[go: up one dir, main page]

JPS59102559A - Abnormal working detector and method thereof - Google Patents

Abnormal working detector and method thereof

Info

Publication number
JPS59102559A
JPS59102559A JP57212240A JP21224082A JPS59102559A JP S59102559 A JPS59102559 A JP S59102559A JP 57212240 A JP57212240 A JP 57212240A JP 21224082 A JP21224082 A JP 21224082A JP S59102559 A JPS59102559 A JP S59102559A
Authority
JP
Japan
Prior art keywords
machining
detection device
abnormality detection
working
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57212240A
Other languages
Japanese (ja)
Inventor
Masayuki Okamoto
岡本 正幸
Yoshichika Kitatani
北谷 義親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57212240A priority Critical patent/JPS59102559A/en
Publication of JPS59102559A publication Critical patent/JPS59102559A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0995Tool life management

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To decide reliably in working of dedicated machine, by detecting load to be applied on an edge on the operating path through sensing means then comparing the basic pattern based on that waveform with load level and detecting abnormal working. CONSTITUTION:Two pipe coupling elbows 2 are tapped simultaneously by a tap 3 driven by a motor 4 where the load on drive shaft section is detected for every drive position or drive time by the power level of drive motor 4 and when working with same machine, working condition, cutter on same rough member, approximately same curve is obtained. A microcomputer 9 will check whether the working pattern of working wave is within allowable range on the operating path provided on the basic pattern or the bending points are matched and if there is abnormal decision of each pattern, it is rejected as an abnormal working. In such a manner, abnormal working can be detected accurately to anticipate the tool replacing time accurately.

Description

【発明の詳細な説明】 本発明は一定の部品を多数加工する専用機や、数置制御
加工機における加工途中の異常検知装置に関し、特に切
削工具の摩耗や工具寿命による加工異常、並びに粗材の
材質や加工代の過大、過小による粗材異常、その他加工
機の誤動作や故障、粗材を加工機に取付ける際の取付不
良等による加工異常を検知する装置および方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting abnormalities during machining in special-purpose machines that process a large number of certain parts or numerically controlled machining machines. The present invention relates to a device and a method for detecting processing abnormalities caused by excessive or insufficient material or processing allowance, malfunction or failure of processing machines, poor attachment when mounting rough materials to processing machines, etc.

従来この種の加工異常の検出は、加工後の部品の寸法や
加工面の表面状態を目視によるか、あるいは加工中の加
工音や振動、その他加工機の誤動作を加工機操作員の感
覚による判断で異常を検知していた。しかしこの様な人
間の感覚判断による異常の検知では同一部品を数多く加
工する専用機等では異常の検出が遅れた場合、多量の製
品を不良にしたり、切削工具を破損させたり、あるいは
加工機自体を故障させたりする問題があった。このため
一般には加工機の駆動モータ等の容量に応じた安全装置
として、前記駆動機器の容量以上の電流が流れたら破線
するヒューズや遮断器、保護継電器等がある。また刃物
がある一定の定められた動作経路を外れたら動作が停止
する様にリミットスイッチ等で安全装置としたものかあ
るが、これらは各々の機能に応じた動作のみ作動するだ
けで、加工物や加工条件に応じた総合的な加工異常を検
出する事は不可能で、例えは前記のリミットスイッチで
誤動作があった場合の安全装置では、刃物が破損した時
、または刃物やテーブルの移動が機械本体の故障で停止
した時等の加工異常を検出する事は不可能であった。ま
た最新の方法では1回のモデル加工時の負荷を動作経路
毎にとり、この波形を単に上下に平行移動して該範囲内
に負荷があるかの判断で監視する方法も知られているが
、この方法では変曲点における動作経路上の誤差を監視
する事が不可能で、また精度が高く密度の濃い過去のデ
ータとの比較等の監視が出来ない為単なる前記の安全装
置的役割しか効果がなかつた。
Traditionally, this type of processing abnormality has been detected by visually observing the dimensions of the part after processing and the surface condition of the machined surface, or by the operator's sense of the processing noise, vibration, and other malfunctions of the processing machine. An abnormality was detected. However, with this kind of abnormality detection based on human sensory judgment, special-purpose machines that process many identical parts may be delayed in detecting abnormalities, resulting in a large number of products being defective, cutting tools being damaged, or the processing machine itself being damaged. There were problems that could cause the machine to malfunction. For this reason, there are generally safety devices depending on the capacity of the drive motor of the processing machine, such as fuses, circuit breakers, and protective relays that turn on when a current exceeding the capacity of the drive device flows. In addition, there are safety devices such as limit switches that stop the operation of the cutter if it deviates from a certain predetermined movement path, but these only operate according to their respective functions, and do not affect the workpiece. It is impossible to detect comprehensive machining abnormalities depending on processing conditions and machining conditions.For example, if the limit switch malfunctions as mentioned above, the safety device will not detect it when the cutter is damaged or when the cutter or table moves. It was impossible to detect processing abnormalities such as when the machine stopped due to a failure of the main body. In addition, the latest method is to take the load during one model processing for each motion path, and monitor it by simply moving this waveform vertically in parallel and determining whether the load is within the range. With this method, it is impossible to monitor errors on the motion path at inflection points, and it is not possible to monitor by comparison with past data that is highly accurate and dense, so it is only effective as a safety device as described above. I was bored.

