[go: up one dir, main page]

JPS59146740A - Working abnormality detecting device - Google Patents

Working abnormality detecting device

Info

Publication number
JPS59146740A
JPS59146740A JP58020176A JP2017683A JPS59146740A JP S59146740 A JPS59146740 A JP S59146740A JP 58020176 A JP58020176 A JP 58020176A JP 2017683 A JP2017683 A JP 2017683A JP S59146740 A JPS59146740 A JP S59146740A
Authority
JP
Japan
Prior art keywords
machining
load value
load
value
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58020176A
Other languages
Japanese (ja)
Inventor
Masayuki Okamoto
岡本 正幸
Yoshichika Kitatani
北谷 義親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58020176A priority Critical patent/JPS59146740A/en
Publication of JPS59146740A publication Critical patent/JPS59146740A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0957Detection of tool breakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To permit to decide instantaneously the abnormality in accordance with a work piece, a working machine, a tool and a working condition comprehensively by detecting a load being applied to the tool by a sensing means provided in the working machine and comparing it with a basic pattern or the like. CONSTITUTION:The detection of the load on a driving shaft is effected in a screw working exclusive machine 1 by the value of the electric power of a motor 4 to detect a load value P at every driving positions or driving times from a starting point and describe an original wave form 11. At first, the wave form is decided whether it is within the arrowable range of the basic pattern and the division of mountains and valleys are coinciding with the number of points of deflections or not, and when the abnormality is existing, a bad product is discharged. Next, the range K, for controlling the load value P, is specified and when the load value P exceeds the upper limit U, P, L, and the lower limit L, P, L, of the abnormality, the product is discharged. Further, the integrated value Q of the load value P in the integrating range W with respect to a control integration load value Q is decided and when it is out of the upper limit and the lower limit, the product is discharged. When these data exceed a working time allowable range, the maximum allowable working number and the allowable maximum faulty product frequency, the emergency stop of the machine is effected and the unmanned operation of the working machine may be promoted.

Description

【発明の詳細な説明】 本発明は一定の部品を多数加工する専用機や、数値制御
加工機における加工途中の異常検知装置に関し、特に切
削工具の摩耗や工具寿命による加工異常、並びに素材の
材質や加工代の過大、過小による粗材異常、その他加工
機の誤動作や故障、粗材を加工機に取付ける際の取付不
良等による加工異常を検知する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting abnormalities during machining in specialized machines that process a large number of certain parts or numerically controlled machining machines, and particularly for detecting machining abnormalities due to cutting tool wear and tool life, as well as material quality. The present invention relates to a device for detecting abnormalities in raw material due to excessive or insufficient machining allowance, malfunctions or failures of processing machines, and improper installation when attaching raw materials to processing machines.

