JPH02156588A - Semiconductor laser and its manufacture - Google Patents
Semiconductor laser and its manufactureInfo
- Publication number
- JPH02156588A JPH02156588A JP31111488A JP31111488A JPH02156588A JP H02156588 A JPH02156588 A JP H02156588A JP 31111488 A JP31111488 A JP 31111488A JP 31111488 A JP31111488 A JP 31111488A JP H02156588 A JPH02156588 A JP H02156588A
- Authority
- JP
- Japan
- Prior art keywords
- conductivity type
- layer
- cladding layer
- algainp cladding
- algainp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2231—Buried stripe structure with inner confining structure only between the active layer and the upper electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2206—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
- H01S5/2209—GaInP based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2206—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
- H01S5/221—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2211—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on II-VI materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2214—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2214—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
- H01S5/2216—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32325—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はAlGaInPなどの材料で構成され、横モー
ドが制御された半導体レーザおよびその製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser made of a material such as AlGaInP and having a controlled transverse mode, and a method for manufacturing the same.
従来の技術
700nm以下の可視光の波長で発光する半導体レーザ
は光ディスク、レーザプリンタ、バーコードリーダなど
に用いる光源として注目されている。中でもGaAsを
基板とし、これに格子整合するG a@、s I ns
、sP (以下の説明ではGaInPと略記する)また
は(A lxG a+−x) Q、6 I n@、sP
(以下の説明ではAlGaInPと略記する)を活性層
、AlGaInPをクラッド層とするダブルへテロ接合
型半導体レーザはGaAsに格子整合するIII−V族
化合物半導体の中で最も短い波長の光を出すことができ
るので可視光半導体レーザの材料として有望である。2. Description of the Related Art Semiconductor lasers that emit light at visible wavelengths of 700 nm or less are attracting attention as light sources for use in optical discs, laser printers, bar code readers, and the like. Among them, Ga@, s I ns that uses GaAs as a substrate and is lattice matched to it.
, sP (abbreviated as GaInP in the following explanation) or (A lxG a+-x) Q, 6 I n@, sP
A double heterojunction semiconductor laser, which has AlGaInP (abbreviated as AlGaInP in the following explanation) as an active layer and AlGaInP as a cladding layer, emits light with the shortest wavelength among III-V group compound semiconductors that are lattice-matched to GaAs. This makes it a promising material for visible light semiconductor lasers.
第5図に従来の横モード制御型のAlGaInP系半導
体レーザのおのおのの製作工程における断面構造を示す
。まず最初に第5図(a)に示すように、(100)面
を主面とするn型GaAs基板501の表面に、n型A
lGaInPクラッド層502、Ga I nP活性層
503、p型AlGaInPクラッド層504、p型G
aInPバッファ層505をMO−VPE法(有機金属
気相成長法)で順次結晶成長する。次に、<011>方
向にストライプ状に形成した5iOa膜508をマスク
としてp型GaInPバッファ層505を例えばCC1
4ガスを用いたRIE(反応性イオンエツチング)によ
りエツチングし、さらにp型AlGaInPクラッド層
504を例えば40°Cの熱濃硫酸でエツチングすると
第5図(b)に示すようになる。次に5in2膜50θ
をマスクとしてMO−VPE法によりn型GaAs電流
ブロック層507を選択的に結晶成長すると第5図(C
)に示すようになる。選択成長のマスクとして用いたS
【02膜506を除去したのち全面にp型GaAsコン
タクト層508をMO−VPE法により結晶成長すると
第5図(d)に示すようにストライプが埋め込まれる。FIG. 5 shows the cross-sectional structure of a conventional transverse mode control type AlGaInP semiconductor laser in each manufacturing process. First, as shown in FIG. 5(a), an n-type A
lGaInP cladding layer 502, GaInP active layer 503, p-type AlGaInP cladding layer 504, p-type G
The aInP buffer layer 505 is successively crystal-grown by MO-VPE (metal organic vapor phase epitaxy). Next, using the 5iOa film 508 formed in stripes in the <011> direction as a mask, the p-type GaInP buffer layer 505 is
When the p-type AlGaInP cladding layer 504 is etched by RIE (reactive ion etching) using 4 gases, and the p-type AlGaInP cladding layer 504 is etched, for example, with hot concentrated sulfuric acid at 40.degree. C., it becomes as shown in FIG. 5(b). Next, 5in2 film 50θ
When the n-type GaAs current blocking layer 507 is selectively crystal-grown by the MO-VPE method using as a mask, the result shown in FIG.
). S used as a selective growth mask
After removing the 02 film 506, a p-type GaAs contact layer 508 is crystal-grown over the entire surface by MO-VPE, and stripes are embedded as shown in FIG. 5(d).
最後に表面にAu/Zn/Auからなるp型オーミック
コンタクト層509を形成し、裏面を研磨およびエツチ
ングして基板を薄くしたのちA u −G e / N
i / A uからなるn型オーミックコンタクト層
510を形成すると第5図(e)に示すように従来の横
モード制御型のAlGa InP系半導体レーザが完成
する。Finally, a p-type ohmic contact layer 509 made of Au/Zn/Au is formed on the front surface, and the back surface is polished and etched to make the substrate thinner.
When an n-type ohmic contact layer 510 made of i/Au is formed, a conventional transverse mode control type AlGa InP semiconductor laser is completed as shown in FIG. 5(e).
この従来のレーザにおいて、n型GaAs電流ブロック
層507は電気的には電流の狭窄層の役割を果たし、光
に対してはp型AlGaInPクラッドm504よりも
屈折率が太きくGaInP活性層503で発光した光を
吸収するので吸収型のアンチ導波層の役割を果たしてい
る。そのため、この従来の横モード制御型のAlGaI
nP系半導体レーザは低しきい値でレーザ発振する。In this conventional laser, the n-type GaAs current blocking layer 507 electrically plays the role of a current confinement layer, and for light, the GaInP active layer 503 has a larger refractive index than the p-type AlGaInP cladding m504 and emits light. Since it absorbs the light that is absorbed, it plays the role of an absorption type anti-waveguide layer. Therefore, this conventional transverse mode control type AlGaI
An nP semiconductor laser oscillates at a low threshold.
発明が解決しようとする課題
このような従来の横モード制御型のAlGaInP系半
導体レーザにおいては、横モードの制御が行なわれては
いるものの活性層と平行な方向の屈折率による光の閉じ
こめは行なわれてはおらず利得導波性が強く残るため活
性層と平行な方向の導波光の波面が曲がってしまい、そ
の結果として大きな非点隔差ができてしまうという問題
点があった。従って従来の横モード制御型のAlGaI
nP系半導体レーザを光学機器に応用しようとする場合
、通常の凸レンズ−枚ではレーザ光を平行光にしたり一
点に集光したりすることができないため応用範囲が限定
されてしまっていた。Problems to be Solved by the Invention In such conventional transverse mode control type AlGaInP semiconductor lasers, although the transverse mode is controlled, light is not confined by the refractive index in the direction parallel to the active layer. The problem is that the wavefront of the guided light in the direction parallel to the active layer is bent, resulting in a large astigmatism difference. Therefore, the conventional transverse mode control type AlGaI
When applying nP semiconductor lasers to optical equipment, the scope of application is limited because a normal convex lens cannot convert laser light into parallel light or focus it on one point.
また、n型GaAs電流ブロック層507は活性層で発
光した光を吸収するので活性層を導波する光に対しては
損失となるためこの損失の分だけ発振しきい値が増加す
るという問題点もあった。In addition, since the n-type GaAs current blocking layer 507 absorbs light emitted from the active layer, there is a loss for the light that is guided through the active layer, so there is a problem that the oscillation threshold increases by this loss. There was also.
