the N type GaAs substrate 21, and the V-groove in band form coming into the substrate 21 from the surfaces thereof is formed. Next, while this groove is filled, the first clad layer 24 of N type Ga0.65Al0.35As, the non doped Ga0.95Al0.05As active layer 25, the second clad layer 26 of P type Ga0.65Al0.35As, and a P type GaAs cap layer 27 are laminated and grown over the entire surface. Thereafter, a P-side electrode 28 and an N-side electrode 29 are provided respectively on the front and back surfaces.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体発光装置、特に活性層の厚さの変化によ
る屈折率光ガイドと光吸収層により高調波にf↓択的に
損失を与えることにより、安定した基板横モード発振が
得られる半導体レーザに関する。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a semiconductor light emitting device, and in particular, to a semiconductor light emitting device, in particular, a refractive index light guide and a light absorption layer that selectively provide loss to harmonics by changing the thickness of an active layer. Accordingly, the present invention relates to a semiconductor laser in which stable substrate transverse mode oscillation can be obtained.

(b)  技術の背景 光フアイバ通信及び種々の産業、民生分野における光を
情報信号媒体として用いる技術において、矛 半導体レーザは最もM要で基W的な構成要素である。こ
れらの種々の分野に半導体レーザを用いるにあたって、
半導体レーザの電流−光出力特性の直線性、出力光の指
向性、出力の増大及び軸モードと横モードの安定性など
多くの点での進歩が重ねられている。
(b) Background of the Technology In the technology of using light as an information signal medium in optical fiber communication and various industrial and consumer fields, the laser diode is the most essential and fundamental component. When using semiconductor lasers in these various fields,
Progress has been made in many aspects of semiconductor lasers, such as linearity of current-optical output characteristics, directivity of output light, increase in output, and stability of axial mode and transverse mode.

例えば光ファイバ通1河用元諒としては、伝送中の波形
を保持するために、また光源とファイバと事 の結合効率の点からも&体積モードが要求され、半導体
レーザについて安定した基本横モードの実現が重すな課
題となっている。
For example, in order to maintain the waveform during transmission, and also from the viewpoint of coupling efficiency between the light source and the fiber, the fundamental principle of optical fiber use is that volume modes are required, and semiconductor lasers require a stable fundamental transverse mode. Achieving this has become a serious issue.

(C)  従来技術と問題点 半導体レーザの発振横モードを安定化するために、pn
接合に平行な方向にも等制約な屈折率分布を与えた、い
わゆる屈折率導波機構をレーザの活竹魯6域に形成する
ことが有効である。
(C) Conventional technology and problems In order to stabilize the oscillation transverse mode of a semiconductor laser, pn
It is effective to form a so-called refractive index waveguide mechanism, which gives an equally constrained refractive index distribution also in the direction parallel to the junction, in the laser active region 6.

この様な屈折率導波機構を形成する一方法として、レー
ザの活性層の厚さを、共振器幅方向の中ノシで1′−試
く、中すから離孝1.るに従って49くすること、すな
わち発ガニ副−がレンズ状とされた1古IJI 、1曽
4・歯ス青が既に知られている。
One method of forming such a refractive index waveguide mechanism is to increase the thickness of the active layer of the laser by 1' in the width direction of the resonator. In other words, it is already known that 1st IJI, 1st 4th, and 1st 4th century, in which the origin of the crab was shaped like a lens.

、451図(a)はその従来例のレンズ活性層i弗分を
示す1所面図、、g、51図(b)は等価屈彷率の分布
世]全イ1,1図(a)に対し]・6、して示す図表で
ある。
, Figure 451 (a) is a single view showing the active layer i of the conventional lens, Figure 51 (b) is the distribution of the equivalent refractive index] Figure 1, 1 (a) ]・6, is a chart shown as follows.

り11図(a)において、1はn型又はp;!!i!!
 Ga+ −xAM前記活柑二層1の中央部Aにおける
ノ4さが120cr1m)端部Hにおける厚でか50(
nm)であるとする。
In Figure 11 (a), 1 is n-type or p;! ! i! !
Ga+ -xAM The thickness at the central part A of the two layers 1 of living oranges is 120 cr 1 m) and the thickness at the end H is 50 cr (
nm).