従来この種の加工異常の検出は、加工後の部品の寸法や
加工面の表面状態を目視によるか、あるいは加工中の加
工音や振動、その他加工機の誤動作を加工機操作員の感
覚による判断で異常を検知していた。しかしこの様な人
間の感覚判断による異常の検知では同一部品を数多く加
工する専用機等では異常の検出が遅れた場合、多量の製
品を不良にしたり、切削工具を破損させたり、あるいは
加工機自体を故障させたりする問題があった。このため
一般には加工機の駆動モータ等の容量に応じた安全装置
として、前記駆動機器の容量以上の電流が流れたら破損
するヒューズや遮断機、保護継電器等がある。また刃物
がある一定の定められた動作経路を外れたら動作が停止
する様にリミットスイッチ等で安全装置としたものがあ
るが、これらは各々の機能に応じた動作のみ作動するだ
けで、加工物や加工条件に応じた総合的な加工異常を検
出する事は不可能で、例えば前記のリミッチスイッチで
誤動作があった場合の安全装置では、刃物が破損した時
、または刃物やテーブルの移動が機械本体の故障で停止
した時等の加工異常を検出する事は不可能であった。ま
た最新の方法では1回のモデル加工時の負荷を動作経路
毎にとり、この波形を単に上下に平行移動して該範囲内
に負荷があるかの判断で監視する方法も知られているが
、この方法では変曲点における動作経路上の誤差を監視
する事が不可能で、また精度が高く密度の濃い過去のデ
ータとの比較等の監視が出来ない偽単なる前記の安全装
置的役割しか効果がなかった。
Traditionally, this type of processing abnormality has been detected by visually observing the dimensions of the part after processing and the surface condition of the machined surface, or by the operator's sense of the processing noise, vibration, and other malfunctions of the processing machine. An abnormality was detected. However, with this kind of abnormality detection based on human sensory judgment, special-purpose machines that process many identical parts may be delayed in detecting abnormalities, resulting in a large number of products being defective, cutting tools being damaged, or the processing machine itself being damaged. There were problems that could cause the machine to malfunction. For this reason, safety devices generally include fuses, circuit breakers, protective relays, etc., which are damaged if a current exceeding the capacity of the drive device flows, as safety devices depending on the capacity of the drive motor, etc. of the processing machine. In addition, there are safety devices such as limit switches that stop the operation of the blade if it deviates from a certain predetermined movement path, but these only operate according to their respective functions, and do not interfere with the workpiece. It is impossible to detect comprehensive machining abnormalities depending on processing conditions and machining conditions. For example, the safety device that detects a malfunction in the limit switch described above will detect damage to the cutter or the movement of the cutter or table. It was impossible to detect processing abnormalities such as when the machine stopped due to a failure of the main body. In addition, the latest method is to take the load during one model processing for each motion path, and monitor it by simply moving this waveform vertically in parallel and determining whether the load is within the range. With this method, it is impossible to monitor errors on the motion path at inflection points, and it is not possible to monitor by comparing with past data that is highly accurate and dense.It is only effective as a safety device as described above. There was no.

本願発明は上記の問題点を解決し、加工物や加工機、刃
物、および加工条件(切削速度、送り、切込代)等の条
件に応じた適述加工状態から加工異常を総合的に瞬時に
判定できる加工異常検知装置を提供するものである。
The present invention solves the above problems, and comprehensively and instantly detects machining abnormalities from appropriate machining conditions depending on the workpiece, processing machine, cutter, and machining conditions (cutting speed, feed, depth of cut), etc. The purpose of the present invention is to provide a processing abnormality detection device that can make a determination.

本願発明の要旨は、加工機に設けられた感覚手段によっ
て動作経路上の刃物に加わる負荷を検出し、該検出値の
波形に基ずく基本パターンと、かく加工毎の負荷値との
比較、および前記基本パターンと各加工毎の負荷値に基
ずく加工パターンとの比較および前記基本パターンと加
工中における過去最新複数回の平均負荷値との比較から
なる加工異常検知装置道である。
The gist of the present invention is to detect the load applied to the cutting tool on the operating path by a sensing means provided in the processing machine, and to compare the basic pattern based on the waveform of the detected value with the load value for each processing, and The machining abnormality detection device comprises a comparison between the basic pattern and a machining pattern based on a load value for each machining process, and a comparison between the basic pattern and the average load value of the latest plurality of times during machining.

以下実施例について説明する。Examples will be described below.

