JPS6144624B2 - - Google Patents
Info
- Publication number
- JPS6144624B2 JPS6144624B2 JP57215120A JP21512082A JPS6144624B2 JP S6144624 B2 JPS6144624 B2 JP S6144624B2 JP 57215120 A JP57215120 A JP 57215120A JP 21512082 A JP21512082 A JP 21512082A JP S6144624 B2 JPS6144624 B2 JP S6144624B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- machining
- waveform
- pattern table
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/10—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting speed or number of revolutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
- B23Q17/0952—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
- B23Q17/0961—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Description
本発明は一定の部品を多数加工する専用機や、
数値制御加工機における加工途中の異常検知方法
に関し、特に切削工具の摩耗や工具寿命による加
工異常、並びに素材の材質や加工代の過大、過小
による素材異常、その他加工機の誤動作や故障、
素材を加工機に取付ける際の取付不良等による加
工異常を検知する方法に関する。
従来この種の加工異常の検出は、加工後の部品
の寸法や加工面の表面状態を目視によるか、ある
いは加工中の加工音や振動、その他加工機の誤動
作を加工機操作員の感覚による判断で異常を検知
していた。しかしこの様な人間の感覚判断による
異常の検知では同一物品を数多く加工する専用機
等では異常の検出が遅れた場合、多量の製品を不
良にしたり、切削工具を破損させたり、あるいは
加工機自体を故障させたりする問題があつた。こ
のため一般には加工機の駆動モータ等の容量に応
じた安全装置として、前記駆動機器の容量以上の
電流が流れたら破線するヒユーズや遮断器、保護
継電器等がある。また刃物がある一定の定められ
た動作経路を外れたら動作が停止する様にリミツ
トスイツチ等で安全装置としたものがあるが、こ
れらは各々の機能に応じて単純に作動するのみ
で、加工物や加工条件に応じた総合的な加工異常
を検出する事は不可能である。例えば前記のリミ
ツトスイツチを使用して加工機操作員の誤動作に
よる事故若しくは故障を防止する目的の安全装置
では、刃物が破損した時、または刃物やテーブル
の移動が機械本体の故障で停止したとき等の加工
異常を検出する事は不可能であつた。また最新の
方法では1回のモデル加工時の負荷を動作経路毎
にとり、この波形を単に上下に平行移動して該範
囲内に負荷があるかの判断で監視する方法も知ら
れている。しかし上記従来技術は加工時における
負荷値が基準値の負荷変動許容値の範囲内にある
か否かを判別しながら切削加工を行なうもので、
すなわち最初のモデル加工において負荷曲線を求
める際、および以後の連続加工においても時々
刻々の負荷値をデータとして取り込みつつ、基準
値と負荷値との差の計算、許容値との大小判別、
負荷変動範囲の上限、下限を越えたか否かの判断
を行うものである。従つて記憶容量の大なる電算
機を必要とし、多数台の工作機械を同時に監視す
るためには大規模な設備とならざるを得ない。ま
た上記方法においては、例えば被加工物の取付方
法に不備があり、被加工物若しくは刃物にビビリ
現象が発生した場合でも、それが負荷変動許容範
囲内であれば異常加工として検知されない。
また、最初の1個を切削してモデル加工とし、
その時の負荷状態を基準負荷値としているもので
あるから、被加工物に寸法のバラツキがあつたり
取付け状態が異なつたりした場合には、本来加工
を続行できる状態にあるにも拘わらず加工異常と
して誤認することがある。この様に上記従来方法
では波形の山谷の極点における動作経路上の誤差
を監視する事が不可能で、また精度が高く密度の
濃い過去のデータとの比較等の監視が出来ない為
前記同様単なる前記の安全装置的役割しか効果が
なかつた。
本願発明は上記の問題点を解決し、加工物や加
工機、刃物、および加工条件(切削速度、送り、
切込代)等の条件に応じた適正加工状態から加工
異常を総合的に瞬時に判定できる加工異常検知方
法を提供するものである。
本願発明の要旨は、刃物による切削時の負荷値
から得た複数個の原始波形から平均をとつて平均
波形を求め、この平均波形の連続した動作経路値
上の複数個の移動負荷値の平均をとつて得た修正
波形に基づいてこの波形の山谷の極点、極点にお
ける動作経路値、および山谷の区分、更に動作経
路値の許容範囲を設定して基本パターンテーブル
を作成し、この基本パターンテーブルの内容と、
各加工毎の負担値に基づいて前記基本パターンテ
ーブルと同様にして修正波形上の極点を求めて得
た加工パターンテーブルとを比較し、各加工パタ
ーンテーブルの極点が前記基本パターンテーブル
に設定した極点における山谷の区分、動作経路値
許容範囲および極点の数が合致しているかのチエ
ツクを行なう加工異常検知方法である。
通常加工時における動作経路上の負荷値に基づ
く波形によつて表われる山谷の極点は主として刃
物の動作経路方向が変化した時に生じるが、その
他にも工具の刃欠や折損等刃物に異常が生じた
時、加工物素材の材質や加工代の異常、加工手順
の誤り、および加工物素材の取付不良等によつて
も生じる。この様に上記波形に現われる山谷の極
点には、切削工具の異常は勿論、加工に関する豊
富な情報が含まれている。本願は上記のごとく、
これ等加工異常情報を含む山谷の極点に着目し、
その内容についてチエツクするため動作経路上の
異常加工を的確に検知することができる。
以下実施例について説明する。
第1図は本発明の実施例における装置を模式的
に示す説明図である。同図において1はねじ加工
専用機であり、2個の管継手エルボ2が同時にタ
ツピング加工出来る様に各管継手端部のねじ加工
タツプ3を駆動するモータ4とタツプ2をねじの
リードに応じて前後進するリード部からなる駆動
軸部がある。この様なねじ加工用専用機の各々の
駆動軸部の、各スタート点からの駆動位置、又は
駆動時間毎の負荷値Pを検出し、駆動位置又は駆
動時間を横軸Lにして負荷値Pを縦軸にとつて表
わせば第2図のごとき加工毎の原始波形11が描
ける。尚駆動軸部の負荷の検出は駆動モータ4の
電力値で検出するのが本発明に適していることが
実験の結果判明したが、その他ねじ加工時切削ト
ルクを歪ゲージを用いて検出する方法、切削工具
近傍の振動を圧電形加速度ピツクアツプで検出す
る方法駆動モータの電流値で検出する方法等があ
りいずれの方法を用いても良い。この曲線は加工
機や加工条件、刃物等によつて各々異なつた曲線
が描けるが、同じ加工機で同じ加工条件、刃物、
同じ素材を加工するならばほとんど同一の曲線が