前d已従米例の発振光の波長λ=7so(nmlに対す
る屈折率は、活性層1全構成するGa+−xAP、xA
sはnx==3.592;クラッドJ@ 2及び3ケ構
成するGa+−yAQyAsはny=3.assである
が、活性層lの等側屈折率は第1図(b)の図表に示す
如く厚さ艇最太である中火部Aにおいて最大で、厚さと
と端B! HにおいてnB=3゜370となる。
The wavelength λ of the oscillation light in the previous example is 7so (nml), and the refractive index is Ga+-xAP, xA, which constitutes the entire active layer 1.
s is nx==3.592; cladding J@2 and 3 constitute Ga+-yAQyAs are ny=3. As shown in the chart of FIG. 1(b), the isolateral refractive index of the active layer L is maximum in the middle heat section A, which is the thickest part of the boat, and the thickness and the end B! At H, nB=3°370.

この様に等価ノ…折率が分布することによって力1折率
導波機構が成立するが、本従来j′Jll 9ζおいて
基本横モードのみを発振させるためには、活性Jfft
 1のレンズ状部分の幅Wを1〔μm″1程度もしく(
σLそれ以下とすることが必要となり、工業的に実現す
ることは極めて困難である。
A force-1 refractive index waveguide mechanism is established by the distribution of the equivalent refractive index in this way, but in order to oscillate only the fundamental transverse mode in this conventional j′Jll 9ζ, the active Jfft
The width W of the lens-shaped portion of 1 is about 1 [μm''1 or (
It is necessary to reduce σL to a value lower than that, which is extremely difficult to realize industrially.

この困鈴を回避して基本桶モード発掘を実現する手段と
して以下に祝明する光吸収層を設けた半導体発光装置が
既に知られている。果2図(a)は光吸収層を設けた半
導体レーザの主安部分を示す断面図、と432図(b)
は発振光の電界強度分布を示す図表、第2]シ](C)
は活性層の等側屈折率の分布を示す図表、第2図(d)
は光吸収層による損失の分布を示す図表であって、第2
図(b)万全(d)の図表の横軸は第2図(a)の断■
図に対応する。
A semiconductor light emitting device provided with a light absorbing layer, which will be described below, is already known as a means to avoid this problem and realize the basic bucket mode. Figure 2 (a) is a cross-sectional view showing the main part of a semiconductor laser provided with a light absorption layer, and Figure 2 (b)
is a diagram showing the electric field strength distribution of oscillation light, 2nd] [C]
is a chart showing the isolateral refractive index distribution of the active layer, Figure 2(d)
is a diagram showing the distribution of loss due to the light absorption layer, and the second
The horizontal axis of the chart in Figure (b) and Perfection (d) is the cross section of Figure 2 (a).
Corresponds to the figure.

第2図(a)において、11は禁制帯幅E+、Mi折率
n1なる活性層、12は禁制帯幅JjE2+屈折率n2
なる第1のクラッド層、13は禁制帯幅E3 +ノ1)
(折率n3なる第2のクラッド層、14は糸制帯iME
4 、屈折率n4なる光吸収層である。以上の3− 谷牛尋体層11乃〃14の禁制帝1隅E、乃1にE4及
び屈折率n、乃至n4は次式に示す関係全満足する。
In FIG. 2(a), 11 is an active layer with forbidden band width E+ and Mi refractive index n1, and 12 is forbidden band width JjE2+refractive index n2.
13 is the forbidden band width E3 + no 1)
(Second cladding layer with refractive index n3, 14 is yarn control band iME
4, a light absorption layer having a refractive index of n4. The above-mentioned 3-E4 and the refractive indexes n and n4 of the 1st corner E and 14 of the 3-Tanishi body layers 11 to 14 fully satisfy the relationship shown in the following equation.

PJ2 + EB > 1!:1 > I’E4n+ 
> nt > n2* ns 第2図(a)に示す叩く、活性層11は共振器幅方向、
すなわち不断面図の左右方向のl’i 0M中央におい
てその厚さが最大であり、中央から離れるに従って厚さ
が次第に小となるレンズ状の断面を有しでいる。この形
状によって、活性層110等価屈折率14第2図(C)
に示す如く甲央で最大で左右の端梁2図(b)に実線I
で示す基本モード、鼓動1■で示す一次モードの如く導
波される。すなわち先に第11!X1(a)及び(b)
を参照して説明した4魚モードが単一の基本モードとな
る共振器幅Wよりも広い共振器幅が設定される。
PJ2 + EB > 1! :1>I'E4n+
> nt > n2* ns As shown in FIG. 2(a), the active layer 11 is located in the resonator width direction,
That is, it has a lens-shaped cross section with the maximum thickness at the center l'i 0M in the left-right direction of the non-sectional view, and the thickness gradually decreases as it moves away from the center. With this shape, the active layer 110 has an equivalent refractive index of 14 (Fig. 2(C)).
As shown in Figure 2 (b), the solid line I is the maximum at the center of the instep.
The wave is guided as the fundamental mode shown by , and the primary mode shown by heartbeat 1. In other words, the 11th first! X1(a) and (b)
The resonator width is set to be wider than the resonator width W at which the four fish modes become a single fundamental mode as described with reference to .