本実施例の加工機では一例として鋳造管継手粗材のねじ
加工専用機1について第1図に示す2個の管継手エリボ
2が同時にタッピング加工出来る様に各管継手端部のね
じ加工タップ3を駆動するモータ4とタップ2をねじの
リードに応じて前後進するリード部からなる。駆動軸部
がある。この様なねじ加工用専用機の各々の駆動軸部θ
)谷スタト点かに)の駆動子立置、又は駆動時間毎の負
荷値Pを検出し、駆動位置又は駆動時間を横軸Lにして
負荷値Pを縦軸にとって表わせば第2図のごとき加工毎
の原始波形11が描ける。尚駆動軸部の負荷の検出は駆
動モータ4の電力値で検出するのが本発明に適している
ことが実験の結果判明したがその他ねじ加工時切削音を
マイクロホンや音響放射センサーで検出する方法、切削
工具近傍の振動を圧電形加速ピックアップで検出する方
法、駆動モータの電流値で検出する方法等がありいずれ
の方法を用いても良い。この曲線は加工機や加工条件、
刃物等によって各々異なった曲線が描けるが同じ加工機
で同じ加工条件、刃物、同じ粗材を加工するならばほと
んど同一の曲線が得られる。この原則を利用して加工異
常の検知を行うのである。
In the processing machine of this embodiment, as an example, for a machine 1 dedicated to thread processing of cast pipe fitting rough materials, thread processing taps 3 at the end of each pipe joint are used so that two pipe fitting erivos 2 shown in Fig. 1 can be simultaneously tapped. It consists of a motor 4 that drives the tap 2 and a lead part that moves the tap 2 back and forth according to the lead of the screw. There is a drive shaft part. Each drive shaft part θ of such a special machine for thread processing
) If the load value P is detected for each drive element vertical position or drive time, and the drive position or drive time is set on the horizontal axis L and the load value P is plotted on the vertical axis, the result will be as shown in Figure 2. The primitive waveform 11 for each process can be drawn. As a result of experiments, it has been found that it is suitable for the present invention to detect the load on the drive shaft using the electric power value of the drive motor 4. However, there is another method of detecting the cutting sound during thread machining using a microphone or an acoustic radiation sensor. , a method of detecting vibrations near the cutting tool using a piezoelectric acceleration pickup, a method of detecting vibrations using a current value of a drive motor, etc., and any of these methods may be used. This curve depends on the processing machine and processing conditions.
Although different curves can be drawn depending on the cutter, etc., if the same processing machine is used, the same processing conditions, the same cutter, and the same rough material are processed, almost the same curves can be obtained. This principle is used to detect processing abnormalities.

まず第1番目のチェックでは毎回の加工によって得られ
る加工波形の加工パターンが、基本パターンに設けた動
作経路上の許容範囲内にあるか、および変曲点における
山、谷の区分が合っているか、更に附随して変曲点の数
が合っているかのチェックを行なう。この説明を以下第
2図乃至第4図を参照して説明する。第2図においてま
ずn個の原始波形から平均を取って平均波形12とし、
この平均波形の動作経路トの連続した複数個の負荷値の
平均をとり平均波形をなめらかに修正するこの移動平均
を図に表わせば第5図のごとくの修正波形13が得られ
る。前記移動平均の算出は、例として次のごとく方法に
よって求める。
First, the first check is whether the machining pattern of the machining waveform obtained by each machining is within the allowable range on the motion path set in the basic pattern, and whether the peaks and valleys at the inflection points are correct. , Additionally, a check is performed to see if the number of inflection points matches. This will be explained below with reference to FIGS. 2 to 4. In Fig. 2, first take the average from n primitive waveforms to obtain average waveform 12,
If this moving average, which takes the average of a plurality of consecutive load values of the operating path of this average waveform and smoothly corrects the average waveform, is represented in a diagram, a corrected waveform 13 as shown in FIG. 5 is obtained. The moving average is calculated by the following method, for example.

この様にして求めた修正波形上の山、谷の変曲点ヶ第4
図のごとくパターン波形14トシてイメージし、上表の
ごとくパターンテーブルケ作成−fろ。
The fourth point of inflection of the peaks and valleys on the corrected waveform obtained in this way is
Image the pattern waveform 14 as shown in the figure, and create a pattern table as shown in the table above.

前記修正波形から山、谷の変曲点を求めろ方法について
は前表の移動平均値の前後の差を連続的に求めて、この
プラスかマイナスかの極性の変化を判断して得ることが
できる。この様にして複数の変曲点から得たパターン波
形14のイメージを上表のパターンテーブルとして作成
し、これに各々の変曲点すなわちパターンNo毎の山、
谷の変曲区分と動作経路値および動作時間および動作経
路値許容範囲LBを設定してパターンテーブルを完成す
る。
The method of finding the peak and valley inflection points from the corrected waveform is to continuously find the difference before and after the moving average value shown in the table above, and judge whether the polarity changes as positive or negative. can. In this way, the image of the pattern waveform 14 obtained from a plurality of inflection points is created as the pattern table shown above, and each inflection point, that is, a mountain for each pattern number,
The pattern table is completed by setting the inflection section of the valley, the motion path value, the motion time, and the motion path value tolerance range LB.