課題を解決するための手段
本発明はこのような従来の横モード制御型のAlGaI
nP系半導体レーザにおける問題点を解決するためにな
されたもので、(1) G a A s基板上に一方導
電型AlGaInPクラッド層、活性層およびストライ
プ部分で厚さが厚くなった他方導電型AlGaInPク
ラッド層を有し、前記ストラ、イブの両側の前記他方導
電型AlGaInPクラyt’層の表面に前記他方導電
型AlGaInPクラッド層よりも屈折率の低い絶縁層
が一対のストライプ状に形成されていて、さらにその外
側に一方導電型電流ブロック層が形成された構成、(2
)(100)を主面とするGaAs基板上に一方導電型
AlGaInPクラッド層、活性層およびく01丁〉方
向に形成されたストライプ部分で厚さが厚く断面形状が
逆メサ形状をした他方導電型AlGaInPクラッド層
を有し、前記他方導電型AlGaInPクラッド層の逆
メサ表面に前記他方導電型AlGaInPクラッド層よ
りも屈折率の低い絶縁層が形成されていて、さらにその
外側に一方導電型電流ブロック層が形成された構成、
(3)GaAs基板上に一方導電型AlGaInPクラ
ッド層、活性層およびストライプ部分で厚さが厚くなっ
た他方導電型AlGaInPクラッド層を有し、レーザ
光の出射端面近傍の領域の前記他方導電型AlGaIn
Pクラツド層の前記ストライブの両側表面に前記他方導
電型AlGa I nPクラッド層よりも屈折率の低い
絶縁層が一対のストライプ状に形成されていて、さらに
その外側および前記絶縁層が形成されていない領域の前
記他方導電型AlGaInPクラッド層の前記ストライ
ブの両側表面に一方導電型電流ブロック層が形成された
構成、および(4)GaAs基板上に一方導電型AlG
aInPクラッド層、活性層、他方導電型AlGaIn
Pクラッド層および他方導電型コンタクト層がストライ
プ状に形成されていて、前記ストライブの両側に前記他
方導電型AlGaInPクラッド層および一方導電型A
lGaInPクラッド層よりも屈折率の低い非晶質層が
形成された構成を有するものであり、さらにこれらの構
成を実現するための製造方法としては(5)(100)
を主面とするGaAs基板上に一方導電型AlGaIn
Pクラッド層、活性層および他方導電型AlGaInP
クラッド層を形成する工程、前記他方導電型AlGaI
nPクラッド層を<011>方向にストライプ状になっ
ており該ストライプ部分で厚さが厚くなるようにエツチ
ング加工する工程、前記他方導電型AlGa I nP
クラッド層の表面に一方導電型電流ブロック層を形成す
る工程、前記他方導電型AlGaInPクラツド層の前
記ストライプ上および前記ストライブの両側の上の前記
一方導電型電流ブロック層をエツチングして一対の溝を
形成する工程、前記一対の溝の表面に前記他方導電型A
lGaInPクラッド層よりも屈折率の低い絶縁層を一
対のストライプ状に形成する工程、および少なくとも前
記他方導電型AlGaInPクラッド層のストライプ上
および前記一方導電型電流ブロック層の表面に他方導電
型コンタクト層を形成する工程を備えた製造方法、 (
6)(100)を主面とするGaAs基板上に一方導電
型AlGaInPクラッド層、活性層および他方導電型
AlGaInPクラッド層を形成する工程、前記他方導
電型AlGaInPクラツド層を<01T>方向にスト
ライプ上で逆メサ形状になっており該ストライプ部分で
厚さが厚くなるようにエツチング加工する工程、前記前
記逆メサ形状の前記他方導電型AlGaInP層の逆メ
サ表面に前記他方導電型AlGaInPクラッド層より
も屈折率の低い絶縁層を形成する工程、表面に露出した
前記他方導電型AlGaInPクラッド層の表面に一方
導電型電流ブロック層を選択的に形成する工程、および
少なくとも前記他方導電型AlGaInPクラッド層の
ストライプ上および前記一方導電型電流ブロック層の表
面に他方導電型コンタクト層を形成する工程を備えた製
造方法、および(7)GaAs基板上に一方導電型Al
GaInPクラッド層、活性層、他方導電型AlGaI
nPクラッド層および他方導電型コンタクト層を形成す
る工程、前記一方導電型AlGaInPクラッド層、前
記活性層、前記他方導電型AlGaInPタラッド層お
よび前記他方導電型コンタクト層をストライプ状にエツ
チングする工程、全面に前記他方導電型AlGaInP
クラッド層および一方導電型AlGa I nPクラッ
ド層よりも屈折率の低い非晶質層を形成する工程、表面
に前記非晶質層とエツチング速度が同じになる膜を塗布
する工程、および前記塗布膜とともにストライプ状の前
記非晶質膜をエツチングして前記他方導電型コンタクト
Hの表面を露出させる工程を備えた製造方法で構成され
ている。Means for Solving the Problems The present invention is directed to the conventional transverse mode control type AlGaI
This was done to solve the problems in nP-based semiconductor lasers. a cladding layer, and an insulating layer having a refractive index lower than that of the other conductivity type AlGaInP cladding layer is formed in a pair of stripes on the surface of the other conductivity type AlGaInP crystal layer on both sides of the struts and eaves. , a structure in which a one-side conductivity type current blocking layer is further formed on the outside thereof, (2
)(100) as a main surface, one conductivity type AlGaInP cladding layer, active layer, and stripe portion formed in the 101 direction are thick and have an inverted mesa cross-sectional shape. an AlGaInP cladding layer, an insulating layer having a lower refractive index than the other conductivity type AlGaInP cladding layer is formed on the reverse mesa surface of the other conductivity type AlGaInP cladding layer, and further outside the one conductivity type current blocking layer. The configuration formed by
(3) A GaAs substrate has an AlGaInP cladding layer of one conductivity type, an AlGaInP cladding layer of the other conductivity type whose thickness is thicker in the active layer and the stripe portion, and the AlGaInP cladding layer of the other conductivity type is formed in a region near the laser beam emission end face.
A pair of striped insulating layers having a refractive index lower than that of the other conductivity type AlGa InP cladding layer are formed on both surfaces of the stripes of the P cladding layer, and the insulating layer is further formed on the outside of the striped insulating layer. (4) one conductivity type current blocking layer is formed on both surfaces of the stripes of the other conductivity type AlGaInP cladding layer in a region where the other conductivity type AlGaInP cladding layer does not have one conductivity type current blocking layer;
aInP cladding layer, active layer, other conductivity type AlGaIn
A P cladding layer and a contact layer of the other conductivity type are formed in a stripe shape, and the AlGaInP cladding layer of the other conductivity type and the contact layer of one conductivity type A are formed on both sides of the stripe.
It has a structure in which an amorphous layer with a refractive index lower than that of the lGaInP cladding layer is formed, and manufacturing methods for realizing these structures include (5) (100)
One conductivity type AlGaIn is deposited on a GaAs substrate whose main surface is
P cladding layer, active layer and other conductivity type AlGaInP
Step of forming a cladding layer, the other conductivity type AlGaI
a step of etching the nP cladding layer so that it has a stripe shape in the <011> direction and the thickness becomes thicker in the stripe portion;
forming a current blocking layer of one conductivity type on the surface of the cladding layer; etching the current blocking layer of one conductivity type on the stripes of the AlGaInP cladding layer of the other conductivity type and on both sides of the stripes to form a pair of grooves; forming the other conductivity type A on the surface of the pair of grooves;
forming a pair of stripes of an insulating layer having a refractive index lower than that of the AlGaInP cladding layer; and forming a contact layer of the other conductivity type at least on the stripes of the AlGaInP cladding layer of the other conductivity type and on the surface of the current blocking layer of the one conductivity type. A manufacturing method comprising a step of forming (
6) Forming an AlGaInP cladding layer of one conductivity type, an active layer, and an AlGaInP cladding layer of the other conductivity type on a GaAs substrate having a (100) main surface, forming the AlGaInP cladding layer of the other conductivity type on a stripe in the <01T> direction. etching the reverse mesa surface of the other conductivity type AlGaInP layer in the reverse mesa shape so that the stripe portion is thicker than the other conductivity type AlGaInP cladding layer; forming an insulating layer with a low refractive index; selectively forming a current blocking layer of one conductivity type on the exposed surface of the AlGaInP cladding layer of the other conductivity type; and at least stripes of the AlGaInP cladding layer of the other conductivity type. and (7) forming a contact layer of one conductivity type on a GaAs substrate.
GaInP cladding layer, active layer, other conductivity type AlGaI
a step of forming an nP cladding layer and a contact layer of the other conductivity type; a step of etching the AlGaInP cladding layer of one conductivity type, the active layer, the AlGaInP cladding layer of the other conductivity type and the contact layer of the other conductivity type in a stripe pattern; the other conductivity type AlGaInP
A step of forming an amorphous layer having a refractive index lower than that of the cladding layer and one conductive type AlGa I nP cladding layer, a step of applying a film having the same etching rate as the amorphous layer on the surface, and the coating film. The manufacturing method also includes the step of etching the striped amorphous film to expose the surface of the contact H of the other conductivity type.
作用
上述の本発明の構成により本発明は、以下のような作用
効果を有する。Effects The present invention has the following effects due to the configuration of the present invention described above.
構成(1)(2)および(4)においてはストライブの
両側にAlGaInPクラッド層よりも屈折率の小さい
絶縁膜が形成されているので活性層と平行な方向にも光
を閉じこめて導波させることができ、従って活性層に平
行な方向および垂直な方向ともに屈折率導波されるので
非点隔差も従来例で示したレーザよりもはるかに小さく
なる。In configurations (1), (2), and (4), an insulating film with a lower refractive index than the AlGaInP cladding layer is formed on both sides of the stripe, so light is confined and guided in the direction parallel to the active layer as well. Therefore, since the refractive index wave is guided in both parallel and perpendicular directions to the active layer, the astigmatism difference is also much smaller than in the conventional laser.
構成(3)ではレーザの出射端面の近傍ではストライプ
の両側にクラッド層よりも低い屈折率の絶縁膜が設けら
れているため導波光が完全にストライプに閉じこめられ
ており、出射する光は非点隔差が小さくなることであり
、しかも絶縁膜が埋め込まれた領域以外の領域では従来
例と同じ利得導波成分が残るのでレーザ発振の縦モード
はマルチモードになることである。これにより半導体レ
ーザは戻り光などの擾乱に対しても影響をあまり受けな
い安定な動作を行なうことができる。In configuration (3), an insulating film with a refractive index lower than that of the cladding layer is provided on both sides of the stripe near the output end face of the laser, so the guided light is completely confined in the stripe, and the emitted light is astigmatic. The gap difference is reduced, and since the same gain waveguide component as in the conventional example remains in the region other than the region where the insulating film is buried, the longitudinal mode of laser oscillation becomes multimode. This allows the semiconductor laser to operate stably without being affected much by disturbances such as returned light.
また構成(5)の製造方法ではn型GaAs電流ブロッ
ク層を結晶成長した後選択エツチングによってストライ
プ状のp型Ga I nPバッファ層およびp型AlG
aInPクラッド層を掘り出すことができることであり
、結晶を選択成長する必要がない。In addition, in the manufacturing method of configuration (5), after crystal growth of the n-type GaAs current blocking layer, selective etching is performed to form a striped p-type Ga I nP buffer layer and p-type AlG
The aInP cladding layer can be dug out, and there is no need to selectively grow crystals.
構成(6)の製造方法では絶縁膜がストライプの側面お
よび逆メサ面にマスク合わせ工程を必要とせずエツチン
グの異方性によって選択的に残すことができるので工程
が簡単でありまた幅を狭くすることができるという点で
ある。またストライプの側面および逆メサ面に形成され
た絶縁膜の幅はほぼ膜厚と同程度であるのでp型GaA
sコンタクト層を結晶成長する場合も絶縁膜の上でp型
GaAsコンタクト層がつながりやすいためp型GaA
sコンタクト層とp側のオーミックコンタクト電極との
コンタクト面積を広くすることができるのでコンタクト
抵抗を小さくすることができる。In the manufacturing method of configuration (6), the insulating film can be selectively left on the side surfaces of the stripes and the reverse mesa surface without the need for a mask alignment process and by the anisotropy of etching, which simplifies the process and also reduces the width. The point is that it can be done. In addition, since the width of the insulating film formed on the side surface of the stripe and the reverse mesa surface is approximately the same as the film thickness, p-type GaA
When crystal-growing the s-contact layer, the p-type GaAs contact layer is easily connected on the insulating film, so the p-type GaAs
Since the contact area between the s-contact layer and the p-side ohmic contact electrode can be increased, contact resistance can be reduced.