光吸収層14は、活性層11のli’il 症中央の近
傍全除外し本断面図の左右の端の?i1〜分に近接して
り4− ラソドN112’<介して配設される。すなわち第2図
(b) K示す如く基本モードのエネルギーは中央近傍
にほぼ集中し、高次モードのエネルギーは中央近傍より
もその左右において密度が大となるから光吸収層14に
例えば−次モードのピーク位置の間隔もしくはこれより
若干大きい間隔を設けて、第2図(d)に示す如き損失
分布ケ与えることによって、高次モードを選択的に減衰
させることができる。なお、この損失を与える領域にお
いては、活性層11と光吸収層14との間に介在するク
ラッド層12の厚さは活性層11からの光のしみ出しの
幅以内とする。
The light absorption layer 14 is formed by completely excluding the vicinity of the center of the active layer 11 and the left and right ends of this cross-sectional view. It is located close to i1~ and via 4-rathod N112'. That is, as shown in FIG. 2(b) K, the energy of the fundamental mode is almost concentrated near the center, and the energy of the higher-order mode has a higher density on the left and right sides than near the center. The higher-order modes can be selectively attenuated by providing a loss distribution as shown in FIG. 2(d) by providing an interval between the peak positions of or a slightly larger interval. In addition, in the region giving this loss, the thickness of the cladding layer 12 interposed between the active layer 11 and the light absorption layer 14 is set within the width of the light seeping out from the active layer 11.

以上のような構成によって高次モードの発振が抑制され
、基本横モード発掘が安定して行なわれるが、この光吸
収が効果的に行なわれる半導体レーザて工業的に裏層、
することは容易ではない。すなわち第2図(a)に示す
構成によれは、光吸収層14をGaAa、活性層11.
第1クラッド層12及び第2クラツド湘13全それぞれ
選択された組成比をイ)するGaAAAsとすることに
よって形成することができろか、先に4JL %されて
いる如く、光吸収層14がG a A s 、4−枦も
しくはGaAsノーでイ反に接して形j)y、されたG
aAsエピタキシャル成長層であって、。
The above configuration suppresses the oscillation of higher-order modes and stably excavates the fundamental transverse mode, but in semiconductor lasers that effectively absorb this light, the back layer
It's not easy to do. That is, according to the structure shown in FIG. 2(a), the light absorption layer 14 is made of GaAa, and the active layer 11.
Is it possible to form the first cladding layer 12 and the second cladding layer 13 by setting the selected composition ratio of GaAAAs? A s , 4 - G made in the form j) y, in contact with I in 枦 or GaAs no.
An aAs epitaxially grown layer.

これに帯状に断14Bがv′4−状をなす溝を異方性エ
ツチングによって形成し、■溝を含む全表[nlに揉し
てクラッド層と斤るGaAAAB層全液相エピタキシす
る叫の届の部分の亥形を光吸収効果をM図する領域に限
定することは伶めで困難であって、溝の断面形状の変!
l!7Iを生じてクラッド層及び宿性層の形状及び寸法
が変動する結果となり、この光吸収層が効果的に機能す
る半導体レーザの工業的製造が極めて困難となっている
A band-shaped groove with a v'4-shaped cross section 14B is formed on this by anisotropic etching, It is difficult to limit the shape of the boar in the area to the area where the light absorption effect is shown in the M diagram, and the change in the cross-sectional shape of the groove!
l! 7I, which results in variations in the shape and dimensions of the cladding layer and the host layer, making it extremely difficult to industrially manufacture a semiconductor laser in which this light absorption layer functions effectively.

(d)  発明の目的 本発明は、半2!す体基体に形成された帯状の節円に活
性層等が形成てれてなるG a A s /Cr a 
AItA a光半導体レーザに、工業的に容易に尖施し
得る光吸収層を設けて単一の基本横モード発振が実現さ
れる半導体レーザW1が供すること全目的とする。
(d) Object of the Invention The present invention is based on the invention. G a A s /C a in which an active layer, etc. is formed on a band-shaped nodal circle formed on a glass substrate.
The overall purpose is to provide a semiconductor laser W1 in which a single fundamental transverse mode oscillation is realized by providing an optical absorption layer that can be easily applied industrially to the AItA a optical semiconductor laser.