本願発明は上記の問題点を解決し、加工物や加工機、刃
物、および加工条件(切削速度、送り、切込代)等の条
件に応じた適述加工状態から加工異常を総合的に瞬時に
判定できる加工異常検出装置を提供するものである。
The present invention solves the above problems, and comprehensively and instantly detects machining abnormalities from appropriate machining conditions depending on the workpiece, processing machine, cutter, and machining conditions (cutting speed, feed, depth of cut), etc. The purpose of the present invention is to provide a processing abnormality detection device that can determine whether the

本願発明の要旨は、加工機に設けられた感覚手段によっ
て動作経路上の刃物に加わる負荷を検出し該検出値の波
形に基ずく基本パターンと、各加工毎の負荷値との比較
からなる加工異常検知装置および方法である。
The gist of the present invention is to detect the load applied to the cutting tool on the operating path by means of a sensing means installed in the processing machine, and to compare the basic pattern based on the waveform of the detected value with the load value for each process. Anomaly detection device and method.

以下実施例について説明する。Examples will be described below.

本実施例の加工機では一例として鋳造管継手粗材のねじ
加工専用機lについて第1図に示す。2個の管継手エル
ボ2が同時にタツピング加工出来る様に各管継手端部の
ねじ加工タツプ3を駆動するモータ4とタツプ2をねじ
のリードに応じて前後進するリード部からなる駆動軸部
がある。この様なねじ加工専用機の各々の駆動軸部の、
各スタート点からの駆動位置、又は駆動時間毎の負荷値
Pを検出し、駆動位置又は駆動時間を横軸Lにして負荷
値Pを縦軸にとって表わせは第2図のごとき加工毎の原
始波形11が描ける。尚駆動軸部の負荷の検出は駆動モ
ータ4の電力値で検出するのが本発明に適していること
が実験の結果判明したがその他ねじ加工時切削音をマイ
クロホンや音響放射センサーで検出する方法、切削工具
近傍の振動を圧電形加速度ピックアップで検出する方法
、駆動モータの電流値で検出する方法等があり、いずれ
の方法を用いても良い。この曲線は加工機や加工条件、
刃物等によって各々異なった曲線が描けるが、同じ加工
機で同じ加工条件、刃物、同じ粗材を加工するならはほ
とんど同一の曲線が得られる。この原則を利用して加工
異常の検知を行なうのである。
As an example of the processing machine of this embodiment, FIG. 1 shows a machine 1 dedicated to thread processing of cast pipe joint rough material. In order to tap the two pipe joint elbows 2 at the same time, there is a drive shaft part consisting of a motor 4 that drives the thread machining tap 3 at the end of each pipe joint, and a lead part that moves the tap 2 back and forth according to the lead of the screw. be. Each drive shaft part of such a dedicated screw processing machine,
The drive position or load value P for each drive time from each start point is detected, and the drive position or drive time is expressed with the horizontal axis L and the load value P on the vertical axis, and the original waveform for each machining is shown in Figure 2. I can draw 11. As a result of experiments, it has been found that it is suitable for the present invention to detect the load on the drive shaft using the electric power value of the drive motor 4. However, there is another method of detecting the cutting sound during thread machining using a microphone or an acoustic radiation sensor. , a method of detecting the vibration near the cutting tool using a piezoelectric acceleration pickup, a method of detecting the vibration using the current value of the drive motor, etc., and any of these methods may be used. This curve depends on the processing machine and processing conditions.
Although different curves can be drawn depending on the cutter, etc., if the same processing machine is used, the same processing conditions, the same cutter, and the same rough material are processed, almost the same curves can be obtained. This principle is used to detect processing abnormalities.