構成(7)の製造方法では結晶成長が1回のみであるこ
とであり素子の製作が容易になることである。In the manufacturing method of configuration (7), crystal growth is performed only once, which facilitates the manufacturing of the device.
実施例 以下、本発明を実施例にしたがって説明する。Example Hereinafter, the present invention will be explained based on examples.
第1図に本発明の第1の実施例のAlGaInP系半導
体レーザの各製造工程における模式的断面構造図を示す
。まず最初に第1図(a)に示すように、例えば(,1
00)面を主面とするn型GaAs基板101の表面に
、n型AlGaInPクラッド層102(例えばx=0
.6、キャリア密度5X101?cnr” 厚さ1μ
mL GaInP活性層103(例えば厚さ0.1μm
)、p型AlGaInPクラッド層104(例えばx=
0゜6、キャリア密度lXl0”crrr” 厚さ0
.7μm)、p型Ga I nPバッファ層105(例
えばキャリア密度3X10”crrr’ 厚さ0.3
μm)%MO−VPE法でn型GaAs基板101に格
子整合させて順次結晶成長する。FIG. 1 shows schematic cross-sectional structural diagrams in each manufacturing process of an AlGaInP semiconductor laser according to a first embodiment of the present invention. First, as shown in Figure 1(a), for example, (,1
An n-type AlGaInP cladding layer 102 (for example, x=0
.. 6. Carrier density 5X101? cnr” thickness 1μ
mL GaInP active layer 103 (for example, thickness 0.1 μm
), p-type AlGaInP cladding layer 104 (for example, x=
0゜6, carrier density lXl0"crrr" thickness 0
.. 7 μm), p-type Ga I nP buffer layer 105 (e.g. carrier density 3×10”crrr’, thickness 0.3
[mu]m)% MO-VPE method to lattice match the n-type GaAs substrate 101 and sequentially grow crystals.
次に、例えば<Oll>方向に例えば幅4μmのストラ
イプ状に形成したSiO2膜106をマスクとしてp型
GaInPバッファ層105を例えばCCl4ガスを用
いたRIEによりエツチングし、さらにp型AlGaI
nPクラッド層104を例えば40℃の熱濃硫酸で例え
ば4分間エツチングしてp型AlGaInPクラッド層
104がストライプの外側で厚さが0. 4μm残るよ
うにすると、第1図(b)に示すようになる。この実施
例ではストライプを<011>方向に形成しているので
ストライプの両側面のp型AlGaInPクラッド層1
04は順テーパー状にエツチングされる。次にSiO2
膜106を除去してMO−VPE法によりn型GaAs
電流ブロック層107を全面に結晶成長すると第1図(
C)に示すようになる。Next, the p-type GaInP buffer layer 105 is etched by RIE using, for example, CCl4 gas, using as a mask the SiO2 film 106 formed in a stripe shape with a width of 4 μm in the <Oll> direction, and then the p-type AlGaI
The nP cladding layer 104 is etched, for example, with hot concentrated sulfuric acid at 40° C. for 4 minutes, so that the p-type AlGaInP cladding layer 104 has a thickness of 0.5 mm outside the stripes. If 4 μm remains, the result will be as shown in FIG. 1(b). In this example, since the stripes are formed in the <011> direction, the p-type AlGaInP cladding layer 1 on both sides of the stripes
04 is etched in a forward tapered shape. Next, SiO2
The film 106 is removed and n-type GaAs is formed by MO-VPE.
When the current block layer 107 is crystal-grown over the entire surface, it is shown in FIG.
C).
次に、エツチングマスクとなるSi3N4膜108をマ
スクとしてn型GaAs電流ブロック層107を例えば
H2SO4: H2O2: H20=1: 1:
10の混合液で選択的にエツチングすると第1図(d)
に示すようにストライプの両側のn型GaAs電流ブロ
ック層107がエツチングされストライプの両側に一対
の溝が形成される。次に第1図(e)に示すように、マ
スクとして用いたSis N 4膜108を除去したの
ち新たに堆積したp型AlGaInPクラッド層104
よりも屈折率が低い絶縁膜例えば厚さ0.1ttmの5
iaN4膜109をホトエツチングの手法を用いてスト
ライプの両側の一対の溝に選択的に形成する。さらに全
面にp型GaAsコンタクト層110(例えばキャリア
密度5X10”cm= 厚さ3μm)をMO−VPE
法により結晶成長すると第1図(f)に示すようにスト
ライプが埋め込まれる。結晶成長の条件によってはSi
3N4膜109の表面にp型GaAsコンタクト層11
0が結晶成長しない場合もあるがその場合でも本発明の
第1の実施例のAlGaInP系半導体レーザの動作に
は本質的には無関係である。最後に表面にAu/Zn/
Auからなるp型オーミックコンタクト電極11工を形
成し、裏面を研磨およびエツチングして基板を薄くした
のちAu−Ge/Ni/Auからなるn型オーミックコ
ンタクト電極112を形成すると第1図(g)に示すよ
うに本発明の第1の実施例のAlGaInP系半導体レ
ーザが完成する。Next, using the Si3N4 film 108 as an etching mask, the n-type GaAs current blocking layer 107 is etched, for example, H2SO4:H2O2:H20=1:1:
When selectively etched with a mixed solution of 10, the result is shown in Figure 1(d)
As shown in FIG. 3, the n-type GaAs current blocking layer 107 on both sides of the stripe is etched to form a pair of grooves on both sides of the stripe. Next, as shown in FIG. 1(e), after removing the Sis N 4 film 108 used as a mask, the newly deposited p-type AlGaInP cladding layer 104 is removed.
For example, an insulating film with a refractive index lower than that of 5
An iaN4 film 109 is selectively formed in a pair of grooves on both sides of the stripe using a photoetching method. Furthermore, a p-type GaAs contact layer 110 (for example, carrier density 5 x 10" cm = thickness 3 μm) is formed on the entire surface of the MO-VPE.
When the crystal is grown by the method, stripes are embedded as shown in FIG. 1(f). Depending on the crystal growth conditions, Si
A p-type GaAs contact layer 11 is formed on the surface of the 3N4 film 109.
0 may not grow as a crystal, but even in that case, it is essentially unrelated to the operation of the AlGaInP semiconductor laser of the first embodiment of the present invention. Finally, Au/Zn/
After forming 11 p-type ohmic contact electrodes made of Au and polishing and etching the back surface to make the substrate thinner, an n-type ohmic contact electrode 112 made of Au-Ge/Ni/Au is formed, as shown in FIG. 1(g). As shown in FIG. 2, the AlGaInP semiconductor laser according to the first embodiment of the present invention is completed.
また、上述の本発明の第1の実施例の中で第1図(f)
の結晶成長の際に5taN411a109の表面にp型
GaAsコンタクト層110が結晶成長しなかった場合
や、第1図(e)の工程のSi3N4膜109を形成せ
ずにp型GaAsコンタクト層113(例えばキャリア
密度5X10”crrr”厚さ1μm)を全面に埋め込
んだのちストライプの両側のp型GaAsコンタクト層
113およびn型G aA s?[!流ブロック層10
7をエツチングして形成された一対の溝に5iiNt膜
114を形成した場合は第1図(h)に示すような形状
になる。第1図(h)ではp側のコンタクト電極として
Cr/Au/Pt/Au 115を用いもいる。Furthermore, in the first embodiment of the present invention described above, FIG. 1(f)
When the p-type GaAs contact layer 110 is not crystal-grown on the surface of the 5taN411a109 during crystal growth, or when the p-type GaAs contact layer 113 (e.g. After filling the entire surface with a carrier density of 5×10"crrr" (thickness: 1 μm), a p-type GaAs contact layer 113 and an n-type GaAs contact layer 113 on both sides of the stripe are formed. [! flow block layer 10
When a 5iiNt film 114 is formed in a pair of grooves formed by etching 7, the shape becomes as shown in FIG. 1(h). In FIG. 1(h), Cr/Au/Pt/Au 115 is used as the p-side contact electrode.
Cr/Au/P t/Aut!極は非アロイ系の電極で
ありまた絶縁11aとの密着性も良いので第1図(h)
のように絶縁膜が表面に露出している場合やp型GaA
sコンタクト層が薄い場合に有効である。Cr/Au/Pt/Aut! The electrode is a non-alloy type electrode and has good adhesion to the insulation 11a, so it is shown in Figure 1 (h).
When the insulating film is exposed on the surface, such as in p-type GaA
This is effective when the s-contact layer is thin.
−に連の本発明の第1の実施例の特徴とするところは構
造的にはストライプの両側にAlGaInPクラッド層
よりも屈折率の小さい絶縁膜が形成されているので活性
層と平行な方向にも光を閉じこめて導波させることがで
きる点であり、従って活性層に平行な方向および°垂直
な方向ともに屈折率導波されるので非点隔差も従来例で
示したレーザよりもはるかに小さくなることである。ま
たストライプの両側に埋め込まれるS+3N4膜の熱伝
導率は0. 12W/cm嗜degでありGaAsの0
.54W/cm@degよりも低い値であるが、本発明
の第1の実施例では5i3Na膜の膜厚は0.1μm程
度に薄くできしかもSi3N4膜が埋め込まれているの
はストライプの両側の溝の部分のみでありその外側はn
型GaAs電流ブロック層であるので、5rsN4膜に
よって活性層の近傍で発生した熱の放散が悪くなること
はない。さらに上述の本発明の第1の実施例において5
fsN4膜109の表面にもp型GaAsコンタクト層
110を結晶成長させた場合、表面が平坦になり第1図
(h)の構造に比べてp型オーミックコンタクト電極1
11とのコンタクト面積が広くコンタクト抵抗を下げや
すいという特徴もある。Structurally, the first embodiment of the present invention is characterized by the fact that an insulating film with a refractive index lower than that of the AlGaInP cladding layer is formed on both sides of the stripe, so that the structure is parallel to the active layer. This also means that light can be confined and guided, and the refractive index is guided in both directions parallel and perpendicular to the active layer, so the astigmatism difference is much smaller than in the conventional laser. It is what happens. The thermal conductivity of the S+3N4 film embedded on both sides of the stripe is 0. 12W/cm degree and 0 for GaAs
.. Although the value is lower than 54W/cm@deg, in the first embodiment of the present invention, the thickness of the 5i3Na film can be made as thin as about 0.1 μm, and the Si3N4 film is buried in the grooves on both sides of the stripe. , and the outside part is n
Since it is a GaAs type current blocking layer, the dissipation of heat generated in the vicinity of the active layer does not deteriorate due to the 5rsN4 film. Furthermore, in the first embodiment of the present invention described above, 5
When the p-type GaAs contact layer 110 is crystal-grown also on the surface of the fsN4 film 109, the surface becomes flat and the p-type ohmic contact electrode 1 becomes flat compared to the structure shown in FIG. 1(h).