この完成した基本パターンと、1回毎の加工途中で得ら
れる原始並形データから、連続的に前記の方法により求
めた移動平均による修正波形13を求め、該修正波形か
ら変曲点?求めパターン波形14としてイメージし、順
次加工パターンを作成し、パターンIN′0毎におけろ
山谷の変曲区分および動作経路値が許容範囲LB内に入
っているかの判断を行なっていく。各パターンNo、毎
の判定に異常があれば異常加工として不良排出する。異
常がなげれば次のチェックに進む。
From this completed basic pattern and the original parallel shape data obtained during each machining process, a modified waveform 13 is continuously obtained by the moving average obtained by the method described above, and from this modified waveform, the inflection point? Imaged as the desired pattern waveform 14, processing patterns are sequentially created, and it is determined for each pattern IN'0 whether the inflection section of the peaks and troughs and the motion path value are within the allowable range LB. If there is an abnormality in the judgment for each pattern number, the pattern is rejected as abnormal processing and discharged. If there are no abnormalities, proceed to the next check.

2滑目とし7で、第5図のごとくパラメータで任慧の動
作日路りの負荷値を制御する範囲Kを基本パターンに対
して指定し、この制御範囲内の負荷値の異常の上限U,
P,L、下限値L,P.Lを決定する。この上限、下限
値の他にもこの範囲内の負荷値範囲を区分し、例えば青
B、黄E、赤Rランプ範囲とストップ範囲Sを指定し加
工途中の負荷値Pがどのランプ範囲内で加工しているか
を示す様にしておく。この様に設定した制御負荷値Pに
対する加工途中の動作経路L上の前記制御範囲K内の負
荷値Pをまず1データ毎に判定し異常の上限U,P,L
,下限値L,P,Lをオーバすれば直ちに1個毎に不良
排出させる。異常の上限、下限値内ならは次に現在から
過去加工した最新D個の最大負荷値の平均の負荷値を算
出し、これが前記の青B、黄E、赤H,ランプ範囲内の
どの範囲に入っているかを常に表示する。この様にして
工具寿命および工具摩耗の進行状況の推定が1目で行え
る様に才ろ。もちろんこの青B、黄E−赤Rランプ範囲
iテ越えストップ範囲Sに達¥712は機械0)非常停
止が行われ一作業者による王貝チsツク1歩)4)いf
j玉几交換か行われろ。尚前記の1データ′lσに判定
して異常の上限μ■たし、下限値t4p−1j)、−越
ジて不良排出されブ、―ものに、製品のみ不良品とし2
で排出さtl2ろfJ)機械は以後も連続して次の部品
の加−T:か行わn7ろ。
In the second step 7, specify the range K for controlling the load value during Renhui's daily operation using parameters as shown in Figure 5 for the basic pattern, and set the upper limit U of the abnormality of the load value within this control range. ,
P, L, lower limit L, P. Determine L. In addition to these upper and lower limit values, the load value range within this range is divided, and for example, blue B, yellow E, red R lamp ranges and stop range S are specified, and the load value P during machining is determined within which lamp range. Be sure to show that it has been processed. For the control load value P set in this way, the load value P within the control range K on the operation path L during machining is first determined for each data, and the upper limits of abnormality U, P, L are determined.
, if the lower limit values L, P, and L are exceeded, each piece is immediately discharged as defective. If it is within the upper and lower limits of the abnormality, then calculate the average load value of the latest D maximum load values processed in the past from the current time, and determine which range within the blue B, yellow E, red H, and lamp ranges described above. Always display whether it is in. In this way, you will be able to estimate tool life and tool wear progress at a glance. Of course, when the blue B, yellow E-red R lamp range i exceeded the stop range S, the machine 0) Emergency stop was performed and one worker took one step to stop the process.4)
There should be an exchange of balls. It should be noted that the upper limit of the abnormality μ■ and the lower limit t4p-1j) are determined based on the above-mentioned data 'lσ.
The machine then continues to add the next part.

上記の19明では動作経路−ヒの負荷値P’citi制
御イ制御用Kが動作経路lJヒ1つの範囲に限定さt′
1.ているが、この制御範1!ノ(1<げrub作経路
L−1zのパターンhoにより認意に初数1161の範
囲含′IIIMITしても良い。
In the above-mentioned example 19, the load value P'citi control of the operating path A is limited to one range of the operating path lJ, t'
1. However, this control range is 1! The range of the initial number 1161 may be included in the recognition by the pattern ho of the 1<Gerub creation path L-1z.

3番目のチェックとして、第6し)の1i゛とく、+i
ij記2番目で、¥52明した動作経路17上の制御l
範囲に内に、一定の安全幅Tを設けて負荷値の積分範囲
Wゲ指定し、加工中の原始波形11の積分負荷仙Q?算
出てろ。この求められた撹分負イ冒飴(ジに対しても前
記2番目と同様に異常の上限値U,P,L,下限値L、
P、Lを決定する。更にこの上限値U,P,L,下限値
L,P,L内の積分値範囲を区分し、例えば青B黄E,
赤Rランプ範囲とストップ範囲Sを設けることにより加
工途中の負荷値Pの積分値Qがどの範囲内で加工してい
るかを表示する様にしておく。
As the third check, 1i゛ and +i of the 6th item)
The control l on the operation path 17 explained in the second part of Ij.
Specify the integral range W of the load value by setting a certain safety margin T within the range, and calculate the integral load value Q of the primitive waveform 11 being processed. Calculate it. Similarly to the second case, upper limits of abnormality U, P, L, lower limit L,
Determine P and L. Furthermore, the integral value range within these upper limit values U, P, L and lower limit values L, P, L is divided, for example, blue B yellow E,
By providing a red R lamp range and a stop range S, the integrated value Q of the load value P during machining is configured to display the range within which machining is being performed.

この様に設定した制御積分負荷値Qに対する加工途中の
動作経路上の前記積分範囲W内の負荷値Pの積分値Qを
、まず1加工データ毎に判定し、異常の上限U,P,L
,下限値L,P,L内にあるかどうかオーバすれば直ち
に1個毎に不良排出させる。この不良排出されたものは
前記2番目の不良排出と同じ経路をたどり製品のみ不良
品として排出される。次に前記積分範囲W内について、
現在から過去M加工波形分の負荷積分値Qの平均値を算
出しこの値も青B、黄E、赤Rランプ範囲内のどの範囲
に入っているかを常に表示する。この青、黄、赤ランプ
の表示は前記2番目の負荷値による表示と連動させても
よい。また青B、黄E、赤Rラング範囲を越えストップ
範囲Sに達すれば当然機械の非常停止が行なわれて作業
者による工具交換や工具チェックが行われる。この積分
値を算出する積分範囲は前記2番目の変曲点の制御範囲
Kよりもある一定の安全幅Tを内側に設けて積分値Qを
算出しているが、これは実験の結果、変曲点付近の曲線
は緩やかなカーブであるため積分値に誤差が多く精密な
判定が出来ない事が判り、このためより正確な判定結果
を得るため緩やかな部分をカットする安全幅Tを設けて
積分範囲Wとしているものである。この様に1データ毎
の制御範囲内Kにおける負荷値Pおよび積分値Qのチェ
ック、並びに過去最新複数回の平均負荷値および平均積
分負荷値のチェックが確定すると次のチェックが引続き
行なわれる。
The integral value Q of the load value P within the integral range W on the operation path during machining with respect to the control integral load value Q set in this way is first determined for each machining data, and the upper limits of abnormality U, P, L are determined.
, lower limit values L, P, and L. If they are exceeded, each piece is immediately discharged as defective. This defective product follows the same path as the second defective product and is discharged as a defective product. Next, regarding the integration range W,
The average value of the load integral value Q for the past M processed waveforms from the current time is calculated, and the range within the blue B, yellow E, and red R lamp ranges is always displayed. The display of the blue, yellow, and red lamps may be linked to the display of the second load value. Furthermore, when the blue B, yellow E, and red R run ranges are exceeded and the stop range S is reached, the machine is naturally brought to an emergency stop and the operator is required to change tools or check the tools. The integral value Q is calculated by setting a certain safety margin T inside the control range K of the second inflection point, but as a result of experiments, this Since the curve near the bend point is a gentle curve, there are many errors in the integral value, making it difficult to make accurate judgments.For this reason, in order to obtain more accurate judgment results, a safety margin T is provided to cut the gentle part. The integral range is W. In this way, once the checking of the load value P and the integral value Q within the control range K for each data item and the checking of the average load value and average integral load value of the latest plural times in the past have been confirmed, the next check is successively performed.

4番目として、スタート時点からの加工時間が順次記憶
、更新されており、あらかじめ設けられた加工時間許容
範囲をオーバすれば前記同様に非常停止が働く。許容範
囲内であるならば次のチェックに移る。
Fourth, the machining time from the start point is sequentially stored and updated, and if the machining time exceeds a predetermined allowable range, an emergency stop is activated in the same manner as described above. If it is within the allowable range, move on to the next check.

5番目として、前記1番目、2香目へ3番目のチェック
で不良排出された不良個数も含めてスタート時点からの
加工数が記憶される。そして前記同様あらかじめ設けら
れた最大許容加工数のチェックが行なわれ、これがオー
バすれば加工数オーバとして前記の非常停止が行なわれ
る。これが許容範囲内であれば更に次のチェックに移る
Fifth, the number of processed pieces from the start is stored, including the number of defective pieces discharged in the third check to the first and second pieces. Then, as before, a predetermined maximum allowable number of machining is checked, and if the maximum allowable number of machining is exceeded, the number of machining is exceeded and the above-mentioned emergency stop is performed. If this is within the allowable range, proceed to the next check.

6番目として、前記の1番目、2番目、3番目のチェッ
クにより不良排出された不良個数が不良頻度デーブルに
記憶される。この不良頻度テーブルでは過去最新Z個の
加工数に対する不良頻度が加工毎に連続的に算出されて
おり、あらかじめ設定された許容最大不良頻度、例えば
5%等の数値をオーバーすると不良類度オーバとして前
記機械の非常停止が行なわれる。この6番目のチェック
も許容範囲内ならば次の加工の監視スタートへ続けてこ
れまでのチェックが再び行われる様になっている。
Sixthly, the number of defective items rejected by the first, second, and third checks is stored in the defect frequency table. In this defect frequency table, the defect frequency for the past latest Z number of processes is continuously calculated for each process, and if it exceeds a preset allowable maximum defect frequency, such as 5%, it will be considered as exceeding the defect class. An emergency stop of the machine is performed. If this sixth check is also within the allowable range, the previous checks are performed again following the start of monitoring of the next machining.

上記のチェックの内4番目と5番目のチェックは数量又
は時間のチェックであり、直接の異常チェックではない
が、工具の寿命や加工製品の品質等をより確実にチェッ
クし、全体として総合的な加工異常をより面密に監視す
るもので、本発明の効果をより一層確実なものとしてい
る。また6番目のチェックは工具異常および工具摩粍が
許容範囲内にあっても加工不良頻度の発生率が高くなっ
た場合に工具交換を必要とする判定を行うもので更によ
り面密に加工異常の判定を行う。
The fourth and fifth checks of the above checks are quantity or time checks, and although they are not direct abnormality checks, they more reliably check tool life and the quality of processed products, and provide comprehensive information as a whole. Processing abnormalities are monitored more closely, making the effects of the present invention even more reliable. In addition, the sixth check determines that tool replacement is required when the frequency of machining defects increases even if tool abnormalities and tool wear are within the allowable range. Make a judgment.

以上の様に本発明によれば、一定の部品を数多く加工す
る専用機や数値制御加工機等、その他マシニングセンタ
ー等の加工機における切削工具の摩耗寿命や刃欠けおよ
び折れ等の工具異常における加工異常、その他粗材の材
質や加工代の過大、過小による粗材の異常、および加工
機の誤動作や故障、粗材取付不良並びに取付部のゆるみ
等による加工異常を瞬時に適確に検知して不良品を確実
に排出し、また工具交換時期を精度良く予測することが
出来る等の秀れた効果を発揮する。なお、負荷検出の一
定間隔を適切な値にすることにより同時に複数台の加工
機桟を制御でき、加工機の無人化に非常に秀れた装置を
提供するものである。
As described above, according to the present invention, processing abnormalities due to the wear life of cutting tools and tool abnormalities such as blade chipping and breakage in special-purpose machines that process a large number of fixed parts, numerically controlled processing machines, and other processing machines such as machining centers can be realized. , and other rough material abnormalities due to excessive or insufficient machining allowance, as well as machining abnormalities due to processing machine malfunctions or breakdowns, improper installation of rough materials, looseness of attachment parts, etc., can be instantly and accurately detected. It has excellent effects such as being able to reliably discharge non-defective products and predicting tool replacement timing with high accuracy. In addition, by setting the constant interval of load detection to an appropriate value, it is possible to control a plurality of processing machine frames at the same time, thereby providing a device that is excellent in unmanned processing machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の管継手粗材σ)ねじ加工専用
機を示す。第2図は駆動経路に対する負荷値の変動グラ
フを示す。第6図は第2図の平均波形に対する修正波形
を示す。第4図は第ろ図の修正波形から求めたパターン
イメージを示す。第5図は制御範囲内の負荷値による判
定を説明する図。 第6図は積分範囲を説明する図。第7図は第6図の積分
値に対する判定を説明する図である。 5:OT、6:電力変換機、7:電圧値、8:電流値、
9:マイコン、10:出力リレー、11:原始波形、1
2:平均波形、13:修正波形、15:パターンNo。
FIG. 1 shows a dedicated machine for machining pipe fitting rough material σ) threads according to an embodiment of the present invention. FIG. 2 shows a graph of variations in load values for the drive path. FIG. 6 shows a modified waveform for the average waveform of FIG. FIG. 4 shows a pattern image obtained from the corrected waveform in FIG. FIG. 5 is a diagram illustrating determination based on load values within the control range. FIG. 6 is a diagram explaining the integral range. FIG. 7 is a diagram illustrating the determination of the integral value in FIG. 6. 5: OT, 6: Power converter, 7: Voltage value, 8: Current value,
9: Microcomputer, 10: Output relay, 11: Original waveform, 1
2: Average waveform, 13: Corrected waveform, 15: Pattern No.

Claims (1)

【特許請求の範囲】 1、設定された動作経路に沿って刃物で加工物を切削す
る加工機において、前記加工機に設けられた感覚手段に
よって前記動作経路上の刃物に加わる負荷を検出し、該
検出値の波形に基ずく基本パターンと各加工毎の負荷値
との比較、および前記基本パターンと各加工毎の負荷値
に基ずく基本パターンと各加工毎の負荷値との比較、お
よび前記基本パターンと各加工毎の負荷値に基ずく加工
パターンとの比較、および前記基本パターンと加工中に
おける過去最新複数回の平均負荷値との比較からなるこ
とを特徴とする加工異常検知装置。 2、特許請求の範囲第1項記載において、前記基本パタ
ーンは前記検出値の複数個の波形の平均波形上の移動負
荷値の平均より表わせる変曲転を求めてなる加工異常検
知装置。 3、特許請求の範囲第1項記載において、前記基本パタ
ーンは前記負荷値の許容範囲と、動作経路上の制御範囲
と、動作経路上の負荷値の積分範囲とを設けてなる加工
異常検知装置。 4、特許請求の範囲第1項記載において、前記各加工毎
の負荷値は各加工毎の負荷値の積分値からなる加工異常
検知装置。 5、特許請求の範囲第1項記載において、前記加工パタ
ーンは前記加工毎の負荷値の移動負荷値の平均より表わ
せる編曲点を求めてなる加工異常検知装置。 6、特許請求の範囲第1項記載において、前記平均負荷
値の積分負荷値からなる加工異常検知装置。 7、特許請求の範囲第3項記載において、前記許容範囲
は該許容範囲内を区分してなる加工異常検知装置。 8、特許請求の範囲第1項記載において、前記動作経路
は動作時間からなる加工異常検知装置。 9、特許請求の範囲第1項記載において、前記感覚手段
は切削駆動モータの電力値変換器である加工異常検知装
置。
[Claims] 1. In a processing machine that cuts a workpiece with a blade along a set movement path, a load applied to the blade on the movement path is detected by a sensing means provided in the processing machine, A comparison between the basic pattern based on the waveform of the detected value and the load value for each process, a comparison between the basic pattern and the load value for each process based on the basic pattern and the load value for each process, and the A machining abnormality detection device comprising a comparison between a basic pattern and a machining pattern based on a load value for each machining process, and a comparison between the basic pattern and an average load value of the latest plurality of times during machining. 2. The machining abnormality detection device according to claim 1, wherein the basic pattern is obtained by determining an inflection/rotation represented by an average of moving load values on an average waveform of a plurality of waveforms of the detected values. 3. The machining abnormality detection device according to claim 1, wherein the basic pattern includes an allowable range of the load value, a control range on the operating path, and an integral range of the load value on the operating path. . 4. The machining abnormality detection device according to claim 1, wherein the load value for each machining is an integral value of the load value for each machining. 5. The machining abnormality detection device according to claim 1, wherein the machining pattern is obtained by finding a knitting point that can be expressed from an average of moving load values of the load values for each machining process. 6. A machining abnormality detection device according to claim 1, which comprises an integral load value of the average load value. 7. The machining abnormality detection device according to claim 3, wherein the tolerance range is divided within the tolerance range. 8. The machining abnormality detection device according to claim 1, wherein the operation path is comprised of an operation time. 9. The machining abnormality detection device according to claim 1, wherein the sensing means is a power value converter of a cutting drive motor.
JP58020176A 1983-02-09 1983-02-09 Working abnormality detecting device Pending JPS59146740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58020176A JPS59146740A (en) 1983-02-09 1983-02-09 Working abnormality detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58020176A JPS59146740A (en) 1983-02-09 1983-02-09 Working abnormality detecting device

Publications (1)

Publication Number Publication Date
JPS59146740A true JPS59146740A (en) 1984-08-22

Family

ID=12019865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58020176A Pending JPS59146740A (en) 1983-02-09 1983-02-09 Working abnormality detecting device

Country Status (1)

Country Link
JP (1) JPS59146740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234755A (en) * 1985-08-05 1987-02-14 Amada Co Ltd Machining condition managing apparatus for machine
JP2006082154A (en) * 2004-09-14 2006-03-30 Fuji Electric Systems Co Ltd Cutting tool diagnostic apparatus and diagnostic method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234755A (en) * 1985-08-05 1987-02-14 Amada Co Ltd Machining condition managing apparatus for machine
JP2006082154A (en) * 2004-09-14 2006-03-30 Fuji Electric Systems Co Ltd Cutting tool diagnostic apparatus and diagnostic method

Similar Documents

Publication Publication Date Title
CN110297461B (en) Abnormality detection device
KR100579083B1 (en) A Tool Error Detecting Unit of CNC and Method Thereof
US8457787B2 (en) Method and control device for targeted reaction in the event of a contact between a machine element of a machine and an object
US10493583B2 (en) Detection device, detection method and compensation method for tool wear
CN113613820B (en) Method for automatic process monitoring in a continuous gear grinding process
US7403868B2 (en) Apparatus for detecting or predicting tool breakage
JP5710391B2 (en) Processing abnormality detection device and processing abnormality detection method for machine tools
CN111451837B (en) Preventive maintenance system for machine tools
CN113678076B (en) Method and device for monitoring a milling process
WO2014181424A1 (en) Numerical control device
CN111451839B (en) Tool Management System for Machine Tools
KR101611299B1 (en) Trouble detecting method for automatic machine
JP2016173788A (en) Numerical control device for inspecting screw hole
US12011793B2 (en) Main spindle monitoring device and main spindle monitoring method of machine tool
CN108153237B (en) Linear cutting machine state monitoring method based on energy consumption characteristics
JP2748889B2 (en) Tool wear compensation device
JPS59146740A (en) Working abnormality detecting device
JPS59102559A (en) Abnormal working detector and method thereof
JPS59102560A (en) Abnormal working detector and method thereof
JPS6144624B2 (en)
JPS59102561A (en) Abnormal work detector and method thereof
JPS59169750A (en) Machining abnormality detecting method
JPS59156650A (en) Erroneous processing sensing method
JP2001277075A (en) Load detecting method and device for cutting tool in machine tool
JPH0215954A (en) Tool abnormality monitoring method