(e)  発明の構成 本発明の前記目的は、第1導′は型のGaAs基板上に
第2導電型のG at −zAAz A s電流[51
1止ツタと、該Ga+−zAItzAs層に接するGa
As光吸収層とが順次配設され、該GaAg光吸収層上
面より前記GaAs基板に達する帯状の吋が設けられ、
該溝面及び前記GaAs光吸収層に接する第1導t B
9.のGa1−y1’JLyAsクラッドh4を介して
、Ga+−xMxAs(0≦X(y、z)活性層が設け
られてなる半導体発光装置により達成さυ7る。
(e) Structure of the Invention The object of the present invention is to generate a GaAs current of the second conductivity type [51
One stop ivy and Ga in contact with the Ga+-zAItzAs layer
and an As light absorption layer are disposed in sequence, and a band-shaped part extending from the upper surface of the GaAg light absorption layer to the GaAs substrate is provided;
A first conductor t B in contact with the groove surface and the GaAs light absorption layer.
9. This is achieved by a semiconductor light emitting device in which a Ga+-xMxAs (0≦X(y,z) active layer is provided via a Ga1-y1'JLyAs cladding h4).

(f)  発明の実施例 以下、本発明を実施例により第3図孕杉照して具体的に
簡明する。
(f) Embodiments of the Invention The present invention will be explained in detail below with reference to embodiments shown in FIG.

図にisいて、21はnu、GaAs基板、22はp型
Ga o、y A!o、sAs 4流阻止層、23はp
又はnaGaAs光吸収層、24はn型Ga O,a 
sMo、 a sAs第1クラッド層、25はノンドー
プのGa0.95”0.05A、s活性層、26はp型
Gao、asAgo3sAs第2クラッド層、27はp
型Q a 、A sキャップ虐、28はp側電極、29
はn側電極を示す。
In the figure, 21 is nu, GaAs substrate, 22 is p-type Ga o, y A! o, sAs 4 flow blocking layer, 23 is p
or naGaAs light absorption layer, 24 is n-type GaO,a
sMo, a sAs first cladding layer, 25 is undoped Ga0.95"0.05A, s active layer, 26 is p-type Gao, asAgo3sAs second cladding layer, 27 is p
Type Q a, A s cap, 28 is the p-side electrode, 29
indicates the n-side electrode.

7一 本実倫例の製、へ方法の概要を説明する。捷ず、n型G
aAs結晶の(]00)面を基板21の上面とし、該面
上に液相エピタキシャル成長法によってp型Gao7A
Ao3As ’電流阻止層22を厚さ例えば0.5〔μ
痛〕程、用に、続いてp!8νGaAs元吸収層23を
jψさ例えば0.5乃至1〔μm)e4 INに形成す
る。
An overview of the method for producing and preparing 7-1 practical examples will be explained. No change, n-type G
The (]00) plane of the aAs crystal is the upper surface of the substrate 21, and p-type Gao7A is grown on the surface by liquid phase epitaxial growth.
The Ao3As' current blocking layer 22 has a thickness of, for example, 0.5 [μ
[pain], then p! The 8νGaAs original absorption layer 23 is formed to have a jψ of e4IN, for example, 0.5 to 1 [μm].

紗いて前記GaAs光吸収層23及びQaO,7A1o
、aAs区流限流阻止層22通して基板21に達する。
The GaAs light absorption layer 23 and QaO, 7A1o
, and reaches the substrate 21 through the aAs current limiting current blocking layer 22.

■形閘1珀をもち結晶の<011>方向にタルひる鍔全
形成する。この溝の幅は、GaAs光吸収層230′亀
例においては3〔μm)程度である。
■It has one shape lock and is fully formed in the <011> direction of the crystal. The width of this groove is about 3 [μm] in the example of the GaAs light absorption layer 230'.

次いで第2回目の液相エピタキシャル成長全実施して、
n型GaO,6s All o3s As第1クラツド
J曽24、Ga O,95AI’、 o、o sAs活
性&25)P型G a o、65Aj!o、s sA 
s第2クラッド)¥126及びl)型、GaAs#ヤノ
ブ層27を)1次形成する。とのn型Gao、s s/
uo、55As 第1クラッド層24の液相エピタキシ
ャル成長に除してはGaAs光吸収光吸収下23下られ
たGaO,7AQo、aAsバックを積極的に利用して
、Gao、asAI!o、asAs 第1クラッド層の
溝内部分とGaAs元吸収層23上の部分とが連続し、
かつGaAs元吸収層23の傾斜部分上においてその厚
さが03〔μm)程度以下溝の形状は変化しない。
Next, a second liquid phase epitaxial growth was carried out,
n-type GaO,6s All o3s As first clad Jso24, GaO,95AI', o, o sAs activity &25) P-type Ga o,65Aj! o,s sA
s second cladding) ¥126 and l) type GaAs#Yanobu layer 27) are formed as a primary layer. n-type Gao with, s s/
uo, 55As During the liquid phase epitaxial growth of the first cladding layer 24, the GaO, 7AQo, and aAs backs lowered under the GaAs light absorption layer 23 are actively utilized, and Gao, asAI! o, asAs The inner groove part of the first cladding layer and the part above the GaAs original absorption layer 23 are continuous,
Moreover, the shape of the groove does not change on the sloped portion of the GaAs original absorption layer 23 when the thickness is less than about 0.3 μm.

’!fc−,Gao、esAAo、osAs活性I@2
5はGa o、a s Al!o、asAsvglクラ
ッド層24に接して、中央の厚さを例えば80乃至15
0 [nm)程近に液相エピタキシャル成長きれること
によってその断面がレンズ状となるが、七の幅はGaA
s元吸収J¥j23の前記類27の成長は従来技術と同
様であり、電極形成及び襞間等の工程も従来技術によっ
て実施される。
'! fc-, Gao, esAAo, osAs activity I@2
5 is Ga o, a s Al! o, asAsvgl In contact with the cladding layer 24, the central thickness is, for example, 80 to 15
By completing the liquid phase epitaxial growth close to 0 [nm], the cross section becomes lens-shaped, but the width of the GaA
The growth of the above-mentioned type 27 of s-element absorption J\j23 is similar to the conventional technique, and steps such as electrode formation and inter-fold formation are also performed according to the conventional technique.

以上説明した実施例はV字形断面をもつ溝内にクラッド
j曽及で)−清+J′、層を形成し2ている1ハ、(6
Tの形状はU字形、逆台形等の他の形状であっても同様
に本発明を実施することができる。
The embodiment described above has a cladding layer (J), (J'), and (6) formed in the groove having a V-shaped cross section.
The present invention can be implemented in the same manner even if the shape of T is other shapes such as a U-shape or an inverted trapezoid.

(g)  発明の効果 以上説1す]した如く本発明によれば、GaAs/Ga
MAs系半轡体ンーサにおいて、梃来極めて困911L
であったクラッド層及び活(:′F、層の液相エピタキ
シャル成長が容易となり再現性及び生産性が向上して、
安定した基本横モード発振を与える半導体発元装置幌を
工業的に生産することが可能となる。
(g) Effects of the invention As described above, according to the present invention, GaAs/Ga
911L is extremely difficult for MAs type half-body sensors.
The liquid phase epitaxial growth of the cladding layer and the active (:'F) layer became easier, improving reproducibility and productivity.
It becomes possible to industrially produce a semiconductor generator canopy that provides stable fundamental transverse mode oscillation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来技術による半導体レーザの主要部分
を示す断rff1図、弔11匈(b)はその等側屈折率
の分布例を示す図表、第2図(a)は元吸収層を有する
半導体レーザの主壁部分を示す断Ifj図、第21ン1
(b)は発振光の′亀界誦晟分布を示す図表、第2図(
C)は等側屈折率の分布を示す図表、第2:、゛ス+ 
(d)は損失の分布を示す1図表、第31ン(は本発明
の央1iit1例ケ示す図表である。 1;り1において、21けGaAsM板、22けGao
、7Mo、s A s ′+を流阻止層、23はGaA
s光吸収層、24はG ao、a s A11)、a 
sA s %#1クラッド層、25はGao、g5uO
,OFI A s活性層、26はGao、asAAo、
asAs第2クラッド層、27はGaAsキャップ層、
28及び29は電極を示す。 f 1  図 才 2 図 ///3
Figure 1 (a) is a cross-sectional RFF1 diagram showing the main parts of a semiconductor laser according to the prior art, Figure 1 (b) is a diagram showing an example of the isolateral refractive index distribution, and Figure 2 (a) is the original absorption layer. Section Ifj diagram showing the main wall portion of a semiconductor laser having
(b) is a diagram showing the distribution of oscillated light;
C) is a diagram showing the distribution of isolateral refractive index, 2nd:, ゛+
(d) is a chart showing the loss distribution, and the 31st chart is a chart showing one example of the center 1iit of the present invention.
, 7Mo, s A s ′+ as flow blocking layer, 23 as GaA
s light absorption layer, 24 is Gao, a s A11), a
sA s% #1 cladding layer, 25 is Gao, g5uO
, OFI As active layer, 26 is Gao, asAAo,
an asAs second cladding layer, 27 a GaAs cap layer,
28 and 29 indicate electrodes. f 1 illustration 2 illustration///3

Claims (1)

【特許請求の範囲】[Claims] 第1導電型のGaAs基板上に、第2.!4電型■a1
− z Al z A s を流阻止層と該Ga1−z
AQzAs層に接するGaAs光吸収層とが順次配設さ
れ、該GaAs元吸収層上面より前記GaAs基板に達
する帯状の牌が設けられ、該溝面及び前記GaAs光吸
収層に接する第14電型のGa+−yAl、yA8クラ
ッド層を介してGa+−xAAxAs(0≦X<y、z
)活性層カ設けられてなることを特徴とする半導体発光
装置。
On the GaAs substrate of the first conductivity type, the second conductivity type. ! 4 electric type ■a1
- z Al z A s as a flow prevention layer and the Ga1-z
A GaAs light absorption layer in contact with the AQzAs layer is sequentially disposed, and a strip-shaped tile is provided that reaches the GaAs substrate from the upper surface of the GaAs original absorption layer, and a 14th electric type in contact with the groove surface and the GaAs light absorption layer is provided. Ga+-xAAxAs (0≦X<y, z
) A semiconductor light emitting device comprising an active layer.
JP19927482A 1982-11-12 1982-11-12 semiconductor light emitting device Pending JPS5988889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19927482A JPS5988889A (en) 1982-11-12 1982-11-12 semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19927482A JPS5988889A (en) 1982-11-12 1982-11-12 semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS5988889A true JPS5988889A (en) 1984-05-22

Family

ID=16405056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19927482A Pending JPS5988889A (en) 1982-11-12 1982-11-12 semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS5988889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631802A (en) * 1980-06-24 1986-12-30 Sumitomo Electric Industries, Ltd. Process for the production of a semiconductor device
JPS6239085A (en) * 1985-08-14 1987-02-20 Sharp Corp Photosemiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631802A (en) * 1980-06-24 1986-12-30 Sumitomo Electric Industries, Ltd. Process for the production of a semiconductor device
JPS6239085A (en) * 1985-08-14 1987-02-20 Sharp Corp Photosemiconductor element
JPH0533552B2 (en) * 1985-08-14 1993-05-19 Sharp Kk

Similar Documents

Publication Publication Date Title
CN110247302B (en) A surface emitting laser based on surface grating
JPS63164484A (en) Semiconductor laser element
JPH1168241A (en) Semiconductor laser
CN109599743B (en) Conical Photonic Crystal Laser Based on Mode Control of Photonic Crystal Defect States
KR20080052233A (en) Laser element with integrated optical mode size converter
JPS5988889A (en) semiconductor light emitting device
JPH08248364A (en) Light intensity modulation element and semiconductor laser with light intensity modulation element
JP2846668B2 (en) Broad area laser
JPH02156588A (en) Semiconductor laser and its manufacture
JP2532449B2 (en) Semiconductor laser device
JPS5832794B2 (en) semiconductor laser
JPS61102087A (en) Semiconductor laser device
JPH0449273B2 (en)
JPS5911690A (en) Semiconductor laser device
JP3799628B2 (en) Semiconductor optical integrated device and method for driving semiconductor optical integrated device
JPS60152086A (en) Semiconductor laser device
JPS6237833B2 (en)
JP4024319B2 (en) Semiconductor light emitting device
JPS59184585A (en) Semiconductor laser of single axial mode
JPH04370993A (en) Semiconductor laser device
JPS59218786A (en) Single axial mode semiconductor laser
JPS6310583A (en) Semiconductor laser
JPS6381305A (en) Optical integrated circuit
JPS62281384A (en) Semiconduvctor laser element and manufacture thereof
JPH01140787A (en) Semiconductor laser element