Another feature is that the contact area with 11 is wide and the contact resistance can be easily lowered.
また上述の本発明の第1の実施例の製造工程における特
徴はn型GaAs電流ブロック層107を結晶成長した
後選択エツチングによってストライプ状のp型Ga I
nPバッファ層105およびp型AlGaInPクラ
ッド層104を掘り出すことができることであり、本発
明の第1の実施例では結晶を選択成長する必要がない。Further, the feature of the manufacturing process of the first embodiment of the present invention described above is that after crystal growth of the n-type GaAs current blocking layer 107, striped p-type GaI is formed by selective etching.
The nP buffer layer 105 and the p-type AlGaInP cladding layer 104 can be excavated, and there is no need to selectively grow crystals in the first embodiment of the present invention.
また第1図(h)の構造のレーザを製作する場合は従来
のレーザの製作工程と同じ工程で3回の結晶成長を行な
った後エツチングによりストライプの両側に溝を形成し
て形成された一対の溝に絶縁膜を形成する工程が付加さ
れるだけであるので結晶成長は従来とまったく同じ手法
を用いてでき容易に実現することができるという特徴も
ある。In addition, when manufacturing a laser with the structure shown in Figure 1(h), a pair of grooves are formed on both sides of the stripe by etching after crystal growth is performed three times in the same process as the conventional laser manufacturing process. Since the process of forming an insulating film in the grooves is only added, crystal growth can be performed using exactly the same method as in the conventional method, making it easy to realize.
第2図に本発明の第2の実施例のAlGaInP系半導
体レーザの各製造工程における模式的断面構造図を示す
。まず最初に第2図(a)に示すように、例えば(10
0)面を主面とするn型GaAs基板201の表面に、
n型AlGaInPクラブト層202(例えばx=0.
6、キャリア密度5 X 10”c m−’ 厚さ1
μm)、GaInP活性層203(例えば厚さO,Lc
zm)、p型AlGaInPクラッド層204(例えば
x=O66、キャリア密度lXl0”cm−3厚さ0.
7um)、p型Ga I nPバッフyJI205(
例えばキャリア密度3X10”am−” 厚さ0.3
μm)をMO−VPE法でn型GaAs基板201に格
子整合させて順次結晶成長する。次に、例えば<01丁
〉方向に例えば幅4μmのストライプ状に形成したSi
O2膜206をマスクとしてp型Ga I nPバッフ
ァ層205を例えばCC1,ガスを用いたRIEにより
エツチングし、さらにp型AlGaInPクラッド層2
04を例えば40°Cの熱濃硫酸で例えば4分間エツチ
ングしてp型AlGa InPクラッド層204がスト
ライプの外側で厚さが0. 4μm残るようにすると、
第2図(b)に示すようになる。この実施例ではストラ
イプを〈01丁〉方向に形成しているのでストライプの
両側面のp型AlGaInPクラッド層204は逆メサ
状にエツチングされる。FIG. 2 shows schematic cross-sectional structural diagrams in each manufacturing process of an AlGaInP semiconductor laser according to a second embodiment of the present invention. First, as shown in FIG. 2(a), for example, (10
0) on the surface of the n-type GaAs substrate 201 whose main surface is
n-type AlGaInP crabbed layer 202 (for example, x=0.
6. Carrier density 5 x 10"cm-' thickness 1
μm), GaInP active layer 203 (for example, thickness O, Lc
zm), p-type AlGaInP cladding layer 204 (for example, x=O66, carrier density lXl0''cm-3 thickness 0.
7 um), p-type Ga I nP buffer yJI205 (
For example, carrier density 3X10"am-" thickness 0.3
.mu.m) to the n-type GaAs substrate 201 using the MO-VPE method, and the crystals are sequentially grown. Next, Si
Using the O2 film 206 as a mask, the p-type Ga I nP buffer layer 205 is etched by, for example, RIE using CC1 gas, and then the p-type AlGaInP cladding layer 2 is etched.
04 with hot concentrated sulfuric acid at 40° C. for 4 minutes, for example, so that the p-type AlGaInP cladding layer 204 has a thickness of 0.05 mm outside the stripe. If 4μm remains,
The result is as shown in FIG. 2(b). In this embodiment, since the stripes are formed in the <01> direction, the p-type AlGaInP cladding layers 204 on both sides of the stripes are etched into an inverted mesa shape.
次に例えば光CVD法(化学的気相堆積法)などの段差
の側面にも効率よく絶縁膜が堆積できる方法を用いてp
型AlGaInPクラッド層204よりも屈折率が低い
絶縁膜例えば厚さ0. 3μmのS i gN−820
7を堆積すると第2図(c)のように逆メサの側面にも
絶縁膜を堆積させることができる。次にRIEやtBE
(反応性イオンビームエツチング)によりエツチングガ
スとして例えばCF、などのガスを用いて全面にエツチ
ングを施すとエツチングの異方性により段差の側面およ
び逆メサ面に堆積した5iiN4膜207がエツチング
されずに残り第2図(d)に示すようになる。Next, a method such as photo-CVD (chemical vapor deposition) that can efficiently deposit an insulating film on the side surfaces of the steps is used.
An insulating film having a refractive index lower than that of the AlGaInP type cladding layer 204, for example, has a thickness of 0. 3 μm Si gN-820
By depositing 7, an insulating film can also be deposited on the side surfaces of the inverted mesa as shown in FIG. 2(c). Next, RIE and tBE
When the entire surface is etched by (reactive ion beam etching) using a gas such as CF as an etching gas, the 5iiN4 film 207 deposited on the side surfaces of the step and the reverse mesa surface is not etched due to the anisotropy of the etching. The rest is as shown in FIG. 2(d).
次にMO−VPE法によりn型GaAs電流ブロック層
208を表面に露出しているp型AlGaInPクラッ
ド層204の表面にのみ選択的に結晶成長すると第2図
(e)に示すよう、に段差の側面および逆メサ面に堆積
したSi3N4膜207が埋め込まれる。次に、表面に
露出したSiO2膜206を例えばHF: HzO=
1: 10(D混合液でエツチングして除去し、第2
図(f)に示すようにp型Ga I nPバッファ層2
05の表面を露出させる。さらに全面にp型GaAsコ
ンタクト層209(例えばキャリア密度5X10”cm
−3厚さ3μm)をMO−VPE法により結晶成長する
と第2図(g)に示すようにストライプが埋め込まれる
。最後に表面にAu/Zn/Auからなるp型オーミッ
クコンタクト電極210を形成し、裏面を研磨およびエ
ツチングして基板を薄(したのちA u −G e /
N i / A uからなるn型オーミックコンタク
ト電極211を形成すると第2図(h)に示すように本
発明の第2の実施例のAlGaInP系半導体レーザが
完成する。Next, when the MO-VPE method is used to selectively grow crystals only on the surface of the p-type AlGaInP cladding layer 204 where the n-type GaAs current blocking layer 208 is exposed, a step is formed as shown in FIG. 2(e). The Si3N4 film 207 deposited on the side surfaces and the reverse mesa surface is embedded. Next, the SiO2 film 206 exposed on the surface is heated with, for example, HF: HzO=
1: 10 (etched and removed with D mixture, second
As shown in figure (f), p-type Ga I nP buffer layer 2
Expose the surface of 05. Further, a p-type GaAs contact layer 209 (for example, carrier density 5 x 10" cm) is formed on the entire surface.
-3 (thickness: 3 μm) by MO-VPE method, stripes are embedded as shown in FIG. 2(g). Finally, a p-type ohmic contact electrode 210 made of Au/Zn/Au is formed on the front surface, and the back surface is polished and etched to make the substrate thin (after that, Au-G e /
When an n-type ohmic contact electrode 211 made of Ni/Au is formed, the AlGaInP semiconductor laser of the second embodiment of the present invention is completed as shown in FIG. 2(h).
上述の本発明の第2の実施例の特徴とするところは構造
的には本発明の第1の実施例と同じくストライプの両側
にAlGaInPクラッド層よりも屈折率の小さい絶縁
膜が形成されているので活性層と平行な方向にも光を閉
じこめて導波させることができる点であり、従って活性
層に平行な方向および垂直な方向ともに屈折率導波され
るので非点隔差も従来例で示したレーザよりもはるかに
小さくなることである。またストライプの両側に埋め込
まれるSi3N4膜の熱伝導率はGaAsよりも低いが
、本発明の第2の実施例ではストライプの側面および逆
メサ面に形成された5t3N4膜はマスク合わせ工程を
必要とせずエツチングの異方性によって選択的に残すこ
とができるので幅を狭くすることができしかもSi3N
4膜が埋め込まれているのはストライプの両側面の部分
のみでありその外側はn型GaAs電流ブロック層であ
るので、5iaNsBによって活性層の近傍で発生した
熱の放散が悪くなることはない。さらにp3MAIGa
lnPクラッド層204が逆メサ形状にエツチングされ
ているので電流の狭窄効果も大きくなる。ちなみに従来
例に示したレーザにおいてストライプ方向をく01丁〉
方向としてp型AlGaInP層を逆メサ形状とした場
合はn型GaAs電流ブロック層が活性層で発光した光
を吸収しやすくなるため光の損失が大きく、がえうて発
振しきい値が高くなってしまう。従って本発明の第2の
実施例の構造は光に吸収係数がきわめて小さい絶縁膜を
用いることによって初めて有効になるものである。The feature of the second embodiment of the present invention described above is structurally similar to the first embodiment of the present invention in that an insulating film with a refractive index smaller than that of the AlGaInP cladding layer is formed on both sides of the stripe. Therefore, the light can be confined and guided in the direction parallel to the active layer.Therefore, the refractive index is guided both in the direction parallel to the active layer and in the perpendicular direction, so the astigmatism difference is also shown in the conventional example. This makes it much smaller than conventional lasers. Furthermore, although the thermal conductivity of the Si3N4 film embedded on both sides of the stripe is lower than that of GaAs, in the second embodiment of the present invention, the 5t3N4 film formed on the side surfaces of the stripe and the reverse mesa surface does not require a mask alignment process. Because it can be left selectively due to the anisotropy of etching, the width can be narrowed, and Si3N
Since the 5iaNsB film is embedded only in the portions on both sides of the stripe and the outside thereof is an n-type GaAs current blocking layer, the dissipation of heat generated in the vicinity of the active layer is not deteriorated by the 5iaNsB. Furthermore, p3MAIGa
Since the lnP cladding layer 204 is etched into an inverted mesa shape, the current confinement effect is also increased. By the way, in the laser shown in the conventional example, the stripe direction is
When the p-type AlGaInP layer is formed into an inverted mesa shape, the n-type GaAs current blocking layer easily absorbs the light emitted from the active layer, resulting in a large loss of light, which in turn increases the oscillation threshold. It ends up. Therefore, the structure of the second embodiment of the present invention becomes effective only by using an insulating film having an extremely small absorption coefficient for light.