まず第1番目のチェックでは毎回の加工によって得られ
る加工波形の加工パターンが、基本パターンに設けた動
作経路上の許容範囲内にあるか、および変曲点における
山、谷の区分が合っているか、更に附随して変曲点の数
が合っているかのチエツクを行なう。この説明を以下第
2図乃至第4図を参照して説明する。第2図においてま
ずn個の原始波形11から平均をとって平均波形12と
し、この平均波形の動作経路上の連続した複数個の負荷
値の平均をとり、平均波形をなめらかに修正する。この
移動平均を図に表わせば第3図のごとくの修正波形l3
が得られる。前記移動平均の算出は例として次のごとく
方法によって求める。
First, the first check is whether the machining pattern of the machining waveform obtained by each machining is within the allowable range on the motion path set in the basic pattern, and whether the peaks and valleys at the inflection points are correct. Additionally, a check is made to see if the number of inflection points is correct. This will be explained below with reference to FIGS. 2 to 4. In FIG. 2, first, an average is taken from n primitive waveforms 11 to obtain an average waveform 12, and a plurality of consecutive load values on the operation path of this average waveform are averaged to smooth the average waveform. If we represent this moving average in a diagram, we get the corrected waveform l3 as shown in Figure 3.
is obtained. The moving average is calculated by the following method, for example.

この様にして求めた修正波形上の山、谷の変曲点を第4
図のごとくパターン波形l4としてイメージし、下表の
ごとくパターンテーブルを作成する。
The inflection points of the peaks and valleys on the corrected waveform obtained in this way are
Image the pattern waveform l4 as shown in the figure, and create a pattern table as shown in the table below.

前記修正波形から山、谷の変曲点を求める方法について
は前表の移動平均値の前後の差を連続的に求めて、この
プラスかマイナスかの極性の変化を判断して得ることが
できる。この様にして複数の変曲点から得たパターン波
形l4のイメージを上表のパターンテーブルとして作成
し、これに各々の変曲点すなわちパターンNo、毎の山
谷の変曲区分と動作経路値および動作時間および動作経
路値許容範囲LBを設定してパターンテーブルを完成す
る。
The inflection points of peaks and valleys can be found from the corrected waveform by continuously finding the difference before and after the moving average value shown in the table above, and determining whether the polarity is positive or negative. . The image of the pattern waveform l4 obtained from a plurality of inflection points in this way is created as the pattern table shown above, and each inflection point, that is, the pattern number, the inflection division of each peak and valley, the motion path value, and The pattern table is completed by setting the operating time and operating path value tolerance range LB.

この完成した基本パターンと、1回毎の加工途中で得ら
れる原始波形データから、連続的に前記の方法より求め
た移動平均による修正波形l3を求め該修正波形から変
曲点を求めパターン波形14としてイメージし、順次加
工パターンを作成し、パタ−ンNo,毎における山谷の
変曲区分および動作経路値が許容範囲LB内に入ってい
るかの判断を行なっていく。各パターンNO%毎の判定
に異常があれは異常加工として不良排出する。異常がな
けれは次のチェックに進む。
From this completed basic pattern and the original waveform data obtained in the middle of each processing, a modified waveform 13 is continuously obtained by the moving average obtained by the above method, and an inflection point is determined from the modified waveform, and a pattern waveform 14 is obtained. , sequentially create machining patterns, and judge whether the peak-to-valley inflection division and motion path value for each pattern number are within the allowable range LB. If there is an abnormality in the judgment for each pattern NO%, it is rejected as abnormal machining. If there is no abnormality, proceed to the next check.

2番目として、第5図のごとくパラメータで任意の動作
経路上の負荷値を制御する範囲Kを、基本パターンに対
して指定し、この制御範囲内の負荷値の異常の上限、u
,p、l、下限値LSI’SLを決定する。この上限、
下限値の他にもこの範囲内の負荷値範囲を区分し、例え
ば青B、黄E、赤Rランプ範囲とストップ範囲Sを指定
し加工途中の負荷値Pがどのランプ範囲内で加工してい
るかを示す様にしておく。この様に設定した制御負荷値
Pに対する加工途中の動作経路L上の前記制御範囲K内
の負荷値Pをまず1データ毎に判定し異常の上限U,P
,L,下限値L ,P SLをオーバすれは直ちに1個
毎に不良排出させる。異常の上限、下限値内ならば次に
現在から過去加工した最新D個の最大負荷値の平均の負
荷値を算出し、これが前記の青B黄e、赤Rランプ範囲
内のどの範囲に入っているかを常に表示する。この様に
して工具寿命および工具摩耗の進行状況の推定が1目で
行える様にする。もちろんこの青B、黄E、赤Rランプ
範囲を越えストップ範囲Sに達すれは機械の非常停止が
行われ、作業者による工具チェックあるいは工具交換が
行われる。尚前記の1データ毎に判定して異常の上限U
’l”%”N下限値L ,P ,Lを越えて不良排出さ
れたものは、製品のみ不良品として排出されるが機械は
以後も連続して次の部品の加工が行われる。
Second, as shown in Fig. 5, a range K for controlling the load value on an arbitrary operation path with parameters is specified for the basic pattern, and the upper limit of the abnormality of the load value within this control range, u
, p, l, and determine the lower limit LSI'SL. This upper limit,
In addition to the lower limit value, divide the load value range within this range, for example, specify the blue B, yellow E, red R lamp range and stop range S, and specify which lamp range the load value P during machining is in. Make sure to show if there are any. For the control load value P set in this way, the load value P within the control range K on the operation path L during machining is first determined for each data, and the upper limits U and P of abnormality are determined.
, L, lower limit value L, PSL. If the lower limit value L, P SL is exceeded, each piece is immediately discharged as defective. If it is within the upper and lower limits of the abnormality, then calculate the average load value of the latest D maximum load values processed in the past from the current time, and determine which range this falls within the blue, yellow, and red lamp ranges mentioned above. Always show what is happening. In this way, tool life and tool wear progress can be estimated at a glance. Of course, when the blue B, yellow E, and red R lamp ranges are exceeded and the stop range S is reached, the machine is brought to an emergency stop, and the operator checks or replaces the tool. In addition, the upper limit of abnormality U is determined for each piece of data mentioned above.
If the product exceeds the lower limits L, P, and L and is discharged as defective, only the product is discharged as a defective product, but the machine continues to process the next part.

上記の説明では動作経路L上の負荷値Pを制御する範囲
Kが動作経路上1つの範囲に限定されているが、この制
御範囲Xは動作経路L上のパターンNoにより任意に複
数個の範囲を制御しても良い。
In the above explanation, the range K for controlling the load value P on the operating path L is limited to one range on the operating path, but this control range may be controlled.

3番目のチェックとして、第6図のごとく、前記2番目
で説明した動作経路L上の制御範囲K内に、一定の安全
幅Tを設けて負荷値の積分範囲Wを指定し、加工中の原
始波形11の積分負荷値Qを算出する。たの求められた
積分負荷値Qに対しても前記2番目と同様に異常の上限
値U,P,L,下限値L,P,Lを決定する。更にこの
上限値、下限値内の積分値範囲を区分し、例えは青B、
黄E、赤Rランプ範囲とストップ範囲Sを設けることに
より加工途中の負荷値Pの積分値Qがどの範囲内で加工
しているかを表示する様にしておく。この様に設定した
制御積分負荷値Qに対する加工途中の動作経路上の前記
積分範囲W内の負荷値Pの積分値Qを、まず1加工デー
タ毎に判定し、異常の上限υ、P,L,下限値L,PS
L内にあるがどうが、オーバすれば直ちに1個毎に不良
排出させる。この不良排出されたものは前記2番目の不
良排出と同じ経路をたどり製品のみ不良品として排出さ
れる。次に前記積分範囲W内について、現在から過去M
加工波形分の負荷積分値Qの平均値を算出し、この値も
青B1黄E1赤Rランプ範囲内のどの範囲に入っている
かを常に表示する。この青、黄、赤ランプの表示は前記
2番目の負荷値による表示と連動させてもよく、また前
記負荷値の表示とは別に表示させてもよい。また青B,
黄E1赤Rランプ範囲を越えストップ範囲Sに達すれば
当然機械の非常停止が行われて作業者による工具交換や
工具チェックが行われる。この積分値を算出する積分範
囲は前記2番目の変曲点の制御範囲Kよりもある一定の
安全幅Tを内側に設けて積分値Qを算出しているが、こ
れは実験の結果、変曲点附近の曲線は緩やかなカーブで
あるため積分値に誤差が多く精密な判定が出来ない事が
判り、このためより正確な判定結果を得るため緩やかな
部分をカットする安全幅Tを設けて積分範囲Wとしてい
るものである。この様に1データ毎の制御範囲K内にお
ける負荷値Pおよび積分値Qのチェック、並びに過去最
新複数回の平均負荷値および平均積分負荷値のチェック
が確定すると次のチェックが引続き行われる。
As a third check, as shown in Fig. 6, a certain safety margin T is provided within the control range K on the operation path L explained in the second section, and an integral range W of the load value is specified. An integral load value Q of the original waveform 11 is calculated. For the integral load value Q thus obtained, upper limit values U, P, L and lower limit values L, P, L of abnormality are determined in the same manner as in the second case. Furthermore, the integral value range within this upper limit value and lower limit value is divided, for example, blue B,
By providing the yellow E and red R lamp ranges and the stop range S, it is possible to display within which range the integral value Q of the load value P during machining is being processed. The integral value Q of the load value P within the integral range W on the operation path during machining with respect to the control integral load value Q set in this way is first determined for each machining data, and the upper limit of abnormality υ, P, L , lower limit L, PS
Regardless of whether it is within L, if it exceeds it, the defective parts are immediately discharged one by one. This defective product follows the same path as the second defective product and is discharged as a defective product. Next, regarding the integration range W, from the present to the past M
The average value of the load integral value Q of the processed waveform is calculated, and the range within the blue B1 yellow E1 red R lamp range is always displayed. The display of the blue, yellow, and red lamps may be linked to the display of the second load value, or may be displayed separately from the display of the load value. Also blue B,
When the yellow E1 red R lamp range is exceeded and the stop range S is reached, the machine is naturally brought to an emergency stop, and the operator changes tools and checks the tools. The integral value Q is calculated by setting a certain safety margin T inside the control range K of the second inflection point, but as a result of experiments, this Since the curve near the bend point is a gentle curve, there are many errors in the integral value, making it difficult to make accurate judgments.For this reason, in order to obtain more accurate judgment results, a safety margin T is provided to cut the gentle part. The integral range is W. In this way, once the checking of the load value P and the integral value Q within the control range K for each piece of data and the checking of the average load value and average integral load value of the latest plural times in the past are confirmed, the next check is performed successively.

4番目として、スタート時点からの加工時間が順次記憶
、更新されており、あらかじめ設けられた加工時間許容
範囲をオーバすれば前記同様に非常停止が働く。許容範
囲内であるならば次のチェックに移る。
Fourth, the machining time from the start point is sequentially stored and updated, and if the machining time exceeds a predetermined allowable range, an emergency stop is activated in the same manner as described above. If it is within the allowable range, move on to the next check.

5番目として、前記1番目、2番目、3番目のチェック
で不良排出された不良個数も含めてスタート時点からの
加工数が記憶される。そして前記同様あらかじめ設けら
れた最大許容加工数のチェックが行われ、これがオーバ
すれば加工数オーパとして前記の非常停止が行われる。
Fifth, the number of processed pieces from the start time is stored, including the number of defective pieces rejected in the first, second, and third checks. Then, as before, a predetermined maximum allowable number of machining is checked, and if this exceeds the maximum allowable number of machining, the number of machining is exceeded and the above-mentioned emergency stop is performed.

これが許容範囲内であれは更に次のチェックに移る。If this is within the allowable range, proceed to the next check.

6番目として、前記の1番目、2番目、3番目のチェッ
クにより不良排出された不良個数が不良頻度テーブルに
記憶される。この不良頻度テーブルでは過去最新Z個の
加工数に対する不良頻度が加工毎に連続的に算出されて
おり、あらかじめ設定された許容最大不良頻度、例えは
5%等の数置をオーバすると不良頻度オーバとして前記
機械の非常停止が行われる。この6番目のチェックも許
容範囲内ならば次の加工の監視スタートへ続けてこれま
でのチェックが再び行われる様になっている。
Sixthly, the number of defective items rejected by the first, second, and third checks is stored in the defect frequency table. In this defect frequency table, the defect frequency for the latest Z number of processes is continuously calculated for each process, and if it exceeds a preset allowable maximum defect frequency, for example, 5%, the defect frequency will be exceeded. The machine is then brought to an emergency stop. If this sixth check is also within the allowable range, the previous checks are performed again following the start of monitoring of the next machining.

上記のチェックの内4番目と5番目のチェックは数量又
は時間のチェックであり、直接の異常チエツクではない
が、工具の寿命や加工製品の品質等をより確実にチェッ
クし、全体として総合的な加工異常をより面密に監視す
るもので、本発明の効果をより一層確実なものとしてい
る。また6番目のチェックは工具異常および工具摩耗が
許容範囲内にあっても加工不良頻度の発生出が高くなっ
た場合に工具交換を必要とする判定を行うもので更によ
り面密に加工異常の判定を行う。
The fourth and fifth of the above checks are quantity or time checks, and although they are not direct abnormality checks, they more reliably check the life of tools and the quality of processed products, and provide comprehensive information as a whole. Processing abnormalities are monitored more closely, making the effects of the present invention even more reliable. In addition, the sixth check determines that tool replacement is required when the frequency of machining defects increases even if tool abnormalities and tool wear are within the allowable range. Make a judgment.

以上の様に本発明によれは、一定の部品を数多く加工す
る専用機や数値制御加工機等、その他マシニングセンタ
ー等の加工機における切削工具の摩耗寿命や刃欠けおよ
び折れ等の工具異常における加工異常、その他粗材の材
質や加工代の過大、過小による粗材の異常および加工機
の誤動作や故障、粗材取付不良並びに取付部のゆるみ等
による加工異常を瞬時に的確に検知して不良品を確実に
排出し、また工具交換時期を精度良く予測することが出
来る等の秀れた効果を発揮する。なお、負荷検出の一定
間隔を適切な値にすることにより、同時に複数台の加工
機を制御でき、加工機の無人化に非常に秀れた装置およ
び方法を提供するものである。
As described above, according to the present invention, the wear life of cutting tools in special-purpose machines that process a large number of certain parts, numerically controlled processing machines, and other processing machines such as machining centers, and machining abnormalities due to tool abnormalities such as blade chipping and breakage, can be improved. It instantly and accurately detects abnormalities in the raw material due to the material of the raw material or excessive or insufficient machining allowance, malfunction or failure of the processing machine, improper installation of the raw material, looseness of the attachment part, etc., and identifies defective products. It has excellent effects such as reliable ejection and accurate prediction of tool replacement timing. By setting the constant interval of load detection to an appropriate value, it is possible to control a plurality of processing machines at the same time, thereby providing an apparatus and method that are excellent in unmanned processing machines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の管継手粗材のねじ加工専用機
を示す。第2図は駆動経路に対する負荷値の変動グラフ
を示す。第3図は第2図の平均波形に対する修正波形を
示す。第4図は第3図の修正波形から求めたパターンイ
メージを示す。第5図は制御範囲内の負荷値による判断
を説明する図。 第6図は積分範囲説明する図。第7図は第6図の積分値
に対する判定を説明する図である。 5:OT、6:電力変換機、7:電圧値、8:電流値、
9:マイコン、10:出力リレー、ll:原始波形、l
2:平均波形、13:修正波形、15:パターンNo。
FIG. 1 shows a machine dedicated to threading pipe fitting raw material according to an embodiment of the present invention. FIG. 2 shows a graph of variations in load values for the drive path. FIG. 3 shows a modified waveform for the average waveform of FIG. FIG. 4 shows a pattern image obtained from the corrected waveform of FIG. 3. FIG. 5 is a diagram illustrating judgment based on load values within the control range. FIG. 6 is a diagram explaining the integral range. FIG. 7 is a diagram illustrating the determination of the integral value in FIG. 6. 5: OT, 6: Power converter, 7: Voltage value, 8: Current value,
9: Microcomputer, 10: Output relay, ll: Original waveform, l
2: Average waveform, 13: Corrected waveform, 15: Pattern No.

Claims (1)

【特許請求の範囲】 1、設定された動作経路に沿って刃物で加工物を切削す
る加工機において、前記加工機に設けられた感覚手段に
よって前記動作経路上の刃物に加わる負荷を検出し、該
検出値の波形に基ずく基本パターンと、各加工毎の負荷
値との比較からなることを特徴とする加工異常検知装置
および方法。 2、特許請求の範囲第1項において、前記基本パターン
は動作経路上の制御範囲を設けてなる加工異常検知装置
および方法。 3、特許請求の範囲第1項において、前記基本パターン
は動作経路上の積分範囲を設けてなる加工異常検知装置
および方法。 4、特許請求の範囲第1項において、前記各加工毎の負
荷値は各加工毎の負荷値の積分値からなる加工異常検知
装置および方法。 5、特許請求の範囲第1項において、前記基本パターン
は前記検出値の複数個の波形の平均波形上の移動負荷値
の平均より表わせる変曲点を求めてなる加工異常検知装
置および方法。 6、特許請求の範囲第1項において、前記感覚手段は切
削駆動モータの電力値変換機である加工異常検知装置お
よび方法。 7、特許請求の範囲第l項において、前記感覚手段は切
削駆動モータの電流値変換機である加工異常検知装置お
よび方法。 8、特許請求の範囲第1項において、前記感覚手段は切
削音変換機である加工異常検知装置および方法。 9、特許請求の範囲第1項において、前記動作経路は、
動作時間からなる加工異常検知装置および方法。 10、特許請求の範囲第1項および第4項において前記
基本パターンは前記平均負荷値の許容範囲を設けてなる
加工異常検知装置および方法。 11、特許請求の範囲第10項において、前記許容範囲
は該許容範囲内を区分してなる加工異常検知装置および
方法。 12、特許請求の範囲第l項において、前記感覚手段は
切削トルク変換機である加工異常検知装置および方法。
[Claims] 1. In a processing machine that cuts a workpiece with a blade along a set movement path, a load applied to the blade on the movement path is detected by a sensing means provided in the processing machine, A machining abnormality detection device and method comprising a comparison between a basic pattern based on the waveform of the detected value and a load value for each machining process. 2. The machining abnormality detection device and method according to claim 1, wherein the basic pattern has a control range on the movement path. 3. The machining abnormality detection device and method according to claim 1, wherein the basic pattern has an integral range on the motion path. 4. The machining abnormality detection device and method according to claim 1, wherein the load value for each machining is an integral value of the load value for each machining. 5. The machining abnormality detection device and method according to claim 1, wherein the basic pattern is obtained by finding an inflection point represented by an average of moving load values on an average waveform of a plurality of waveforms of the detected values. 6. The machining abnormality detection device and method according to claim 1, wherein the sensing means is a power value converter of a cutting drive motor. 7. The machining abnormality detection device and method according to claim 1, wherein the sensing means is a current value converter of a cutting drive motor. 8. The machining abnormality detection device and method according to claim 1, wherein the sensing means is a cutting sound transducer. 9. In claim 1, the motion path is:
Processing abnormality detection device and method consisting of operation time. 10. The machining abnormality detection device and method according to claims 1 and 4, wherein the basic pattern has a permissible range of the average load value. 11. A machining abnormality detection device and method according to claim 10, wherein the tolerance range is divided into sections within the tolerance range. 12. The machining abnormality detection device and method according to claim 1, wherein the sensing means is a cutting torque converter.
JP57212240A 1982-12-03 1982-12-03 Abnormal working detector and method thereof Pending JPS59102559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212240A JPS59102559A (en) 1982-12-03 1982-12-03 Abnormal working detector and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212240A JPS59102559A (en) 1982-12-03 1982-12-03 Abnormal working detector and method thereof

Publications (1)

Publication Number Publication Date
JPS59102559A true JPS59102559A (en) 1984-06-13

Family

ID=16619285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212240A Pending JPS59102559A (en) 1982-12-03 1982-12-03 Abnormal working detector and method thereof

Country Status (1)

Country Link
JP (1) JPS59102559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182051A (en) * 1983-03-30 1984-10-16 イ−トン・コ−ポレ−シヨン Method of monitoring operation of tool
JPS59205258A (en) * 1983-04-25 1984-11-20 イ−トン・コ−ポレ−シヨン Method of monitoring tool
CN106563972A (en) * 2015-10-13 2017-04-19 颜均泰 Cutter state monitoring and predicting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182051A (en) * 1983-03-30 1984-10-16 イ−トン・コ−ポレ−シヨン Method of monitoring operation of tool
JPS59205258A (en) * 1983-04-25 1984-11-20 イ−トン・コ−ポレ−シヨン Method of monitoring tool
CN106563972A (en) * 2015-10-13 2017-04-19 颜均泰 Cutter state monitoring and predicting method

Similar Documents

Publication Publication Date Title
CN110297461B (en) Abnormality detection device
US6937942B2 (en) Method and apparatus of detecting tool abnormality in a machine tool
CN113613820B (en) Method for automatic process monitoring in a continuous gear grinding process
US4563897A (en) Apparatus for monitoring tool life
CA1215158A (en) Tool wear and tool failure monitor system
CN100543619C (en) Method and control device for producing a defined reaction when a machine element of a machine comes into contact with an object
JP4860444B2 (en) Abnormality detection method in cutting
CN113678076B (en) Method and device for monitoring a milling process
KR101611299B1 (en) Trouble detecting method for automatic machine
JP3291677B2 (en) Method and apparatus for monitoring condition of machining blade for machine tool
JPS59102559A (en) Abnormal working detector and method thereof
JP2693664B2 (en) Machining state judgment device in end mill machining
JPS59102560A (en) Abnormal working detector and method thereof
JPS59146740A (en) Working abnormality detecting device
JP6314885B2 (en) Damage prevention system, grinding wheel
GB2140951A (en) Apparatus and method for monitoring machining conditions of a machine tool
JPS59102561A (en) Abnormal work detector and method thereof
JPS6144624B2 (en)
EP0969340B1 (en) Process and device for the detection of a critical state of a tool , particulary of a saw blade
GB2133881A (en) Apparatus for monitoring tool life
JPS59169750A (en) Machining abnormality detecting method
JPS59156650A (en) Erroneous processing sensing method
JP6944103B2 (en) Machining status monitoring method and system for work machines
JPS63212447A (en) Monitoring device in cutting machine
JPS59232749A (en) Drill work monitor