得られる。この原則を利用して加工異常の検知を
行なうのである。
まず第1番目のチエツクでは毎回の加工によつ
て得られる加工波形の加工パターンテーブルが、
基本パターンテーブルに設けた動作経路上の許容
範囲内にあるか、および極点における山、谷の区
分が合つているか、更に附随して極点の数が合つ
ているかのチエツクを行なう。この説明を以下第
2図乃至第4図を参照して説明する。第2図にお
いてまずn個の原始波形11から平均をとつて平
均波形12とし、この平均波形の動作経路上の連
続した複数個の移動負荷値の平均をとり、平均波
形12をなめらかに修正する。この移動平均を図
に表わせば第3図のごとくの修正波形13が得ら
れる。前記移動平均の算出は例として第1表に示
す方法によつて求める。
The present invention is a specialized machine that processes a large number of certain parts,
Regarding the method of detecting abnormalities during machining in numerically controlled processing machines, in particular machining abnormalities due to cutting tool wear and tool life, material abnormalities due to material quality or excessive or insufficient machining allowance, and other processing machine malfunctions and failures.
The present invention relates to a method for detecting processing abnormalities due to poor attachment etc. when attaching a material to a processing machine. Traditionally, this type of processing abnormality has been detected by visually observing the dimensions of the part after processing and the surface condition of the machined surface, or by the operator's sense of the processing noise, vibration, and other malfunctions of the processing machine. An abnormality was detected. However, when abnormalities are detected using human sense judgment, special-purpose machines that process many of the same items may be delayed in detecting abnormalities, resulting in a large number of products being defective, cutting tools being damaged, or the processing machine itself being damaged. There was a problem that caused the unit to malfunction. For this reason, there are generally safety devices depending on the capacity of the drive motor, etc. of the processing machine, such as fuses, circuit breakers, and protective relays that turn on if a current exceeding the capacity of the drive device flows. In addition, there are safety devices such as limit switches that stop the operation of the blade if it deviates from a certain predetermined movement path, but these simply operate according to their respective functions and do not affect the workpiece or the workpiece. It is impossible to detect comprehensive machining abnormalities depending on machining conditions. For example, in a safety device that uses the limit switch mentioned above to prevent accidents or breakdowns caused by malfunctions of processing machine operators, it is necessary to It was impossible to detect processing abnormalities. Furthermore, in the latest method, a method is known in which the load during one model processing is taken for each motion path, and this waveform is simply translated vertically and monitored by determining whether the load is within the range. However, the above-mentioned conventional technology performs cutting while determining whether the load value during machining is within the range of load fluctuation tolerance of the reference value.
In other words, when calculating the load curve in the first model machining, and also in subsequent continuous machining, the load values are taken in as data from time to time, and the difference between the reference value and the load value is calculated, and the tolerance value is determined.
This is to determine whether the upper limit or lower limit of the load fluctuation range has been exceeded. Therefore, a computer with a large storage capacity is required, and in order to monitor a large number of machine tools at the same time, the equipment must be large-scale. Furthermore, in the above method, even if a chattering phenomenon occurs in the workpiece or the cutter due to a flaw in the mounting method of the workpiece, for example, it will not be detected as abnormal machining as long as it is within the load fluctuation tolerance range. In addition, we cut the first piece and processed it as a model.
Since the load condition at that time is used as the standard load value, if there are variations in the dimensions of the workpiece or the mounting condition is different, a machining error may occur even though the condition is such that machining can continue. It may be misidentified as In this way, with the conventional method described above, it is impossible to monitor errors on the motion path at the extreme points of peaks and troughs of the waveform, and it is also impossible to monitor errors such as comparison with past data with high accuracy and density. Only the safety device role described above was effective. The present invention solves the above problems and improves the workpiece, processing machine, cutter, and processing conditions (cutting speed, feed,
The present invention provides a machining abnormality detection method that can comprehensively and instantaneously determine machining abnormalities from appropriate machining conditions according to conditions such as depth of cut. The gist of the present invention is to obtain an average waveform by averaging a plurality of primitive waveforms obtained from load values during cutting with a cutting tool, and to average a plurality of moving load values on continuous motion path values of this average waveform. Based on the corrected waveform obtained by taking the waveform, a basic pattern table is created by setting the extreme points of the peaks and valleys of this waveform, the operating path values at the extreme points, the divisions of the peaks and troughs, and the allowable range of the operating path values. The contents of and
Compare the basic pattern table with a machining pattern table obtained by finding the extreme points on the corrected waveform in the same way as the basic pattern table based on the burden value for each process, and find out that the extreme points of each machining pattern table are the extreme points set in the basic pattern table. This is a machining abnormality detection method that checks whether the division of peaks and troughs, the allowable range of motion path values, and the number of extreme points match. The peaks and valleys that appear in the waveform based on the load value on the operating path during normal machining mainly occur when the direction of the cutting tool's operating path changes, but there are also other abnormalities in the cutting tool such as chipping or breakage of the tool. This can also occur due to abnormalities in the material or machining allowance of the workpiece material, errors in the machining procedure, and poor attachment of the workpiece material. In this way, the peaks and valleys appearing in the waveform contain a wealth of information regarding machining as well as abnormalities in the cutting tool. As stated above, this application
Focusing on the peaks and valleys that contain processing abnormality information,
Since the contents are checked, abnormal machining on the movement path can be accurately detected. Examples will be described below. FIG. 1 is an explanatory diagram schematically showing an apparatus in an embodiment of the present invention. In the figure, reference numeral 1 denotes a dedicated thread machining machine, which operates a motor 4 that drives the thread machining tap 3 at the end of each pipe joint and tap 2 according to the lead of the screw so that two pipe fitting elbows 2 can be tapped simultaneously. There is a drive shaft section consisting of a lead section that moves back and forth. Detect the drive position or load value P for each drive time from each start point of each drive shaft part of such a special thread processing machine, and set the drive position or drive time on the horizontal axis L to calculate the load value P. If it is expressed on the vertical axis, the primitive waveform 11 for each process as shown in FIG. 2 can be drawn. Experiments have shown that it is suitable for the present invention to detect the load on the drive shaft using the electric power value of the drive motor 4; however, there is another method of detecting the cutting torque during thread machining using a strain gauge. There are a method of detecting vibrations near the cutting tool using a piezoelectric acceleration pickup, a method of detecting vibrations using a current value of a drive motor, and any of these methods may be used. This curve can be drawn differently depending on the processing machine, processing conditions, cutter, etc., but with the same processing machine, the same processing conditions, the cutter, etc.
If the same material is processed, almost identical curves will be obtained. This principle is used to detect processing abnormalities. First, in the first check, the machining pattern table of the machining waveform obtained from each machining is
It is checked whether the motion path is within the allowable range set in the basic pattern table, whether the peaks and valleys at the poles match, and whether the number of poles matches. This will be explained below with reference to FIGS. 2 to 4. In FIG. 2, first, an average is taken from n primitive waveforms 11 to obtain an average waveform 12, and a plurality of consecutive moving load values on the motion path of this average waveform are averaged to smooth the average waveform 12. . If this moving average is represented in a diagram, a modified waveform 13 as shown in FIG. 3 can be obtained. The moving average is calculated by the method shown in Table 1, as an example.
【表】
この様にして求めた修正波形上の山、谷の極点
を第4図のごとくパターン波形14としてイメー
ジし、例えば第2表に示すようなパターンテーブ
ルを作成する。[Table] The extreme points of the peaks and valleys on the corrected waveform obtained in this way are imagined as a pattern waveform 14 as shown in FIG. 4, and a pattern table as shown in Table 2, for example, is created.
【表】
前記修正波形13から山、谷の極点を求める方
法については前記第1表に示すの移動平均負荷値
の前後の差を連続的に求めて、この値プラスかマ
イナスかの極性の変化を判断して得ることができ
る。この様にして複数の極点から得たパターン波
形14のイメージを第2表に示すようなパターン
テーブルとして作成し、これに各々の極点すなわ
ちパターンNo.、毎の山、谷の区分と動作経路値又
は動作時間Lおよび動作経路値許容範囲LBを設
定して基本パターンテーブルを完成する。この完
成した基本パターンテーブルと、1回毎の加工途
中で得られる原始波形データから、連続的に前記
の基本パターンテーブルと同様の方法より求めた
移動平均による修正波形13を求め該修正波形1
3から極点を求めパターン波形14としてイメー
ジし、順次前記同様の方法で加工パターンテーブ
ルを作成し、パターンNo.、毎における山谷の区分
および動作経路値が許容範囲LB内に入つている
かの判断を行なう。各パターンテーブルNo.、毎の
判定に異常があれば異常加工として不良排出す
る。異常がなければ次のチエツクに進む。この様
に本方法においては修正波形上の山谷の極点を求
め、この極点の内容についてチエツクするため、
波形のすべてを監視する必要がなく中間を省略で
き情報処理のための記憶容量を大巾に減少でき
る。
また極点の数や山谷区分の判定によつて、工具
の刃欠や加工物素材の取付不良によるビビリ現
象、加工物素材の部分的材質不良等によつて生じ
る本来現われるべきでない極点の増加や山谷区分
の変化が監視できる。
更に極点における動作経路値の判定によつて被
加工物素材に加工代が有る範囲内で変動していた
り加工代が有る範囲内で素材の取付位置が異なつ
ても、極点の数が増さない限り途中の中間部や極
点における負荷値の大小では判定せず、極点にお
ける動作経路値で判定するので、正常に加工でき
る状態であれば加工異常として検知しない。
更に基本パターンテーブルは複数回の加工時の
連続した負荷値を平均して平均波形を求め、この
平均波形の移動平均を求めた修正波形によつて求
めたものであるから、多少の加工状態のバラツキ
を吸収することが出来信頼性が高い。このため刃
物の異常、刃物動作経路の異常、加工物素材の形
状や材質の異常、機械故障等を適確にチエツクす
ることができ、広い範囲の異常を検知することが
できるものである。
更により厳密に異常の進行状態まで確認して厳
密に監視できるよう以下に記すチエツクを行なう
ことができる。
2番目として、第5図のごとくパラメータで任
意の動作経路上の負荷値を監視する範囲Kを、基
本パターンに対して指定し、この監視範囲K内の
負荷値の異常の上限値U、P、L、下限値L、
P、Lを設定する。この上限、下限値の他にもこ
の範囲内の負荷値範囲を区分し、例えば青B、黄
E、赤Rランプ範囲とストツプ範囲Sを指定し加
工途中の負荷値Pがどのランプ範囲内で加工して
いるかを示す様にしておく。この様に設定した前
記上限値、下限値に対する加工途中の動作経路L
上の前記監視範囲内K内の負荷値Pをまず1デー
タ毎に判定し異常の上限U、P、L、下限値L、
P、Lをオーバすれば直ちに1個毎に不良排出さ
せる。異常の上限、下限値内ならば次に現在から
過去加工した最新D個の最大負荷値の平均の最大
負荷値を算出し、これが前記の青B、黄E、赤R
ランプ範囲内のどの範囲に入つているかを常に表
示する。この様にして工具寿命および工具摩耗の
進行状況が一目で推定できるようにする。勿論こ
の青B、黄E、赤Rランプ範囲を越えてストツプ
範囲Sに達すれば機械の非常停止が行われ、作業
者による工具チエツクあるいは工具交換が行われ
る。尚前記の1データ毎に判定して異常の上限
U、P、L、下限値L、P、Lを越えて不良排出
されたものは、製品のみ不良品として排出される
が機械は以後も連続して次の部品の加工が行われ
る。
上記の説明では動作経路L上の負荷値Pを制御
する範囲Kが動作経路L上1つの極点の範囲に限
定されているが、この監視範囲Kは動作経路L上
のパターンNo.、により任意に複数個の極点の範囲
を設定して監視しても良い。
3番目のチエツクとして、第6図のごとく、前
記2番目で説明した動作経路L上の監視範囲K内
に、一定の安全幅Tを設けて負荷値の積分範囲W
を指定し、加工中の原始波形11の負荷積分値Q
を算出する。この求められた負荷積分値Qに対し
ても前記2番目と同様に異常の上限値U、P、
L、下限値L、P、Lを決定する。更にこの上限
値U、P、L、下限値L、P、L内の積分値範囲
を区分し、例えば青B、黄E、赤Rランプ範囲と
ストツプ範囲Sを設けることにより加工途中の負
荷値Pの積分値Qがどの範囲内で加工しているか
を表示する様にしておく。この様に設定した監視
負荷積分値Qに対する加工途中の動作経路上の前
記積分範囲W内の負荷値Pの積分値Qを、まず1
加工データ毎に判定し、異常の上限U、P、L、
下限値L、P、L内にあるかどうかを判定してオ
ーバすれば直ちに1個毎に不良排出させる。この
不良排出されたものは前記2番目の不良排出と同
じ経路をたどり製品のみ不良品として排出され
る。次に前記積分範囲W内について、現在から過
去M加工波形分の負荷積分値Qの平均値を算出し
この値も青B、黄E、赤Rランプ範囲内のどの範
囲に入つているかを常に表示する。この青、黄、
赤ランプの表示は前記2番目の負荷値による表示
とは別に表示させてもよい。また青B、黄E、赤
Rランプ範囲を越え、ストツプ範囲Sに達すれば
当然機械の非常停止が行われて作業者による工具
交換や工具チエツクが行われる。これ等の積分値
を算出する積分範囲Wは前記2番目の極点の監視
範囲よりもある一定の安全幅Tを監視範囲の内側
に設けて積分値Qを算出しているが、これは実験
の結果、極点附近の曲線は緩やかなカーブである
ため積分値に誤差が多く精密な判定が出来ない事
が判り、より正確な判定結果を得るため緩やかな
部分をカツトする安全幅Tを設けて積分範囲Wと
しているものである。この様に1データ毎の監視
範囲K内における負荷値Pおよび積分値Qのチエ
ツク並びに過去最新複数個の平均負荷値および平
均積分負荷値のチエツクが確定すると次のチエツ
クが引続き行われる。
4番目として、スタート時点からの加工時間が
順次記憶、更新されており、あらかじめ設けられ
た加工時間許容範囲をオーバすれば前記同様に非
常停止が働く。許容範囲内であるならば次のチエ
ツクに移る。
5番目として、前記1番目、2番目、3番目の
チエツクで不良排出された不良個数も含めてスタ
ート時点からの加工数が記憶される。そして前記
同様あらかじめ設けられた最大許容加工数のチエ
ツクが行われ、これがオーバすれば加工数オーバ
として前記の非常停止が行われる。これが許容範
囲内であれば更に次のチエツクに移る。
6番目として、前記の1番目、2番目、3番目
のチエツクにより不良排出された不良個数が不良
頻度テーブルに記憶される。この不良頻度テーブ
ルでは過去最新Z個の加工数に対する不良頻度が
加工毎に連続的に算出されており、あらかじめ設
定された許容最大不良頻度、例えば5%等の数置
をオーバすると不良頻度オーバとして前記機械の
非常停止が行われる。この6番目のチエツクも許
容範囲内ならば次の加工の監視スタートへ続けて
これまでのチエツクが再び行われる様になつてい
る。
上記のチエツクの内4番目と5番目のチエツク
は数量又は時間のチエツクであり、直接の異常チ
エツクではないが、工具の寿命や加工製品の品質
等をより確実にチエツクし、全体として総合的な
加工異常をより面密に監視するもので、本発明の
効果をより一層確実なものとしている。また6番
目のチエツクは工具異常および工具摩耗が許容範
囲内にあつても加工不良頻度の発生率が高くなつ
た場合に工具交換を必要とする判定を行うもので
更により綿密に加工異常の判定を行う。
以上の様に本発明によれば、一定の部品を数多
く加工する専用機や数値制御加工機等、その他マ
シニングセンター等の加工機における切削工具の
摩耗寿命や刃欠けおよび折れ等の工具異常におけ
る加工異常、その他素材の材質や加工代の過大、
過小による素材の異常、および加工機の誤動作や
故障、素材取付不良並びに取付部のゆるみ等によ
る加工異常を瞬時的確に検知して不良品を確実に
排出し、また工具交換時期を精度良く予測するこ
とが出来る等の秀れた効果を発揮する。なお、負
荷検出の間隔を適切な値にすることにより、同時
に複数台の加工機械を制御でき、加工機の無人化
を実現するのに極めて有効である。[Table] Regarding the method of finding the extreme points of peaks and valleys from the corrected waveform 13, continuously find the difference before and after the moving average load value shown in Table 1 above, and change the polarity of this value to be positive or negative. can be determined and obtained. The image of the pattern waveform 14 obtained from a plurality of extreme points in this way is created as a pattern table as shown in Table 2, and each extreme point, that is, the pattern number, the classification of peaks and valleys for each, and the operation path value are stored in this table. Alternatively, the basic pattern table is completed by setting the operating time L and the operating path value tolerance range LB. From this completed basic pattern table and the original waveform data obtained during each machining process, a modified waveform 13 is continuously obtained by a moving average obtained using the same method as for the basic pattern table, and the modified waveform 1 is obtained.
Find the extreme points from 3 and visualize them as pattern waveform 14, create a machining pattern table in the same manner as above, and judge whether the peak/valley division and motion path value for each pattern number are within the allowable range LB. Let's do it. If there is an abnormality in the judgment for each pattern table number, it will be rejected as abnormal machining. If there is no abnormality, proceed to the next check. In this way, in this method, the peaks and troughs on the corrected waveform are found, and the contents of these peaks are checked.
It is not necessary to monitor all of the waveforms, the intermediate part can be omitted, and the storage capacity for information processing can be greatly reduced. In addition, by determining the number of extreme points and the classification of peaks and valleys, it is possible to detect an increase in peaks and valleys that should not appear due to chattering phenomena due to a chipped tool edge, poor attachment of the workpiece material, and partial material defects in the workpiece material. Changes in classification can be monitored. Furthermore, the number of pole points does not increase even if the workpiece material fluctuates within the machining allowance range or the mounting position of the material changes within the machining allowance range by determining the motion path value at the pole points. Since the determination is not made based on the magnitude of the load value at the midpoint or the extreme point, but based on the motion path value at the extreme point, if the machining is in a normal machining state, it will not be detected as a machining abnormality. Furthermore, the basic pattern table is obtained by averaging the continuous load values during multiple machining operations to obtain an average waveform, and then using a modified waveform obtained by calculating the moving average of this average waveform. It is highly reliable as it can absorb variations. Therefore, it is possible to accurately check for abnormalities in the cutter, abnormalities in the blade movement path, abnormalities in the shape and material of the workpiece material, mechanical failures, etc., and it is possible to detect a wide range of abnormalities. Furthermore, the following checks can be performed to more precisely check and monitor the progress of the abnormality. Second, as shown in Fig. 5, a range K for monitoring load values on an arbitrary operating path is specified with parameters for the basic pattern, and upper limit values U and P of load value abnormalities within this monitoring range K are specified. , L, lower limit L,
Set P and L. In addition to these upper and lower limit values, the load value range within this range is divided, and for example, blue B, yellow E, red R lamp ranges and stop range S are specified, and within which lamp range the load value P during machining is specified. Be sure to show that it has been processed. Operation path L during machining for the upper and lower limit values set in this way
First, the load value P within the monitoring range K above is determined for each data, and the upper limit values U, P, and L of the abnormality, the lower limit value L,
If P and L are exceeded, each defective product is immediately discharged. If the abnormality is within the upper and lower limit values, then calculate the average maximum load value of the latest D maximum load values processed in the past from the current time, and this is the blue B, yellow E, and red R mentioned above.
Always display which part of the lamp range you are in. In this way, tool life and tool wear progress can be estimated at a glance. Of course, if the range of the blue B, yellow E, and red R lamps is exceeded and the stop range S is reached, the machine is brought to an emergency stop and the operator checks or replaces the tool. In addition, if the above-mentioned data is judged and exceeds the upper limit U, P, L and lower limit value L, P, L of abnormality and is discharged as defective, only the product will be discharged as defective, but the machine will continue to be processed. Then, the next part is processed. In the above explanation, the range K for controlling the load value P on the operating path L is limited to the range of one pole on the operating path L, but this monitoring range K is arbitrary depending on the pattern number on the operating path L. The range of multiple poles may be set and monitored. As a third check, as shown in Fig. 6, a certain safety margin T is provided within the monitoring range K on the operation path L explained in the second section, and the integral range W of the load value is set.
Specify the load integral value Q of the original waveform 11 being processed.
Calculate. For this calculated load integral value Q, the abnormality upper limit values U, P,
L, lower limit values L, P, and L are determined. Furthermore, by dividing the integral value range within these upper limit values U, P, L and lower limit values L, P, L, and providing, for example, blue B, yellow E, red R lamp ranges and stop range S, the load value during machining can be adjusted. The range within which the integral value Q of P is being processed is displayed. For the monitored load integral value Q set in this way, the integral value Q of the load value P within the integral range W on the operation path during machining is first calculated by 1
Judgment is made for each processing data, and the upper limit of abnormality is U, P, L,
It is determined whether or not it is within the lower limit values L, P, and L, and if it is exceeded, the defective pieces are immediately discharged one by one. This defective product follows the same path as the second defective product and is discharged as a defective product. Next, within the integral range W, calculate the average value of the load integral value Q for the past M processing waveforms from the current time, and always check which range this value falls within the blue B, yellow E, and red R lamp ranges. indicate. This blue, yellow,
The red lamp display may be displayed separately from the display based on the second load value. Furthermore, when the blue B, yellow E, and red R lamp ranges are exceeded and the stop range S is reached, the machine is naturally brought to an emergency stop and the operator is required to change tools or check the tools. The integral range W for calculating these integral values is set within the monitoring range by a certain safety margin T than the monitoring range of the second pole, and the integral value Q is calculated, but this is different from the experiment. As a result, it was found that since the curve near the pole is a gentle curve, there are many errors in the integral value and accurate judgment cannot be made.In order to obtain a more accurate judgment result, a safety margin T is set to cut out the gentle part and the integration is performed. The range is W. In this way, once the check of the load value P and the integral value Q within the monitoring range K for each piece of data and the check of the average load value and the average integral load value of the past latest plurality are confirmed, the next check is performed successively. Fourth, the machining time from the start point is sequentially stored and updated, and if the machining time exceeds a predetermined allowable range, an emergency stop is activated in the same manner as described above. If it is within the allowable range, move on to the next check. Fifth, the number of processed pieces from the start is stored, including the number of defective pieces rejected in the first, second, and third checks. Then, as before, a predetermined maximum allowable number of machining is checked, and if this exceeds the maximum allowable number of machining, the above-mentioned emergency stop is performed as the number of machining is exceeded. If this is within the allowable range, proceed to the next check. Sixthly, the number of defective items rejected by the first, second, and third checks is stored in the defect frequency table. In this defect frequency table, the defect frequency for the latest Z number of processes is continuously calculated for each process, and if it exceeds a preset allowable maximum defect frequency, such as 5%, it is considered as exceeding the defect frequency. An emergency stop of the machine is performed. If this sixth check is also within the allowable range, the previous checks are performed again following the start of monitoring of the next machining. The fourth and fifth checks of the above checks are quantity or time checks, and are not direct abnormality checks, but they more reliably check the life of tools and the quality of processed products, and provide a comprehensive check as a whole. Processing abnormalities are monitored more closely, making the effects of the present invention even more reliable. In addition, the sixth check determines whether tool replacement is required when the frequency of machining defects increases even if tool abnormalities and tool wear are within the allowable range. I do. As described above, according to the present invention, processing abnormalities due to the wear life of cutting tools and tool abnormalities such as blade chipping and breakage in special-purpose machines that process a large number of fixed parts, numerically controlled processing machines, and other processing machines such as machining centers can be realized. , Excessive material quality and processing costs,
Instantly and accurately detects material abnormalities due to undersize materials, processing machine malfunctions or breakdowns, poor material attachment, loose attachments, etc., and reliably ejects defective products, as well as accurately predicts when to replace tools. It shows excellent effects such as being able to do things. Note that by setting the load detection interval to an appropriate value, it is possible to control a plurality of processing machines at the same time, which is extremely effective in realizing unmanned processing machines.
第1図は本発明の実施例における装置を模式的
に示す説明図、第2図は駆動時間と負荷値との関
係を表わす図、第3図は修正波形を示す図、第4
図はパターンイメージを示す図、第5図は監視範
囲内の負荷値による判定を説明する図、第6図は
積分範囲を説明する図、第7図は第6図の積分値
に対する判定を説明する図である。
5:CT、6:電力変換機、7:電圧値、8:
電流値、9:マイコン、10:出力リレー、1
1:原始波形、12:平均波形、13:修正波
形、15:パターンNo.。
Fig. 1 is an explanatory diagram schematically showing a device in an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between drive time and load value, Fig. 3 is a diagram showing corrected waveforms, and Fig. 4
The figure shows a pattern image, Figure 5 explains the judgment based on the load value within the monitoring range, Figure 6 explains the integral range, and Figure 7 explains the judgment based on the integral value in Figure 6. This is a diagram. 5: CT, 6: Power converter, 7: Voltage value, 8:
Current value, 9: Microcomputer, 10: Output relay, 1
1: Original waveform, 12: Average waveform, 13: Modified waveform, 15: Pattern No.
Claims (1)
により被加工物を切削する加工時の負荷を前記動
作経路に沿つて複数個求めこれを原始波形とし、
該原始波形の複数回加工時の負荷から平均をとつ
て平均波形を求め、該平均波形における連続した
動作経路値上の所定範囲内移動した複数個の負荷
値についての平均値を上記範囲内における移動平
均負荷値として動作経路値に沿つて連続して求め
これを修正波形とし、該修正波形の動作経路値上
移動平均負荷値の前後の差を連続して求め、この
差の極性が変化する極点、該極点における動作経
路値、および前記極性の変化による山谷の区分、
更に前記極点における動作経路値に動作経路値許
容範囲を設定して基本パターンテーブルを作成
し、この基本パターンテーブルの内容と、各加工
毎の動作経路上の負荷値に基づいて前記基本パタ
ーンテーブルと同様にして移動平均負荷値によつ
て表わされる修正波形上の極点を求めて得た加工
パターンテーブルとを比較し、各加工パターンテ
ーブルの極点が前記基本パターンテーブルに設定
した極点における山谷の区分、動作経路値許容範
囲および極点の数が合致しているか否かのチエツ
クを行なうことを特徴とする加工異常検知方法。1. Obtain a plurality of loads along the preset motion path when cutting the workpiece with a blade, and use this as a primitive waveform.
An average waveform is obtained by averaging the loads during multiple machining of the original waveform, and the average value of the plurality of load values that have moved within a predetermined range on the continuous motion path values in the average waveform is calculated within the above range. The moving average load value is continuously determined along the operating path value, and this is used as a modified waveform.The difference between the moving average load value and the operating route value of the modified waveform is continuously determined, and the polarity of this difference changes. a polar point, a motion path value at the polar point, and division of peaks and valleys based on changes in the polarity;
Furthermore, a basic pattern table is created by setting a movement path value tolerance range for the movement path value at the extreme point, and the basic pattern table and the basic pattern table are created based on the contents of this basic pattern table and the load value on the movement path for each machining. In the same way, the extreme points on the corrected waveform represented by the moving average load value are compared with the obtained machining pattern table, and the extreme points of each machining pattern table are divided into peaks and valleys at the extreme points set in the basic pattern table. A machining abnormality detection method characterized by checking whether an allowable range of motion path values and the number of extreme points match.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57215120A JPS59107843A (en) | 1982-12-08 | 1982-12-08 | Device and method for detecting abnormality of working |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57215120A JPS59107843A (en) | 1982-12-08 | 1982-12-08 | Device and method for detecting abnormality of working |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59107843A JPS59107843A (en) | 1984-06-22 |
JPS6144624B2 true JPS6144624B2 (en) | 1986-10-03 |
Family
ID=16667066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57215120A Granted JPS59107843A (en) | 1982-12-08 | 1982-12-08 | Device and method for detecting abnormality of working |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59107843A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63155395A (en) * | 1986-12-19 | 1988-06-28 | 日本電気株式会社 | Equipment deterioration alarming system |
JP3883485B2 (en) | 2002-10-08 | 2007-02-21 | ファナック株式会社 | Tool breakage or prediction detection device |
JP5301380B2 (en) * | 2009-07-16 | 2013-09-25 | 本田技研工業株式会社 | Method for predicting the life of rotating blades |
JP5710391B2 (en) * | 2011-06-09 | 2015-04-30 | 株式会社日立製作所 | Processing abnormality detection device and processing abnormality detection method for machine tools |
-
1982
- 1982-12-08 JP JP57215120A patent/JPS59107843A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59107843A (en) | 1984-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100579083B1 (en) | A Tool Error Detecting Unit of CNC and Method Thereof | |
CN110297461B (en) | Abnormality detection device | |
US8457787B2 (en) | Method and control device for targeted reaction in the event of a contact between a machine element of a machine and an object | |
CN107562014B (en) | Control device for machine tool | |
US5142210A (en) | Abnormal state detecting apparatus of a machine tool | |
CN106312687B (en) | Spindle load monitoring device for machine tool | |
EP3733344A1 (en) | Detection apparatus and detection method for machine tool abnormality | |
JP7524230B2 (en) | CONTROL DEVICE FOR USE IN A NUMERICALLY CONTROLLED MACHINE TOOL, AND MACHINE TOOL COMPRISING THE CONTROL DEVICE - Patent application | |
JP6297997B2 (en) | Numerical control device for inspection of screw holes | |
CN113678076B (en) | Method and device for monitoring a milling process | |
JP7277152B2 (en) | Tool management system for machine tools | |
KR20140010317A (en) | Tool monitoring system of machine tools and method thereof | |
JP6962632B1 (en) | Machine tool current measurement system and its method | |
JPS6144624B2 (en) | ||
JP2693664B2 (en) | Machining state judgment device in end mill machining | |
JPS59102560A (en) | Abnormal working detector and method thereof | |
JPS59146740A (en) | Working abnormality detecting device | |
JPS59102559A (en) | Abnormal working detector and method thereof | |
JPS59102561A (en) | Abnormal work detector and method thereof | |
JPS59169750A (en) | Machining abnormality detecting method | |
JP2575323B2 (en) | Cutting load monitoring method by data extraction averaging method | |
JPS59156650A (en) | Erroneous processing sensing method | |
JPH0227109B2 (en) | ||
JP2021068401A (en) | Work machine processing state monitoring method and system | |
KR100600015B1 (en) | Tool error detection method of machine tool |