また上述の本発明の第2の実施例の製造工程における特
徴は5iiN4膜207がストライプの側面および逆メ
サ面にマスク合わせ工程を必要とせずエツチングの異方
性によって選択的に残すことができるので工程が簡単で
ありまた幅を狭くすることができるという点である。ま
たストライプの側面および逆メサ面に形成された5f3
NJ膜207の幅はほぼ膜厚と同程度であるのでp型G
aASコンタクト層209を結晶成長する場合もSis
N a膜207の上でp型GaAs:+クラッド層2
09がつながりやすいためp型GaAsコンタクト層2
09とp側のオーミックコンタクト電極210とのコン
タクト面積を広くすることができるのでコンタクト抵抗
を小さくすることができるという特徴もある。Furthermore, the feature of the manufacturing process of the second embodiment of the present invention described above is that the 5iiN4 film 207 can be left selectively on the side surfaces of the stripes and the reverse mesa surface without the need for a mask alignment process, using the anisotropy of etching. The process is simple and the width can be made narrower. Also, 5f3 formed on the side of the stripe and the reverse mesa surface.
Since the width of the NJ film 207 is almost the same as the film thickness, it is a p-type G.
When crystal-growing the aAS contact layer 209, Sis
P-type GaAs:+ cladding layer 2 on Na film 207
Since 09 is easily connected, p-type GaAs contact layer 2
Since the contact area between 09 and the p-side ohmic contact electrode 210 can be increased, the contact resistance can also be reduced.
さらに、本発明の第1および第2の実施例の特徴はスト
ライプの両側に設けられたクラッド層よりも屈折率の小
さい絶縁膜104あるいは207の外側の領域には活性
層で発光した光を吸収するGaAs層107あるいは2
08があることである。すなわち、活性層に平行な面内
での導波モードの分布であるラテラルモードは高次モー
ドになるほどストライプの両側への光のじみだしが大き
くなり、ストライプの内部への光の閉じこめ係数は小さ
くなる。従って本発明の第1および第2の実施例の半導
体レーザにおいてはラテラルモードが高次モードになる
ほどGaAs層107あるいは208で吸収される光の
量が多くなる。そのため高次のラテラルモードは抑圧さ
れやすくなり、基本モードで発振しやすくなるのでモー
ドの跳びに起因する光出力対電流特性の折れ曲がりも起
こりに(く安定な動作が得られる。Furthermore, the feature of the first and second embodiments of the present invention is that the region outside the insulating film 104 or 207, which has a lower refractive index than the cladding layer provided on both sides of the stripe, absorbs light emitted by the active layer. GaAs layer 107 or 2
08. In other words, in the lateral mode, which is the distribution of waveguide modes in a plane parallel to the active layer, the higher the mode becomes, the more light leaks out to both sides of the stripe, and the smaller the light confinement coefficient inside the stripe. Become. Therefore, in the semiconductor lasers of the first and second embodiments of the present invention, the higher the lateral mode becomes, the more light is absorbed by the GaAs layer 107 or 208. Therefore, higher-order lateral modes are more likely to be suppressed and oscillation in the fundamental mode is more likely to occur, so that the optical output vs. current characteristic is less likely to bend due to mode jumps, and stable operation can be obtained.
本発明の第3の実施例を第3図に示す。第3図において
、301はn型GaAs基板、302はn型AlGaI
nPクラッド層、303はGaInP活性層、304は
p型A I G a I n Pクラッド層、305は
p型GaInPバッフy層、306はn型GaAs電流
ブロック層、307はSi3 N 4膜、308はp型
GaAs:+クラッド層、309はp側オーミックコン
タクト電極、310はn側オーミックコンタクト電極で
ある。第3図においてはレーザの断面構造が領域Aと領
域Bとで異なり、領域Aでは断面構造は本発明の第1の
実施例と同じ構造であり領域Bでは断面構造は従来例と
同じである。A third embodiment of the invention is shown in FIG. In FIG. 3, 301 is an n-type GaAs substrate, 302 is an n-type AlGaI substrate, and 302 is an n-type AlGaI substrate.
nP cladding layer, 303 is GaInP active layer, 304 is p-type AI GaInP cladding layer, 305 is p-type GaInP buffer layer, 306 is n-type GaAs current blocking layer, 307 is Si3N4 film, 308 309 is a p-side ohmic contact electrode, and 310 is an n-side ohmic contact electrode. In FIG. 3, the cross-sectional structure of the laser is different between region A and region B. In region A, the cross-sectional structure is the same as that of the first embodiment of the present invention, and in region B, the cross-sectional structure is the same as that of the conventional example. .
本発明の第3の実施例の特徴は領域Aではストライプの
両側にクラッド層よりも低い屈折率の絶縁膜307が設
けられているため導波光が完全にストライプに閉じこめ
られており、従って領域Aでは活性層に平行な方向およ
び垂直な方向ともに屈折率導波されているので領域Aか
ら出射する光は非点隔差が小さくなることであり、しか
も領域Bでは従来例と同じ利得導波成分が残るのでレー
ザ発振の縦モードはマルチモードになることである。こ
れにより本発明の第3の実施例の半導体レーザは戻り光
などの擾乱に対しても影響をあまり受けない安定な動作
を行なうことができる。また本発明の第3の実施例の半
導体レーザの製作は従来例と本発明の第1の実施例とを
組み合わせることによって行なうことができ容易に実現
可能である。The feature of the third embodiment of the present invention is that in region A, an insulating film 307 having a lower refractive index than the cladding layer is provided on both sides of the stripe, so that the guided light is completely confined in the stripe. Since the light is guided by the refractive index in both the parallel and perpendicular directions to the active layer, the astigmatism difference of the light emitted from region A is small, and in region B, the same gain waveguide component as in the conventional example is present. Therefore, the longitudinal mode of laser oscillation becomes multimode. As a result, the semiconductor laser according to the third embodiment of the present invention can operate stably without being affected much by disturbances such as returned light. Further, the semiconductor laser according to the third embodiment of the present invention can be easily manufactured by combining the conventional example and the first embodiment of the present invention.
なお、上述の本発明の第1ないし第3の実施例の説明に
おいてストライプの両側に形成する絶縁膜としてSi3
N4膜を例にあげて説明したが5tO2膜やAl2O3
などの絶縁膜でも良いことはもちろんである。In addition, in the description of the first to third embodiments of the present invention described above, Si3 is used as the insulating film formed on both sides of the stripe.
The explanation was given using N4 film as an example, but 5tO2 film or Al2O3 film
Of course, an insulating film such as the like may also be used.
第4図に本発明の第4の実施例のAlGaInP系半導
体レーザの各製造工程における模式的断面構造図を示す
。まず最初に第4図(a)に示すように、n型GaAs
基板401の表面に、n型AlGaInPクラッド層4
02(例えばx=0゜6、キャリア密度5X1017c
rrr3 厚さ1μm)、GaInP活性層403(例
えば厚さ0.1μm)、p型AlGaInPクラッド層
404(例えばx=0. 6、キャリア密度I X 1
0”c m−3厚さ0.7μm)、p型GaInPバッ
ファ層405(例えばキャリア密度3×10重” CI
n −3厚さ0.3μm)、p型GaAsコンタクト層
406(例えばキャリア密度5X10”am−” 厚
さ1μm)をMO−VPE法でn型GaAs基板401
に格子整合させて順次結晶成長する。次に、ストライプ
状に形成した5id2膜406をマスクとして1)ff
GaInPバッファ層405、p型AlGaInPクラ
ッド層404、Ga I nP活性層403およびn型
AlGaInPクラッド層402の一部を例えばCI2
ガスを用いたRIEによりエツチングして第4図(b)
に示すようなりッジを形成する。FIG. 4 shows schematic cross-sectional structural diagrams in each manufacturing process of an AlGaInP semiconductor laser according to a fourth embodiment of the present invention. First, as shown in FIG. 4(a), an n-type GaAs
An n-type AlGaInP cladding layer 4 is formed on the surface of the substrate 401.
02 (e.g. x=0°6, carrier density 5X1017c
rrr3 thickness 1 μm), GaInP active layer 403 (for example, thickness 0.1 μm), p-type AlGaInP cladding layer 404 (for example, x=0.6, carrier density I
0"cm-3 thickness 0.7μm), p-type GaInP buffer layer 405 (e.g. carrier density 3x10" CI
n-3 thickness 0.3 μm) and p-type GaAs contact layer 406 (for example, carrier density 5×10 “am-” thickness 1 μm) are formed on n-type GaAs substrate 401 by MO-VPE method.
Crystals are grown sequentially with lattice matching. Next, using the 5id2 film 406 formed in a stripe shape as a mask, 1) ff
A portion of the GaInP buffer layer 405, p-type AlGaInP cladding layer 404, GaInP active layer 403, and n-type AlGaInP cladding layer 402 is made of, for example, CI2.
Etching was performed by RIE using gas, as shown in Fig. 4(b).
Form a ridge as shown in .
次に第4図(C)に示すように例えば封管法によりZn
P2を不純物の拡散源としてp型の不純物であるZ n
を全面に拡散してp全拡散層408を形成する。これは
活性層の近傍のpn接合が表面に露出するのを防ぐため
の拡散でありp全拡散層408の拡散深さは0.2μm
程度の浅い拡散である。次にp型AlGaInPクラッ
ド層404やn型AlGaInPクラッド層402より
も屈折率が低い膜例えば反応性スパッタ蒸着法を用いて
SiをターゲットとしArと微量のN2を混合させたガ
スでスパッタ蒸着して非晶質SiとSi3N4とが混ざ
った非晶質膜409を例えば3μm0′)厚さに堆積す
ると第4図(d)のようになる。非晶質膜の屈折率を例
えば3.2にしようとすると、非晶質Siの屈折率が波
長0.67μmにおいて3.4であり513N4の屈折
率が2. 0であるから非晶質SiとSi3Nmとの組
成比は0.86:0.14となる。次に例えばホトレジ
ストを3μmの厚さに回転塗布すると第4図(e)に示
すように表面が平坦化される。次にRIEによりエツチ
ングガスとして例えばCFaと02の混合などのガスを
用いてホトレジスト410と非晶質膜409とのエツチ
ング速度が同じになる条件で全面にエツチングを施すと
第4図(f)に示すようにp型GaAsコンタクト層4
06の表面が露出する。Next, as shown in FIG. 4(C), for example, the Zn
Zn, which is a p-type impurity, using P2 as an impurity diffusion source
is diffused over the entire surface to form a p-type full diffusion layer 408. This is a diffusion to prevent the pn junction near the active layer from being exposed to the surface, and the diffusion depth of the p-total diffusion layer 408 is 0.2 μm.
This is a shallow diffusion. Next, a film having a lower refractive index than the p-type AlGaInP cladding layer 404 and the n-type AlGaInP cladding layer 402 is sputter-deposited, for example, using a reactive sputter deposition method, using a Si target with a gas containing Ar and a small amount of N2. When an amorphous film 409 containing a mixture of amorphous Si and Si3N4 is deposited to a thickness of, for example, 3 μm0', the result is as shown in FIG. 4(d). For example, if the refractive index of the amorphous film is to be 3.2, the refractive index of amorphous Si is 3.4 at a wavelength of 0.67 μm, and the refractive index of 513N4 is 2.2. 0, the composition ratio of amorphous Si and Si3Nm is 0.86:0.14. Next, for example, by spin coating a photoresist to a thickness of 3 μm, the surface is flattened as shown in FIG. 4(e). Next, when the entire surface is etched by RIE using a gas such as a mixture of CFa and 02 as an etching gas under conditions such that the etching speed of the photoresist 410 and the amorphous film 409 are the same, the result is shown in FIG. 4(f). As shown, a p-type GaAs contact layer 4
The surface of 06 is exposed.
最後に表面にCr / A u / P t / A
uからなるp型オーミックコンタクト電極411を形成
し、裏面を研磨およびエツチングして基板を薄くしたの
ちAu−Ge/Ni/Auからなるn型オーミックコン
タクト電極412を形成すると第4図(g)に示すよう
に本発明の第4の実施例のAlGaInP系半導体レー
ザが完成する。Finally, Cr/Au/Pt/A on the surface
A p-type ohmic contact electrode 411 made of Au-Ge/Ni/Au is formed after forming a p-type ohmic contact electrode 411 made of Au-Ge/Ni/Au after polishing and etching the back surface to make the substrate thinner, as shown in FIG. 4(g). As shown, an AlGaInP semiconductor laser according to the fourth embodiment of the present invention is completed.
上述の本発明の第4の実施例の特徴とするところは構造
的にはストライプの両側にAlGaInPクラッド層よ
りも屈折率の小さい非晶質膜が形成されているので活性
層と平行な方向にも光を閉じこめて導波させることがで
きる点であり、従って活性層に平行な方向および垂直な
方向ともに屈折率導波されるので非点隔差も従来例で示
したレーザよりもはるかに小さくなることである。また
ストライプの両側に形成される非晶質膜409の熱伝導
率は非晶質Siの1.5W/cm拳degとSi3N4
膜の0.12W/cmsdegとの間の値であり例えば
非晶質膜409の屈折率が3゜2となる組成比を選ぶと
1.3W/cm*degとなってGaAsの0.54W
/cm*degよりも高い値となるため従来例よりも活
性層の近傍で発生した熱の放散が良くなるという特徴も
ある。Structurally, the feature of the fourth embodiment of the present invention described above is that an amorphous film having a refractive index lower than that of the AlGaInP cladding layer is formed on both sides of the stripe, so that the film is formed in a direction parallel to the active layer. Also, the light can be confined and guided, and the refractive index is guided in both parallel and perpendicular directions to the active layer, so the astigmatism difference is much smaller than in the conventional laser. That's true. In addition, the thermal conductivity of the amorphous film 409 formed on both sides of the stripe is 1.5 W/cm of amorphous Si and Si3N4.
The value is between 0.12W/cmsdeg of the film, and for example, if the composition ratio is chosen such that the refractive index of the amorphous film 409 is 3°2, the value is 1.3W/cm*deg, which is 0.54W of GaAs.
Since the value is higher than /cm*deg, it also has the characteristic that heat generated near the active layer can be dissipated better than in the conventional example.
また非晶質膜は高抵抗であり電気的には電流のブロック
層として作用する。また、上述の説明では非晶質膜とし
て非晶質Siと5iaN4との混合物を例に挙げて説明
したがN2のかわりに02を用いて反応性スパッタ蒸着
を行ない非晶質SiとSiO2との混合物を堆積させて
も同様であることはいうまでもない。また、AIをター
ゲットとしてN2ガスと02ガスとの混合ガスで反応性
スパッタ蒸着したAINとAl2O3との混合物を非晶
質層として用いても同様であることはいうまでもない。Furthermore, the amorphous film has high resistance and electrically acts as a current blocking layer. Furthermore, in the above explanation, a mixture of amorphous Si and 5iaN4 was used as an example of the amorphous film. It goes without saying that the same effect can be obtained even if a mixture is deposited. It goes without saying that the same result can be obtained by using a mixture of AIN and Al2O3 as the amorphous layer, which is reactively sputter-deposited using a mixed gas of N2 gas and 02 gas using AI as a target.
さらに、電流のブロック層として使用するならば非晶質
Zn5eやZnSなども適用可能である。Furthermore, amorphous Zn5e, ZnS, etc. can also be used if used as a current blocking layer.
また本発明の製造工程における特徴は結晶成長が1回の
みであることであり素子の製作が容易になることである
。Further, a feature of the manufacturing process of the present invention is that crystal growth is performed only once, making it easy to manufacture the device.
なお、上述の本発明の第1ないし第4の実施例において
活性層としてGa I nPを用いて説明したがAlG
aInPであっても良いことはもちろんである。また導
電型に関してもp型とn型とが入れ替わっても良いこと
はもちろんである。In addition, in the first to fourth embodiments of the present invention described above, Ga I nP was used as the active layer, but AlG
Of course, aInP may also be used. Furthermore, regarding the conductivity type, it goes without saying that the p-type and the n-type may be interchanged.
また、上述の本発明の第1ないし第4の実施例において
p型AlGaInPクラッド層の表面にp型Ga I
nP層を形成した構造について説明したが、これはp型
AI Ga I nPクラッド層とp型Ga I nP
層との界面あるいはp型Ga I nP層とp型GaA
s層との界面のへテロ接合界面に存在する価電子帯のス
パイクによる電流のバリア効果を低減するために挿入さ
れるものであり、これらの各層のキャリア密度を高くす
ればp型GaInP層は不要である。Furthermore, in the first to fourth embodiments of the present invention described above, p-type Ga I is formed on the surface of the p-type AlGaInP cladding layer.
We have explained the structure in which the nP layer is formed, but this is composed of a p-type AI Ga I nP cladding layer and a p-type Ga I nP
interface between layers or p-type GaI nP layer and p-type GaA
It is inserted to reduce the current barrier effect due to spikes in the valence band that exist at the heterojunction interface with the s-layer, and if the carrier density of each of these layers is increased, the p-type GaInP layer becomes Not necessary.
発明の詳細
な説明したように本発明は、以下のような効果を有する
。As described in detail, the present invention has the following effects.
本発明の第1、第2および第4の実施例の構造において
はストライプの両側にAlGaInPクラッド層よりも
屈折率の小さい絶縁膜が形成されているので活性層と平
行な方向にも光を閉じこめて導波させることができ、従
って活性層に平行な方向および垂直な方向ともに屈折率
導波されるので非点隔差も従来例で示したレーザよりも
はるかに小さくなる。In the structures of the first, second and fourth embodiments of the present invention, an insulating film with a refractive index lower than that of the AlGaInP cladding layer is formed on both sides of the stripe, so light is confined even in a direction parallel to the active layer. Since the refractive index wave can be guided both in the parallel and perpendicular directions to the active layer, the astigmatism difference is also much smaller than in the conventional laser.
本発明の第3の実施例の構造においてはレーザの出射端
面の近傍ではストライプの両側にクラッド層よりも低い
屈折率の絶縁膜が設けられているため導波光が完全にス
トライプに閉じこめられており、出射する光は非点隔差
が小さくなることであり、しかも絶縁膜が埋め込まれた
領域以外の領域では従来例と同じ利得導波成分が残るの
でレーザ発振の縦モードはマルチモードになることであ
る。これにより半導体レーザは戻り光などの擾乱に対し
ても影響をあまり受けない安定な動作を行なうことがで
きる。In the structure of the third embodiment of the present invention, an insulating film with a refractive index lower than that of the cladding layer is provided on both sides of the stripe in the vicinity of the emission end facet of the laser, so that the guided light is completely confined in the stripe. , the emitted light has a smaller astigmatism difference, and the same gain waveguide component as in the conventional example remains in areas other than the area where the insulating film is buried, so the longitudinal mode of laser oscillation becomes multimode. be. This allows the semiconductor laser to operate stably without being affected much by disturbances such as returned light.
また本発明の第1の実施例の製造方法ではn型GaAs
電流ブロック層を結晶成長した後選択エツチングによっ
てストライブ状のp型Ga I nPバッファ層および
p型AlGaInPクラッド層を掘り出すことができる
ことであり、結晶を選択成長する必要がない。Furthermore, in the manufacturing method of the first embodiment of the present invention, n-type GaAs
After crystal growth of the current block layer, the striped p-type Ga I nP buffer layer and p-type AlGaInP cladding layer can be dug out by selective etching, and there is no need to selectively grow the crystal.
本発明の第2の実施例の製造方法では絶縁膜がストライ
プの側面および逆メサ而にマスク合わせ工程を必要とせ
ずエツチングの異方性によって選択的に残すことができ
るので工程が簡単でありまた幅を狭くすることができる
という点である。またストライプの側面および逆メサ而
に形成された絶縁膜の幅はほぼ膜厚と同程度であるので
p型GaAsフンタクト層を結晶成長する場合も絶縁膜
の上でp型GaAsコンタクト層がつながりやすいため
p型GaAsコンタクト層とp側のオーミックコンタク
ト電極とのコンタクト面積を広くすることができるので
コンタクト抵抗を小さくすることができる。In the manufacturing method of the second embodiment of the present invention, the insulating film can be selectively left on the side surfaces of the stripes and on the reverse mesa without the need for a mask alignment process and by the anisotropy of etching, so the process is simple and The point is that the width can be narrowed. In addition, since the width of the insulating film formed on the sides of the stripe and the reverse mesa is approximately the same as the film thickness, the p-type GaAs contact layer is likely to connect on top of the insulating film when crystal-growing a p-type GaAs contact layer. Therefore, since the contact area between the p-type GaAs contact layer and the p-side ohmic contact electrode can be increased, the contact resistance can be reduced.
本発明の第4の実施例の製造方法では結晶成長が1回の
みであることであり素子の製作が容易になることである
。In the manufacturing method of the fourth embodiment of the present invention, crystal growth is performed only once, making it easy to manufacture the device.
第1図(a) 〜(h)、第2図(a) 〜(h)およ
び第4図(a)〜(g)はそれぞれ本発明の第1、第2
および第4の実施例の半導体レーザの各製造工程におけ
る構造的断面模式図、第3図(a)は本発明の第3の実
施例の半導体レーザの構造斜視図、第3図(b)は同(
a)の領域Bでの断面図、第5図(a)〜(e)は従来
の横モード制御型AlGaInP系半導体レーザの各製
造工程における構造的断面模式図である。
101.201.301.401.501・・・n型G
aAs基板、102.202.302.402***n
型AlGaInPクラッド層、103 、 203 、
303 、 403 拳 s*GaInP活性層、
104.204.304.404・φ・p全AlGaI
nPクラッド層、107.208.306・働拳n型G
aAs電流ブロック層、109、207、307会・拳
Si3N4膜膜、 110.209.308.4oez
番p型GaASコンタクト層。
代理人の氏名 弁理士 粟野重孝 はか1名第
図
第
図
//3 Fイll’lλ−ミックコンタクトt′:&第
図
第
図
纂
図
第
図
305!’M色眞14PノでソファAI彰Iへ8でつ断
面
第
図
4/Zル(Irllオーミソクゴンククト誓り極第
図
第
図Figures 1 (a) to (h), Figures 2 (a) to (h), and Figures 4 (a) to (g) are the first and second embodiments of the present invention, respectively.
3(a) is a structural perspective view of the semiconductor laser of the third embodiment of the present invention, and FIG. 3(b) is a schematic structural cross-sectional view of each manufacturing process of the semiconductor laser of the fourth embodiment same(
5(a) to 5(e) are schematic structural cross-sectional views in each manufacturing process of a conventional transverse mode control type AlGaInP semiconductor laser. 101.201.301.401.501...n type G
aAs substrate, 102.202.302.402***n
type AlGaInP cladding layer, 103, 203,
303, 403 fist s*GaInP active layer,
104.204.304.404・φ・pAll AlGaI
nP cladding layer, 107.208.306/worker n type G
aAs current blocking layer, 109, 207, 307 board/Fist Si3N4 film, 110.209.308.4oez
No. p-type GaAS contact layer. Name of agent: Patent attorney Shigetaka Awano 1 person Fig. Fig.//3 Fill'lλ-Mick contact t': & Fig. Fig. Fig. 305! 'M color 14P to sofa AI Akira 8 section figure 4/Z le
Claims (1)
ッド層、活性層およびストライプ部分で厚さが厚くなっ
た他方導電型AlGaInPクラッド層を有し、前記ス
トライプの両側の前記他方導電型AlGaInPクラッ
ド層の表面に前記他方導電型AlGaInPクラッド層
よりも屈折率の低い絶縁層が一対のストライプ状に形成
されていて、さらにその外側に一方導電型電流ブロック
層が形成されていることを特徴とする半導体レーザ。 (2)(100)を主面とするGaAs基板上に一方導
電型AlGaInPクラッド層、活性層および<01@
1@>方向に形成されたストライプ部分で厚さが厚く断
面形状が逆メサ形状をした他方導電型AlGaInPク
ラッド層を有し、前記他方導電型AlGaInPクラッ
ド層の逆メサ表面に前記他方導電型AlGaInPクラ
ッド層よりも屈折率の低い絶縁層が形成されていて、さ
らにその外側に一方導電型電流ブロック層が形成されて
いることを特徴とする半導体レーザ。 (3)GaAs基板上に一方導電型AlGaInPクラ
ッド層、活性層およびストライプ部分で厚さが厚くなっ
た他方導電型AlGaInPクラッド層を有し、レーザ
光の出射端面近傍の領域の前記他方導電型AlGaIn
Pクラッド層の前記ストライプの両側表面に前記他方導
電型AlGaInPクラッド層よりも屈折率の低い絶縁
層が一対のストライプ状に形成されていて、さらにその
外側および前記絶縁層が形成されていない領域の前記他
方導電型AlGaInPクラッド層の前記ストライプの
両側表面に一方導電型電流ブロック層が形成されている
ことを特徴とする半導体レーザ。 (4)屈折率の低い絶縁層の上に他方導電型コンタクト
層が形成されていることを特徴とする特許請求の範囲第
1項ないし第3項のいずれかに記載の半導体レーザ。 (5)(100)を主面とするGaAs基板上に一方導
電型AlGaInPクラッド層、活性層および他方導電
型AlGaInPクラッド層を形成する工程、前記他方
導電型AlGaInPクラッド層を<011>方向にス
トライプ状になっており該ストライプ部分で厚さが厚く
なるようにエッチング加工する工程、前記他方導電型A
lGaInPクラッド層の表面に一方導電型電流ブロッ
ク層を形成する工程、前記他方導電型AlGaInPク
ラッド層の前記ストライプ上および前記ストライプの両
側の上の前記一方導電型電流ブロック層をエッチングし
て一対の溝を形成する工程、前記一対の溝の表面に前記
他方導電型AlGaInPクラッド層よりも屈折率の低
い絶縁層を一対のストライプ状に形成する工程、および
少なくとも前記他方導電型AlGaInPクラッド層の
ストライプ上および前記一方導電型電流ブロック層の表
面に他方導電型コンタクト層を形成する工程を備えたこ
とを特徴とする半導体レーザの製造方法。 (8)(100)を主面とするGaAs基板上に一方導
電型AlGaInPクラッド層、活性層および他方導電
型AlGaInPクラッド層を形成する工程、前記他方
導電型AlGaInPクラッド層を<01@1@>方向
にストライプ状で逆メサ形状になっており該ストライプ
部分で厚さが厚くなるようにエッチング加工する工程、
前記前記逆メサ形状の前記他方導電型AlGaInP層
の逆メサ表面に前記他方導電型AlGaInPクラッド
層よりも屈折率の低い絶縁層を形成する工程、表面に露
出した前記他方導電型AlGaInPクラッド層の表面
に一方導電型電流ブロック層を選択的に形成する工程、
および少なくとも前記他方導電型AlGaInPクラッ
ド層のストライプ上および前記一方導電型電流ブロック
層の表面に他方導電型コンタクト層を形成する工程を備
えたことを特徴とする半導体レーザの製造方法。 (7)GaAs基板上に一方導電型AlGaInPクラ
ッド層、活性層、他方導電型AlGaInPクラッド層
および他方導電型コンタクト層がストライプ状に形成さ
れていて、前記ストライプの両側に前記他方導電型Al
GaInPクラッド層および一方導電型AlGaInP
クラッド層よりも屈折率の低い非晶質層が形成されてい
ることを特徴とする半導体レーザ。 (8)非晶質層として非晶質Siと非晶質Si_3N_
4あるいはSiO_2との混合物を用いることを特徴と
する特許請求の範囲第7項記載の半導体レーザ。 (9)GaAs基板上に形成されたストライプ状の一方
導電型AlGaInPクラッド層、活性層、他方導電型
AlGaInPクラッド層および他方導電型コンタクト
層の表面に他方導電型の拡散層が形成されていることを
特徴とする特許請求の範囲第7項ないし第8項のいずれ
かに記載の半導体レーザ。 (10)GaAs基板上に一方導電型AlGaInPク
ラッド層、活性層、他方導電型AlGaInPクラッド
層および他方導電型コンタクト層を形成する工程、前記
一方導電型AlGaInPクラッド層、前記活性層、前
記他方導電型AlGaInPクラッド層および前記他方
導電型コンタクト層をストライプ状にエッチングする工
程、全面に前記他方導電型AlGaInPクラッド層お
よび一方導電型AlGaInPクラッド層よりも屈折率
の低い非晶質層を形成する工程、表面に前記非晶質層と
エッチング速度が同じになる膜を塗布する工程、および
前記塗布膜とともにストライプ状の前記非晶質膜をエッ
チングして前記他方導電型コンタクト層の表面を露出さ
せる工程を備えたことを特徴とする半導体レーザの製造
方法。Scope of Claims: (1) A GaAs substrate has an AlGaInP cladding layer of one conductivity type, an AlGaInP cladding layer of the other conductivity type that is thicker in the active layer and the stripe portion, and the other conductivity type is provided on both sides of the stripe. A pair of striped insulating layers having a lower refractive index than the other conductivity type AlGaInP cladding layer are formed on the surface of the AlGaInP type AlGaInP cladding layer, and a current blocking layer of one conductivity type is further formed on the outside of the insulating layer. Features of semiconductor laser. (2) One conductivity type AlGaInP cladding layer, active layer and <01@
The other conductive type AlGaInP cladding layer has a thick stripe portion formed in the 1@> direction and has an inverted mesa shape in cross section, and the other conductive type AlGaInP is formed on the reverse mesa surface of the other conductive type AlGaInP cladding layer. A semiconductor laser comprising: an insulating layer having a lower refractive index than a cladding layer; and a one-way conductivity type current blocking layer formed outside the insulating layer. (3) A GaAs substrate has an AlGaInP cladding layer of one conductivity type, an AlGaInP cladding layer of the other conductivity type whose thickness is thicker in the active layer and the stripe portion, and the AlGaInP cladding layer of the other conductivity type is formed in a region near the laser beam emission end face.
A pair of striped insulating layers having a refractive index lower than that of the other conductivity type AlGaInP cladding layer are formed on both surfaces of the stripes of the P cladding layer, and a pair of striped insulating layers having a refractive index lower than that of the other conductivity type AlGaInP cladding layer are formed on both sides of the stripes, and furthermore, a pair of striped insulating layers having a refractive index lower than that of the other conductivity type AlGaInP cladding layer is formed on both sides of the stripes. A semiconductor laser characterized in that current blocking layers of one conductivity type are formed on both surfaces of the stripe of the AlGaInP cladding layer of the other conductivity type. (4) The semiconductor laser according to any one of claims 1 to 3, wherein the other conductive type contact layer is formed on the insulating layer having a low refractive index. (5) A step of forming one conductivity type AlGaInP cladding layer, an active layer, and the other conductivity type AlGaInP cladding layer on a GaAs substrate having a (100) main surface, the said other conductivity type AlGaInP cladding layer being striped in the <011> direction. the other conductivity type A;
forming a current blocking layer of one conductivity type on the surface of the AlGaInP cladding layer; etching the current blocking layer of one conductivity type on the stripes of the AlGaInP cladding layer of the other conductivity type and on both sides of the stripes to form a pair of grooves; forming an insulating layer having a refractive index lower than that of the other conductivity type AlGaInP cladding layer on the surfaces of the pair of grooves in a pair of stripes, and at least on the stripes of the other conductivity type AlGaInP cladding layer and A method for manufacturing a semiconductor laser, comprising the step of forming a contact layer of the other conductivity type on the surface of the current blocking layer of the one conductivity type. (8) A step of forming one conductivity type AlGaInP cladding layer, an active layer, and the other conductivity type AlGaInP cladding layer on a GaAs substrate having (100) as the main surface, and forming the other conductivity type AlGaInP cladding layer <01@1@> A step of etching the material so that it has an inverted mesa shape with stripes in the direction and is thicker at the stripe portions;
forming an insulating layer having a lower refractive index than the other conductivity type AlGaInP cladding layer on the reverse mesa surface of the other conductivity type AlGaInP layer having the reverse mesa shape; a surface of the other conductivity type AlGaInP cladding layer exposed on the surface; a step of selectively forming a one conductivity type current blocking layer;
and forming a contact layer of the other conductivity type on at least the stripes of the AlGaInP cladding layer of the other conductivity type and on the surface of the current blocking layer of the one conductivity type. (7) An AlGaInP cladding layer of one conductivity type, an active layer, an AlGaInP cladding layer of the other conductivity type, and a contact layer of the other conductivity type are formed in a stripe shape on a GaAs substrate, and the AlGaInP layer of the other conductivity type is formed on both sides of the stripe.
GaInP cladding layer and one conductivity type AlGaInP
A semiconductor laser characterized by comprising an amorphous layer having a lower refractive index than a cladding layer. (8) Amorphous Si and amorphous Si_3N_ as amorphous layer
8. The semiconductor laser according to claim 7, characterized in that the semiconductor laser uses a mixture of SiO_2 and SiO_2. (9) A diffusion layer of the other conductivity type is formed on the surface of the striped AlGaInP cladding layer of one conductivity type, the active layer, the AlGaInP cladding layer of the other conductivity type, and the contact layer of the other conductivity type formed on the GaAs substrate. A semiconductor laser according to any one of claims 7 to 8, characterized in that: (10) A step of forming an AlGaInP cladding layer of one conductivity type, an active layer, an AlGaInP cladding layer of the other conductivity type, and a contact layer of the other conductivity type on a GaAs substrate, the AlGaInP cladding layer of the one conductivity type, the active layer, and the contact layer of the other conductivity type. a step of etching the AlGaInP cladding layer and the other conductivity type contact layer in a stripe shape; a step of forming an amorphous layer having a lower refractive index than the other conductivity type AlGaInP cladding layer and the one conductivity type AlGaInP cladding layer on the entire surface; a step of applying a film having the same etching rate as the amorphous layer, and a step of etching the striped amorphous film together with the applied film to expose the surface of the other conductivity type contact layer. A method for manufacturing a semiconductor laser, characterized in that:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31111488A JPH0728102B2 (en) | 1988-12-08 | 1988-12-08 | Semiconductor laser and manufacturing method thereof |
US07/437,934 US5029175A (en) | 1988-12-08 | 1989-11-17 | Semiconductor laser |
US07/683,181 US5143863A (en) | 1988-12-08 | 1991-04-09 | Method of manufacturing semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31111488A JPH0728102B2 (en) | 1988-12-08 | 1988-12-08 | Semiconductor laser and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02156588A true JPH02156588A (en) | 1990-06-15 |
JPH0728102B2 JPH0728102B2 (en) | 1995-03-29 |
Family
ID=18013312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31111488A Expired - Fee Related JPH0728102B2 (en) | 1988-12-08 | 1988-12-08 | Semiconductor laser and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0728102B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0473443A2 (en) * | 1990-08-30 | 1992-03-04 | Sharp Kabushiki Kaisha | Buried-stripe type semiconductor laser device |
JPH07154028A (en) * | 1993-10-07 | 1995-06-16 | Matsushita Electric Ind Co Ltd | Semiconductor laser and fabrication thereof |
JP2005183927A (en) * | 2003-11-27 | 2005-07-07 | Sharp Corp | Semiconductor laser element, optical disc apparatus, and light transmission system |
JP2007019421A (en) * | 2005-07-11 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting device and method of manufacturing same |
JP2009027205A (en) * | 2008-11-06 | 2009-02-05 | Sanyo Electric Co Ltd | Semiconductor laser element and semiconductor laser apparatus |
JP6292361B1 (en) * | 2016-12-14 | 2018-03-14 | 三菱電機株式会社 | Manufacturing method of optical semiconductor device |
WO2018109982A1 (en) * | 2016-12-14 | 2018-06-21 | 三菱電機株式会社 | Method for manufacturing optical semiconductor device |
-
1988
- 1988-12-08 JP JP31111488A patent/JPH0728102B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0473443A2 (en) * | 1990-08-30 | 1992-03-04 | Sharp Kabushiki Kaisha | Buried-stripe type semiconductor laser device |
US5335241A (en) * | 1990-08-30 | 1994-08-02 | Sharp Kabushiki Kaisha | Buried stripe type semiconductor laser device |
EP0473443B1 (en) * | 1990-08-30 | 1999-03-24 | Sharp Kabushiki Kaisha | Buried-stripe type semiconductor laser device |
JPH07154028A (en) * | 1993-10-07 | 1995-06-16 | Matsushita Electric Ind Co Ltd | Semiconductor laser and fabrication thereof |
JP2005183927A (en) * | 2003-11-27 | 2005-07-07 | Sharp Corp | Semiconductor laser element, optical disc apparatus, and light transmission system |
JP2007019421A (en) * | 2005-07-11 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting device and method of manufacturing same |
JP2009027205A (en) * | 2008-11-06 | 2009-02-05 | Sanyo Electric Co Ltd | Semiconductor laser element and semiconductor laser apparatus |
JP6292361B1 (en) * | 2016-12-14 | 2018-03-14 | 三菱電機株式会社 | Manufacturing method of optical semiconductor device |
WO2018109982A1 (en) * | 2016-12-14 | 2018-06-21 | 三菱電機株式会社 | Method for manufacturing optical semiconductor device |
US10819085B2 (en) | 2016-12-14 | 2020-10-27 | Mitsubishi Electric Corporation | Method for manufacturing optical semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH0728102B2 (en) | 1995-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5143863A (en) | Method of manufacturing semiconductor laser | |
JPS6343908B2 (en) | ||
JPH02156588A (en) | Semiconductor laser and its manufacture | |
JPH09116222A (en) | Manufacture of semiconductor laser and semiconductor laser | |
JPH11145553A (en) | Semiconductor laser device and manufacturing method thereof | |
JP2502835B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH01192184A (en) | Manufacture of buried type semiconductor laser | |
JPS6190489A (en) | Semiconductor laser device and manufacture thereof | |
JP2973215B2 (en) | Semiconductor laser device | |
JP2699662B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH01166592A (en) | Semiconductor laser element | |
JPH065969A (en) | Semiconductor laser | |
JPH0558594B2 (en) | ||
JPH07211981A (en) | Semiconductor laser and its manufacture | |
JPH0414277A (en) | Semiconductor laser and its manufacture | |
JPH0256836B2 (en) | ||
JPH04120788A (en) | Semiconductor laser | |
JPH0319293A (en) | Semiconductor laser and manufacture thereof | |
JPH03208390A (en) | Semiconductor laser element and manufacture thereof | |
JPS63287079A (en) | Manufacture of semiconductor laser | |
JPS6191990A (en) | Semiconductor laser and manufacture thereof | |
JPH10125995A (en) | Semiconductor laser device | |
JPH0856051A (en) | Semiconductor laser element | |
JPS61101092A (en) | Semiconductor laser device and manufacture thereof | |
JPH0314280A (en) | Large-output semiconductor laser and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |