[go: up one dir, main page]

JP4860444B2 - Abnormality detection method in cutting - Google Patents

Abnormality detection method in cutting Download PDF

Info

Publication number
JP4860444B2
JP4860444B2 JP2006319757A JP2006319757A JP4860444B2 JP 4860444 B2 JP4860444 B2 JP 4860444B2 JP 2006319757 A JP2006319757 A JP 2006319757A JP 2006319757 A JP2006319757 A JP 2006319757A JP 4860444 B2 JP4860444 B2 JP 4860444B2
Authority
JP
Japan
Prior art keywords
value
term average
amplitude
cutting
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006319757A
Other languages
Japanese (ja)
Other versions
JP2008132558A (en
Inventor
康弘 大原
正信 菅
東烈 宋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATHEMATICAL ASSIST DESIGN LABORATORIES CO., LTD.
Gunma Prefecture
Original Assignee
MATHEMATICAL ASSIST DESIGN LABORATORIES CO., LTD.
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATHEMATICAL ASSIST DESIGN LABORATORIES CO., LTD., Gunma Prefecture filed Critical MATHEMATICAL ASSIST DESIGN LABORATORIES CO., LTD.
Priority to JP2006319757A priority Critical patent/JP4860444B2/en
Publication of JP2008132558A publication Critical patent/JP2008132558A/en
Application granted granted Critical
Publication of JP4860444B2 publication Critical patent/JP4860444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は切削加工における異常検出方法に関し、特に切削加工時の振動を随時監視して加工異常等を検出する異常検出方法に関するものである。 The present invention relates to a cutting related to abnormality detection how in the processing, abnormality detection how to detect the abnormal working like monitors, especially vibration during cutting as needed.

切削加工とは金属等の被削材であるワークをドリル、バイト、フライス等の切削工具にて切削し、所定の形状に加工するものであり、現代の工業製品の金型や部品の製造に必要不可欠なものである。このように、切削加工ではワークを切削工具により切削するため、切削工具には長時間の使用により徐々に摩耗が生じる。また、切削工具には疲労や突発的な過負荷により、切削加工中に欠損する可能性がある。切削加工中に切削工具の摩耗が許容範囲を超えたり、欠損したりした場合、そのまま、切削加工を継続するとワークの寸法精度や表面粗さが悪化して製品不良となる他、切削加工機にも負荷がかかり好ましいものではない。   Cutting is a work that is a work material such as metal, cut with a cutting tool such as a drill, bite, or miller into a predetermined shape, and is used to manufacture molds and parts for modern industrial products. It is indispensable. As described above, since the workpiece is cut by the cutting tool in the cutting process, the cutting tool is gradually worn out by using for a long time. In addition, cutting tools may be damaged during cutting due to fatigue or sudden overload. If the wear of the cutting tool exceeds the allowable range or breaks during the cutting process, if the cutting process is continued as it is, the dimensional accuracy and surface roughness of the workpiece will deteriorate, resulting in product defects. However, it is not preferable because of the load.

このため、切削加工中の異常をより正確かつ迅速に検出する加工異常検出装置が数多く検討開発されている。例えば、下記[特許文献1]に開示されている発明では、先ず、正常な切削加工時における開始時から終了時までの1サイクル動作の全てに亘って、振動値、温度、電流値等のデータを予め取得して基準波形データを作成する。そして、基準波形データを基に切削加工の開始時から終了時までの閾値(上下限値)を設定する。この閾値は切削加工の開始時に取得されるデータによって補正された後に、切削加工中に取得される各データと比較される。そして、切削加工中のデータが閾値を越えた場合に、異常が発生したと認識して警報を発する。   For this reason, many processing abnormality detection apparatuses that detect an abnormality during cutting more accurately and quickly have been studied and developed. For example, in the invention disclosed in the following [Patent Document 1], first, data such as vibration value, temperature, current value, etc. over the entire one-cycle operation from the start to the end of normal cutting. Is obtained in advance to create reference waveform data. Then, a threshold value (upper and lower limit values) from the start to the end of cutting is set based on the reference waveform data. This threshold value is corrected by data acquired at the start of cutting, and then compared with each data acquired during cutting. When the data during the cutting process exceeds the threshold value, it recognizes that an abnormality has occurred and issues an alarm.

また、下記[特許文献2]に開示されている発明では、予め正常な切削加工時の有効電力波形データを取得する。そして、取得された有効電力波形データを複数領域に分割した後、分割した領域毎に有効電力波形データを基にして閾値(警報設定値)を設定する。そして、切削加工時に取得される有効電力波形データが、この閾値を超えた場合に異常が発生したと認識して警報を発する。   In the invention disclosed in [Patent Document 2] below, active power waveform data during normal cutting is acquired in advance. Then, after the obtained active power waveform data is divided into a plurality of regions, a threshold value (alarm set value) is set for each divided region based on the active power waveform data. And when the active power waveform data acquired at the time of cutting exceeds this threshold value, it recognizes that abnormality has occurred and issues an alarm.

特開平6−201398号公報JP-A-6-201398

特開2006−82154号公報JP 2006-82154 A

しかしながら、切削加工時に取得されるデータは、同一材質のワークを同一の切削工具により切削したとしても、切削工具の磨耗度、取付具合、ワークのロット、切削加工機側の状態等により、日々ばらつくものである。[特許文献1]、[特許文献2]に開示された発明では、このばらつきに対して、設定する閾値を切削加工の度に補正したり、閾値の設定に用いる基準データを複数回取得して平均化するなどの対策を講じている。しかし、これらの対策を講じたとしても、切削加工時のデータにバラつきが存在する以上、予め閾値が設定されている[特許文献1]、[特許文献2]に開示された発明では、異常の検出精度を高めれば誤検出が発生し、検出精度を下げれば検出漏れの可能性が生じることは否めない。   However, even if the same material is cut with the same cutting tool, the data acquired at the time of cutting varies from day to day depending on the degree of wear of the cutting tool, how it is mounted, the lot of the workpiece, the state of the cutting machine, etc. Is. In the inventions disclosed in [Patent Document 1] and [Patent Document 2], the threshold value to be set is corrected for each cutting process, or the reference data used for setting the threshold value is acquired a plurality of times. Measures such as averaging are taken. However, even if these countermeasures are taken, the invention disclosed in [Patent Document 1] and [Patent Document 2] in which threshold values are set in advance as long as there is a variation in the data at the time of cutting is not abnormal. If the detection accuracy is increased, erroneous detection occurs, and if the detection accuracy is lowered, there is a possibility that a detection failure may occur.

また、[特許文献1]、[特許文献2]に開示された発明では、切削加工が何らかの原因により所定の時間よりも遅延もしくは進行した場合、設定された閾値と実際の切削加工時のデータとの間に時間的なずれが生じ、誤検出等が多発する可能性がある。   Further, in the inventions disclosed in [Patent Document 1] and [Patent Document 2], when the cutting process is delayed or progressed for a certain time from a predetermined time, the set threshold value and the data at the actual cutting process are There is a possibility that a time lag will occur between the two and false detection will occur frequently.

本発明は、上記事情に鑑みてなされたものであり、切削加工時に取得されるデータのバラつきによる影響が少なく、切削加工時のデータと閾値との間に時間的ズレが生じることのない、高精度な切削加工における異常検出方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, is less affected by variations in data acquired during cutting, and does not cause a time shift between the data during cutting and a threshold value. and to provide an abnormality detecting how in precision machining.

本発明は、
(1)切削加工時に生じる振動データSbから切削加工時の異常を検出する異常検出方法において、
切削加工前に生じる空転振動データを取得するステップと、
前記空転振動データの絶対値を基に空転振幅値Eを算出するステップと、
前記空転振幅値Eを基にして空転振幅上限値Fを算出するステップと、
切削加工時に生じる振動データSbを取得するステップと、
前記振動データSbの絶対値を基に振幅データSb1を算出するステップと、
前記振幅データSb1を所定の時間t間隔にて移動平均処理を行うことにより短期平均振幅値Aを算出するステップと、
前記振幅データSb1を前記時間t間隔よりも長い時間t’間隔にて移動平均処理を行うことにより長期平均振幅値Bを算出するステップと、
前記長期平均振幅値Bを基にして閾値を算出するステップと、
前記短期平均振幅値Aと前記閾値とを比較して異常が検出され且つ前記短期平均振幅値Aが前記空転振幅上限値Fを超えている場合に異常検知信号Saを出力し、前記短期平均振幅値Aが前記空転振幅上限値Fを下回っている場合には前記閾値による異常検出を無効とするステップと、
を有することを特徴とする切削加工における異常検出方法を提供することにより、上記課題を解決する。
(2)また、短期平均振幅値Aが閾値を所定の時間Ta、Tc継続して越え且つ前記短期平均振幅値Aが前記空転振幅上限値Fを超えている場合に異常検知信号Saを出力することを特徴とする上記(1)記載の切削加工における異常検出方法を提供することにより、上記課題を解決する。
(3)また、短期平均振幅値Aが空転振幅上限値Fを所定の時間Te継続して下回った場合に、
長期平均振幅値Bと短期平均振幅値Aとをリセットするとともに、
リセット後に所定の時間経過しても短期平均振幅値Aが空転振幅上限値Fを下回っている場合には、
異常検知信号Saを出力するようにしたことを特徴とする上記(1)または(2)記載の切削加工における異常検出方法を提供することにより、上記課題を解決する
The present invention
(1) In an abnormality detection method for detecting abnormality during cutting from vibration data Sb generated during cutting,
Acquiring idling vibration data generated before cutting;
Calculating an idling amplitude value E based on an absolute value of the idling vibration data;
Calculating an idling amplitude upper limit F based on the idling amplitude value E;
Obtaining vibration data Sb generated during cutting;
Calculating amplitude data Sb1 based on the absolute value of the vibration data Sb;
Calculating a short-term average amplitude value A by performing a moving average process on the amplitude data Sb1 at predetermined time intervals t;
Calculating a long-term average amplitude value B by performing a moving average process on the amplitude data Sb1 at a time t ′ interval longer than the time t interval;
Calculating a threshold based on the long-term average amplitude value B;
When an abnormality is detected by comparing the short-term average amplitude value A with the threshold value and the short-term average amplitude value A exceeds the idling amplitude upper limit F , an abnormality detection signal Sa is output, and the short-term average amplitude Invalidating the abnormality detection by the threshold when the value A is below the idling amplitude upper limit F ;
The problem is solved by providing a method for detecting an abnormality in a cutting process characterized by comprising:
(2) The abnormality detection signal Sa is output when the short-term average amplitude value A exceeds the threshold continuously for a predetermined time Ta and Tc and the short-term average amplitude value A exceeds the idling amplitude upper limit value F. The problem is solved by providing a method for detecting an abnormality in the cutting process described in (1) above.
(3) In addition, when the short-term average amplitude value A falls below the idling amplitude upper limit F for a predetermined time Te,
While resetting the long-term average amplitude value B and the short-term average amplitude value A,
If the short-term average amplitude value A is below the idling amplitude upper limit F even after a predetermined time has elapsed after resetting,
By providing the abnormality detection method in the cutting process according to the above (1) or (2), wherein the abnormality detection signal Sa is output, the above problem is solved .

本発明に係る切削加工における異常検出方法は、上記の手順により、
たとえ切削加工中に取得される振動データにばらつきが存在しても、そのばらつきに応じた閾値が算出されるため、高い精度で切削加工時の異常検出を行うことができる。また、比較対照とされる短期平均振幅と閾値とは、同じ振動データから得られる振幅データを基に算出されるため、時間的なズレが生じることは無く、これに伴う誤検出も発生しない。
Abnormality detecting how the cutting according to the present invention, from the order said hands,
Even if there is a variation in the vibration data acquired during the cutting process, a threshold value corresponding to the variation is calculated, so that it is possible to detect an abnormality during the cutting process with high accuracy. Further, since the short-term average amplitude and the threshold value, which are used as comparative controls, are calculated based on amplitude data obtained from the same vibration data, there is no time deviation and no erroneous detection associated therewith.

本発明に係る切削加工における異常検出方法の実施の形態について図面に基づいて説明する。図1は、本発明に係る異常検出方法を適用した加工異常検出装置の構成を示す概略図である。図2は、本発明に係る短期平均振幅値及び長期平均振幅値の算出方法を説明する図である。図3及び図4は、本発明に係る切削加工における異常検出方法を説明する図である Be described with reference to the accompanying drawings, embodiments of the abnormality detecting how the cutting according to the present invention. FIG. 1 is a schematic diagram showing a configuration of a machining abnormality detection apparatus to which an abnormality detection method according to the present invention is applied . FIG. 2 is a diagram illustrating a method for calculating a short-term average amplitude value and a long-term average amplitude value according to the present invention. 3 and 4 are diagrams for explaining an abnormality detection method in cutting according to the present invention .

図1に示す本発明に係る異常検出方法を適用した加工異常検出装置50は切削加工機10の切削工具14に設置された振動データ取得手段18から切削工具14の振動データSbを取得し、その振動データSbに後述する演算処理を施すことで短期平均振幅値、長期平均振幅値、及び上下限値を算出する。そして、短期平均振幅値が後述する所定の条件を満たした場合、異常検知信号Saを警報出力手段16、もしくは、切削加工機10の制御部11、もしくはその双方に出力する。異常検知信号Saが警報出力手段16に入力されると、警報出力手段16は所定の警報音、音声、警報灯の点灯、などにより作業者等に異常の発生を知らせる。また、異常検知信号Saが切削加工機10の制御部11に入力されると、制御部11は切削加工機10の減速停止、即停止等の所定の制御を行う。 A machining abnormality detection device 50 to which the abnormality detection method according to the present invention shown in FIG. 1 is applied acquires vibration data Sb of the cutting tool 14 from vibration data acquisition means 18 installed in the cutting tool 14 of the cutting machine 10, and the A short-term average amplitude value, a long-term average amplitude value, and upper and lower limit values are calculated by performing arithmetic processing described later on the vibration data Sb. When the short-term average amplitude value satisfies a predetermined condition to be described later, the abnormality detection signal Sa is output to the alarm output means 16 or the control unit 11 of the cutting machine 10 or both. When the abnormality detection signal Sa is input to the alarm output means 16, the alarm output means 16 notifies the operator or the like of the occurrence of abnormality by a predetermined alarm sound, sound, lighting of an alarm lamp, or the like. Further, when the abnormality detection signal Sa is input to the control unit 11 of the cutting machine 10, the control unit 11 performs predetermined control such as deceleration stop and immediate stop of the cutting machine 10.

切削加工機10には、被削材であるワーク12とドリル、バイト、フライス等の切削工具14が取り付けられる。切削加工機10はワーク12もしくは切削工具14もしくはその双方を回転又は移動させることで、ワーク12を所定の形状に切削加工する。このとき、切削工具14、切削加工機10、ワーク12には、切削工具14がワーク12を切削加工すること等による振動が生じる。加速度センサ等の振動データ取得手段18は、この切削工具14に生じる振動を電気信号である振動データSbとして取得して加工異常検出装置50に出力する。尚、振動データ取得手段18は必ずしも切削工具14に設置しなくとも良く、切削加工機10やワーク12側に設置して、切削加工機10やワーク12の振動を振動データSbとして加工異常検出装置50に出力しても良い。   The cutting machine 10 is attached with a workpiece 12 as a work material and a cutting tool 14 such as a drill, a cutting tool, and a milling cutter. The cutting machine 10 cuts the workpiece 12 into a predetermined shape by rotating or moving the workpiece 12 and / or the cutting tool 14. At this time, vibration is generated in the cutting tool 14, the cutting machine 10, and the workpiece 12 due to the cutting tool 14 cutting the workpiece 12. The vibration data acquisition means 18 such as an acceleration sensor acquires the vibration generated in the cutting tool 14 as vibration data Sb that is an electrical signal and outputs the vibration data Sb to the machining abnormality detection device 50. The vibration data acquisition means 18 does not necessarily have to be installed on the cutting tool 14, but is installed on the cutting machine 10 or the workpiece 12 side, and the machining abnormality detection device uses the vibration of the cutting machine 10 or the workpiece 12 as vibration data Sb. 50 may be output.

次に、本発明に係る異常検出方法の短期平均振幅値、及び長期平均振幅値の算出方法を説明する。図2は時間5tが経過した時点での振動データSb、振幅データSb1、短期平均振幅値、及び長期平均振幅値等を時系列的に示した図である。尚、図2では長期平均振幅値Bを算出する時間t’を時間tの3倍とした例を用いている。 Next, a method for calculating the short-term average amplitude value and the long-term average amplitude value of the abnormality detection method according to the present invention will be described. FIG. 2 is a diagram showing, in time series, vibration data Sb, amplitude data Sb1, short-term average amplitude value, long-term average amplitude value, and the like when time 5t has elapsed. Note that FIG. 2 uses an example in which the time t ′ for calculating the long-term average amplitude value B is three times the time t.

加工異常検出装置50に入力される切削工具14の振動データSbは図2に示すように、0を中心として正負に分布するデータであり、1秒間に12500程度のデータ数を有することが好ましい。尚、振動データSbは電気信号であるため実際は電圧等の値であるが、この電気信号は切削工具14の振動の振幅を間接的に表しているため、切削工具14の振幅と称して説明することとする。   As shown in FIG. 2, the vibration data Sb of the cutting tool 14 input to the machining abnormality detection device 50 is data distributed positively and negatively around 0, and preferably has a data number of about 12,500 per second. Since the vibration data Sb is an electric signal, it is actually a value such as a voltage. However, since this electric signal indirectly represents the amplitude of vibration of the cutting tool 14, it will be referred to as the amplitude of the cutting tool 14. I will do it.

先ず始めのステップとして、振動データSbが加工異常検出装置50に入力される。すると次のステップとして加工異常検出装置50は、振動データSbの変位の絶対値を算出して振動データSbの負の値が正の値に変換された絶対値データSb’とした後、一定時間内もしくは所定のデータ数の絶対値データSb’を平均化し振幅データSb1とする。尚、図2中では2つの絶対値データSb’を平均化し振幅データSb1としているが、実際には振幅データSb1は数千個の絶対値データSb’を平均化して求められる。また、振幅データSb1は、上記の平均値を取る他に所定のデータ数もしくは一定時間内の絶対値データSb’の最大値、中心値、最頻値等としても良い。   As a first step, vibration data Sb is input to the machining abnormality detection device 50. Then, as the next step, the machining abnormality detection device 50 calculates the absolute value of the displacement of the vibration data Sb and sets it as the absolute value data Sb ′ in which the negative value of the vibration data Sb is converted to a positive value, and then for a certain period of time. The absolute value data Sb ′ within or a predetermined number of data is averaged to obtain amplitude data Sb1. In FIG. 2, two absolute value data Sb 'are averaged to obtain amplitude data Sb1, but in reality, the amplitude data Sb1 is obtained by averaging thousands of absolute value data Sb'. In addition to the above average value, the amplitude data Sb1 may be a predetermined number of data or the maximum value, the center value, the mode value, etc. of the absolute value data Sb 'within a certain time.

振幅データSb1が得られると、次のステップとして加工異常検出装置50は、得られた振幅データSb1を所定の時間tで移動平均をとり短期平均振幅値Aを算出する。また、それと並行して時間tよりも長い所定の時間t’で移動平均をとり長期平均振幅値Bを算出する。即ち、時間3tが経過した時点では短期平均振幅値Aの値は時間2t〜3t間の振幅データSb1の平均値である値A(3t)となり、長期平均振幅値Bの値は時間0tから3t間の振幅データSb1の平均値である値B(3t)となる。また、時間5tが経過した時点では短期平均振幅値Aの値は時間4t〜5t間の振幅データSb1の平均値である値A(5t)となり、長期平均振幅値Bの値は時間2t〜5t間の振幅データSb1の平均値である値B(5t)となる。尚、これらの移動平均処理は新たな振幅データSb1が取得される度に、連続して随時行われる。また、短期平均振幅値Aを算出するための時間t及び長期平均振幅値Bを算出するための時間t’は加工異常検出装置50の初期設定時に好ましくは数秒単位で入力し、基本的に切削加工機10の稼動中は変化しない。 When the amplitude data Sb1 is obtained, as a next step, the machining abnormality detection device 50 calculates a short-term average amplitude value A by taking a moving average of the obtained amplitude data Sb1 at a predetermined time t. At the same time, a long-term average amplitude value B is calculated by taking a moving average at a predetermined time t ′ longer than the time t. That is, when the time 3t has elapsed, the value of the short-term average amplitude value A becomes the value A (3t) that is the average value of the amplitude data Sb1 during the time 2t to 3t, and the value of the long-term average amplitude value B changes from A value B (3t) which is an average value of the amplitude data Sb1 between them is obtained. When the time 5t has elapsed, the value of the short-term average amplitude value A becomes the value A (5t) that is the average value of the amplitude data Sb1 during the time 4t to 5t , and the value of the long-term average amplitude value B is the time 2t to 5t. A value B (5t) which is an average value of the amplitude data Sb1 between them is obtained. Note that these moving average processes are continuously performed whenever new amplitude data Sb1 is acquired. The time t for calculating the short-term average amplitude value A and the time t ′ for calculating the long-term average amplitude value B are preferably input in units of several seconds at the time of initial setting of the machining abnormality detection device 50, and basically cut. It does not change during operation of the processing machine 10.

次に、本発明に係る異常検出方法を図3、図4を用いて説明する。図3は、短期平均振幅値A、長期平均振幅値B等の振幅値及び閾値等を時系列的に示したものである。また図3では、閾値として上限値Cと、上限値Cよりも大きな第2上限値C’及び下限値Dの3つを設ける例を示している。 Next, the abnormality detecting method of this invention FIG. 3 will be described with reference to FIG. FIG. 3 shows time-series amplitude values such as short-term average amplitude value A and long-term average amplitude value B, threshold values, and the like. FIG. 3 shows an example in which three upper limit values C, a second upper limit value C ′ larger than the upper limit value C, and a lower limit value D are provided as threshold values.

先ず、本発明の異常検出方法では長期平均振幅値Bが算出されると、次のステップとして、異常発生を認識するための閾値である上限値C、第2上限値C’及び下限値Dを長期平均振幅値Bの値を基に算出する。このため、閾値である上限値C、第2上限値C’、下限値Dも、長期平均振幅値Bの値が更新されるのに伴って、随時更新されることとなる。 First, in the abnormality detection method of the present invention, when the long-term average amplitude value B is calculated, as the next step, an upper limit value C, a second upper limit value C ′, and a lower limit value D, which are threshold values for recognizing the occurrence of an abnormality, are obtained. Calculation is based on the value of the long-term average amplitude value B. For this reason, the upper limit value C, the second upper limit value C ′, and the lower limit value D, which are threshold values, are updated as needed as the long-term average amplitude value B is updated.

上限値C、第2上限値C’及び下限値Dを算出する方法としては、長期平均振幅値Bに所定の値を加減して行う方法と、所定の値を乗算する方法とがある。即ち、長期平均振幅値Bに所定の値を加算して上限値C、第2上限値C’とし、長期平均振幅値Bから所定の値を減算して下限値Dとする方法と、長期平均振幅値Bに所定の値、例えば下限値Dを長期平均振幅値Bの80%としたい場合には長期平均振幅値Bに0.8を掛けた値を下限値Dとして算出し、上限値Cを長期平均振幅値Bの120%、第2上限値C’を長期平均振幅値Bの150%としたい場合には、長期平均振幅値Bにそれぞれ1.2及び1.5を掛けた値を上限値C、第2上限値C’として算出する方法とがある。特に、長期平均振幅値Bに所定値を乗算して閾値を算出する方法は、長期平均振幅値Bの値が増減するに伴い上限値C及び下限値Dの範囲も増減するため検出精度が高く、閾値の算出方法としてはより好ましいものである。   As a method for calculating the upper limit value C, the second upper limit value C ′, and the lower limit value D, there are a method in which a predetermined value is added to or subtracted from the long-term average amplitude value B, and a method in which a predetermined value is multiplied. That is, a method in which a predetermined value is added to the long-term average amplitude value B to obtain an upper limit value C and a second upper limit value C ′, and a predetermined value is subtracted from the long-term average amplitude value B to obtain a lower limit value D; When it is desired to set the amplitude value B to a predetermined value, for example, the lower limit value D is 80% of the long-term average amplitude value B, a value obtained by multiplying the long-term average amplitude value B by 0.8 is calculated as the lower limit value D. Is 120% of the long-term average amplitude value B, and the second upper limit value C ′ is 150% of the long-term average amplitude value B, the values obtained by multiplying the long-term average amplitude value B by 1.2 and 1.5, respectively. There is a method of calculating the upper limit value C and the second upper limit value C ′. In particular, the method of calculating the threshold value by multiplying the long-term average amplitude value B by a predetermined value increases detection accuracy because the range of the upper limit value C and the lower limit value D increases and decreases as the value of the long-term average amplitude value B increases and decreases. The threshold value calculation method is more preferable.

尚、上記の閾値の算出方法は、必要に応じて適宜組み合わせることも可能で、例えば、上限値Cを乗法により算出し、下限値Dと第2上限値C’を加減法にて算出することも可能である。また、閾値を算出するための値の入力は、基本的に加工異常検出装置50の初期設定時に行う。   Note that the above threshold value calculation methods can be appropriately combined as necessary. For example, the upper limit value C is calculated by multiplication, and the lower limit value D and the second upper limit value C ′ are calculated by addition / subtraction. Is also possible. Further, the input of a value for calculating the threshold is basically performed at the time of initial setting of the machining abnormality detection device 50.

上記のようにして閾値が算出されると、次のステップとして、以下に示すように短期平均振幅値Aと閾値とを比較して、所定の条件を満たす場合に異常検出信号Saを出力する。 When the threshold value is calculated as described above, as a next step, the short-term average amplitude value A is compared with the threshold value as shown below, and the abnormality detection signal Sa is output when a predetermined condition is satisfied.

切削加工時に切削工具14の摩耗が許容量を超えるなどして切削工具14の振動が通常よりも大きくなり振幅データSb1が増加した場合を考える。このような場合、移動平均をとる時間tの間隔が短い短期平均振幅値Aは直ちにその振幅データSb1の変化を反映し増加傾向を示す。しかしながら、移動平均をとる時間t’の間隔が長い長期平均振幅値Bは直ぐには振幅データSb1の変化を反映せず、ある時間遅延した後に増加傾向を示す。従って、長期平均振幅値Bに基づいて算出される上限値Cも長期平均振幅値Bと同じ時間だけ遅延した後に増加傾向を示すこととなる。このとき上限値Cを算出する値を適切に設定することで、図3中のa領域に示すように、短期平均振幅値Aが上限値Cを超える状態が生じる。加工異常検出装置50はこのような状態が所定の時間Ta継続すると異常が発生したと認識し、異常検出信号Saを警報出力手段16、制御部11等に出力する。   Consider a case where the vibration of the cutting tool 14 becomes larger than usual due to the wear of the cutting tool 14 exceeding an allowable amount during cutting, and the amplitude data Sb1 increases. In such a case, the short-term average amplitude value A having a short interval of time t for taking the moving average immediately reflects the change of the amplitude data Sb1 and shows an increasing tendency. However, the long-term average amplitude value B having a long interval of the time t ′ at which the moving average is taken does not immediately reflect the change of the amplitude data Sb1, and shows an increasing tendency after a certain time delay. Accordingly, the upper limit value C calculated based on the long-term average amplitude value B also shows an increasing tendency after being delayed by the same time as the long-term average amplitude value B. At this time, by appropriately setting a value for calculating the upper limit value C, a state in which the short-term average amplitude value A exceeds the upper limit value C occurs as shown in the region a in FIG. The machining abnormality detection device 50 recognizes that an abnormality has occurred when such a state continues for a predetermined time Ta, and outputs an abnormality detection signal Sa to the alarm output means 16, the control unit 11, and the like.

また、切削加工時に切削工具14が欠損するなどして、切削工具14からの振幅データSb1が瞬間的に激増した場合、短期平均振幅値Aはこの振幅データSb1の変化を反映し急激な増加傾向を示す。しかしながら、移動平均をとる時間t’の間隔が長い長期平均振幅値Bに基づいて算出される第2上限値C’は直ぐには振幅データSb1の変化を反映しないため、図3中のb点に示すように、短期平均振幅値Aが第2上限値C’を超える状態が生じる。加工異常検出装置50はこのような状態が生じると異常が発生したと認識し、瞬時に異常検出信号Saを警報出力手段16、制御部11等に出力する。   Further, when the amplitude data Sb1 from the cutting tool 14 increases instantaneously due to a loss of the cutting tool 14 at the time of cutting, the short-term average amplitude value A reflects a change in the amplitude data Sb1 and rapidly increases. Indicates. However, since the second upper limit value C ′ calculated based on the long-term average amplitude value B having a long interval of the time t ′ at which the moving average is taken does not immediately reflect the change in the amplitude data Sb1, the point b in FIG. As shown, a state occurs in which the short-term average amplitude value A exceeds the second upper limit value C ′. When such a state occurs, the machining abnormality detection device 50 recognizes that an abnormality has occurred, and instantaneously outputs an abnormality detection signal Sa to the alarm output means 16, the control unit 11, and the like.

また、切削加工時に何らかの異常が発生して切削工具14の振動が通常よりも小さくなり、振幅データSb1が減少した場合を考える。このような場合も、短期平均振幅値Aは直ちにその振幅データSb1の変化を反映し減少傾向を示すが、長期平均振幅値B及び、長期平均振幅値Bに基づいて算出される下限値Dは直ぐには振幅データSb1の変化を反映せず、ある時間遅延した後に減少傾向を示す。よって下限値Dを算出する値を適切に設定することで、図3中のc領域に示すように、短期平均振幅値Aが下限値Dを下回る状態が生じる。加工異常検出装置50はこのような状態が所定の時間Tc継続すると異常が発生したと認識し、異常検出信号Saを警報出力手段16、制御部11等に出力する。   Further, consider a case where some abnormality occurs during the cutting process, the vibration of the cutting tool 14 becomes smaller than usual, and the amplitude data Sb1 decreases. Also in such a case, the short-term average amplitude value A immediately reflects the change in the amplitude data Sb1 and shows a decreasing tendency, but the long-term average amplitude value B and the lower limit value D calculated based on the long-term average amplitude value B are Immediately, the change in the amplitude data Sb1 is not reflected, and a decreasing tendency is shown after a certain time delay. Therefore, by appropriately setting a value for calculating the lower limit value D, a state in which the short-term average amplitude value A is lower than the lower limit value D occurs as shown in a region c in FIG. The machining abnormality detection device 50 recognizes that an abnormality has occurred when such a state continues for a predetermined time Tc, and outputs an abnormality detection signal Sa to the alarm output means 16, the control unit 11, and the like.

尚、上記の3つの異常検出時に出力する異常検出信号Saは同一のものとしても良いが、検出する異常によって異なったものとしても良い。検出する異常によって異なった異常検出信号Saを出力するような構成とすれば、それを受信する警報出力手段16、制御部11等がその異常検出信号Saを判別して、例えば、a領域が時間Ta以上継続したときの異常検出信号Saでは警報音とともに切削加工機10を減速しながら停止、短期平均振幅値Aが第2上限値C’を超えたときの異常検出信号Saでは警報音とともに切削加工機10を即停止、c領域が時間Tc以上継続したときの異常検出信号Saでは警報音のみ、といったように発生した異常に応じた適切な処置を行うことができる。また、振幅データSb1は平均値であるため、ノイズ等によって振動データSbに突発的かつ異常な変動が発生しても、これを加工異常として誤検出することはない。   The abnormality detection signals Sa output when the above three abnormalities are detected may be the same, or may be different depending on the abnormality to be detected. If the configuration is such that a different abnormality detection signal Sa is output depending on the abnormality to be detected, the alarm output means 16, the control unit 11 and the like that receive it determine the abnormality detection signal Sa. When the abnormality detection signal Sa continues for more than Ta, the cutting machine 10 is stopped while decelerating with an alarm sound, and when the short-term average amplitude value A exceeds the second upper limit value C ′, the abnormality detection signal Sa cuts with an alarm sound. Appropriate measures can be taken according to the abnormality that has occurred, such as the processing machine 10 being immediately stopped and the abnormality detection signal Sa when the region c continues for a time Tc or longer, only the alarm sound. Further, since the amplitude data Sb1 is an average value, even if a sudden and abnormal fluctuation occurs in the vibration data Sb due to noise or the like, this is not erroneously detected as a machining abnormality.

尚、上記の閾値には、第2上限値C’は設けなくとも、短期平均振幅値Aが下回ると瞬時に異常検出信号Saを出力するような下限値Dよりも小さな値の第2下限値を加えても良い。また、上限値C、下限値Dに関する異常検出の判断を、第2上限値C’と同様に短期平均振幅値Aが上限値C、下限値Dを越えたら瞬時に異常検出信号Saを出力するようにしても良い。更に、必要に応じて第3、第4の上下限値を加えても、上限値、下限値の一方をなくしても良い。   Even if the second upper limit value C ′ is not provided in the above threshold value, the second lower limit value is smaller than the lower limit value D that outputs the abnormality detection signal Sa instantaneously when the short-term average amplitude value A falls below. May be added. In addition, the abnormality detection judgment regarding the upper limit value C and the lower limit value D is output immediately when the short-term average amplitude value A exceeds the upper limit value C and the lower limit value D, similarly to the second upper limit value C ′. You may do it. Furthermore, if necessary, the third and fourth upper and lower limit values may be added, or one of the upper limit value and the lower limit value may be eliminated.

尚、図3では3つの異常判定が連続して発生しているが、実際には異常検出信号Saが出力された時点で、自動もしくは人為的に然るべき処置が行われ異常状態が放置されたまま切削加工が継続されることはない。   In FIG. 3, three abnormality determinations occur continuously. Actually, however, when the abnormality detection signal Sa is output, appropriate measures are taken automatically or artificially and the abnormal state is left unattended. Cutting is not continued.

また、本発明の切削加工における異常検出方法の閾値は図3の上限値C、第2上限値C’、下限値Dに加え、図4に示す空転振幅値Eから算出される空転振幅上限値Fを設けている。この空転振幅上限値Fは、長期平均振幅値Bに基づく閾値の異常判定を行わない領域の設定に用いる Moreover, idle amplitude upper limit threshold value of the abnormality detection method in cutting of the present invention the upper limit value C in Figure 3, the second upper limit value C ', in addition to the lower limit value D, which is calculated from the idling amplitude value E shown in FIG. 4 A value F is provided. The idling amplitude upper limit value F is used for setting a region in which a threshold abnormality determination based on the long-term average amplitude value B is not performed .

図4に示す空転振幅値Eは、ワーク12と切削工具14とが接触していない状態、即ち切削加工がされていない空転時の切削工具14の空転振動データを取得してその絶対値を算出したのち、これを一定時間内で平均化して求めた値である。また、空転振幅上限値Fは空転振幅値Eの値よりも大きくなるように、空転振幅値Eの値に所定の値を加算もしくは乗算して算出するものであり、通常は空転振幅値Eの値の2倍とすることが好ましい。これらの空転振幅上限値F及び空転振幅値Eは、切削加工機10の切削加工開始前に自動的に取得させるか、加工異常検出装置50の初期設定時に自動もしくは手動で設定し、短期平均振幅値A、長期平均振幅値B等とは異なり、切削加工機10の稼動中は更新することは無い。   The idling amplitude value E shown in FIG. 4 is obtained by obtaining the idling vibration data of the cutting tool 14 when the workpiece 12 and the cutting tool 14 are not in contact, that is, when idling is not performed, and calculating the absolute value thereof. Then, this is a value obtained by averaging this within a certain time. Further, the idling amplitude upper limit value F is calculated by adding or multiplying the idling amplitude value E by a predetermined value so as to be larger than the idling amplitude value E. It is preferable that the value is twice the value. These idling amplitude upper limit value F and idling amplitude value E are automatically acquired before the cutting of the cutting machine 10 is started, or are automatically or manually set at the time of initial setting of the machining abnormality detecting device 50, and the short-term average amplitude is set. Unlike the value A, the long-term average amplitude value B, etc., it is not updated while the cutting machine 10 is in operation.

ここで、切削加工機10によるワーク12への切削加工が終了などしてワーク12と切削工具14とが非接触状態となった場合を考える。ワーク12と切削工具14とが非接触状態になると、振幅データSb1は急激に減少する。そして、この振幅データSb1の急激な減少に伴い、短期平均振幅値Aも図4中の点e以降に示すように急激に減少し、空転振幅上限値Fを越えて空転振幅値Eに近接した状態で安定する。このとき、短期平均振幅値Aが空転振幅上限値Fより下回った場合には、長期平均振幅値Bに基づく閾値の異常判定は行わない。よって、下限値Dの異常認識に用いられる時間Tcを、ワーク12と切削工具14とが非接触状態となった時間から短期平均振幅値Aが空転振幅上限値Fと同等になる図3中のd点までの時間よりも長く設定することにより、ワーク12と切削工具14とが非接触状態での下限値Dに基づく異常検出を無効とすることができる。よって、本発明によれば、ワーク12と切削工具14との非接触状態を加工異常として検出することを防止することができる。 Here, let us consider a case where the workpiece 12 and the cutting tool 14 are brought into a non-contact state due to the cutting of the workpiece 12 by the cutting machine 10 being completed. When the workpiece 12 and the cutting tool 14 are not in contact with each other, the amplitude data Sb1 decreases rapidly. As the amplitude data Sb1 rapidly decreases, the short-term average amplitude value A also decreases rapidly as shown after the point e in FIG. 4 and approaches the idling amplitude value E beyond the idling amplitude upper limit F. Stable in state. At this time, when the short-term average amplitude value A falls below the idling amplitude upper limit value F, the threshold abnormality determination based on the long-term average amplitude value B is not performed. Accordingly, the time Tc used for recognizing the abnormality of the lower limit value D is changed from the time when the workpiece 12 and the cutting tool 14 are in the non-contact state, so that the short-term average amplitude value A becomes equal to the idling amplitude upper limit value F in FIG. By setting the time longer than the time up to the point d, the abnormality detection based on the lower limit D when the workpiece 12 and the cutting tool 14 are not in contact with each other can be invalidated. Therefore, according to the onset bright, it is possible to prevent detecting a non-contact state between the workpiece 12 and the cutting tool 14 as an abnormal machining.

また、実際の作業上では切削加工機10による切削加工が終了した後には、自動もしくは手動にてワーク12、切削工具14等の部材交換、切削加工機10への切削プログラムの変更等の交換作業が行われ、再度、切削加工機10による切削加工が開始される。特に上記の交換作業が自動で行われる場合には、この交換作業に要する時間はある程度推定可能である。このため、短期平均振幅値Aが空転振幅上限値Fを下回っている時間が所定の時間Teを超えて継続したときには、切削加工が再開されるような時間(図4中の点f)に、前の切削加工時の短期平均振幅値A、長期平均振幅値B、及び各閾値の値をリセットするような構成とすれば、加工異常検出装置50が連続して切削加工を行う場合でも、切削加工開始時における加工異常の誤検出を減少させ円滑に切削加工を行うことが可能となる。尚、この加工異常検出装置50のリセット指示は、上記のように自動ではなく、加工異常検出装置50に設けられたリセットスイッチを押すなどして、手動で行うことも可能である。   Further, in actual work, after the cutting by the cutting machine 10 is completed, replacement work such as replacement of members such as the workpiece 12 and the cutting tool 14 and change of a cutting program to the cutting machine 10 is performed automatically or manually. Then, cutting by the cutting machine 10 is started again. In particular, when the above replacement work is performed automatically, the time required for the replacement work can be estimated to some extent. For this reason, when the time during which the short-term average amplitude value A is less than the idling amplitude upper limit value F exceeds the predetermined time Te, at a time when the cutting process is resumed (point f in FIG. 4), If the configuration is such that the short-term average amplitude value A, the long-term average amplitude value B, and the respective threshold values at the time of the previous cutting are reset, the cutting can be performed even when the machining abnormality detection device 50 continuously performs the cutting. It is possible to reduce the erroneous detection of processing abnormality at the start of processing and to perform cutting smoothly. Note that the reset instruction of the machining abnormality detection device 50 can be manually performed by pressing a reset switch provided in the machining abnormality detection device 50 instead of being automatic as described above.

更に、リセット動作後に所定の時間Tf経過したにも関わらず短期平均振幅値Aが空転振幅上限値Fを下回っていた場合、加工異常検出装置50は交換作業が適正に行われていないと認識し、異常検出信号Saを警報出力手段16、制御部11等に出力することもできる。この時間Tfのカウントはリセット時に開始されても良いし、図4に示すように時間Teのカウントと同時に開始しても良い。   Further, if the short-term average amplitude value A is below the idling amplitude upper limit F even though the predetermined time Tf has elapsed after the reset operation, the machining abnormality detection device 50 recognizes that the replacement work is not properly performed. The abnormality detection signal Sa can also be output to the alarm output means 16, the control unit 11, and the like. The counting of the time Tf may be started at the time of resetting, or may be started simultaneously with the counting of the time Te as shown in FIG.

尚、上記の時間Teによるリセット指示と、時間Tfによる異常検出は必須のものではない。また、切削加工プログラムによって一時的にワーク12と切削工具14とが接触状態、非接触状態を繰り返すような場合には、時間Teを長く設定することで余分なリセット動作を省略し、より効率よく切削加工を行うことが可能となる。   Note that the reset instruction by the time Te and the abnormality detection by the time Tf are not essential. Further, when the workpiece 12 and the cutting tool 14 are repeatedly in contact state and non-contact state temporarily according to the cutting program, an extra reset operation is omitted by setting the time Te longer, and more efficiently. Cutting can be performed.

以上のように、本発明に係る切削加工における異常検出方法は、短期平均振幅値Aと加工異常の判定に用いられる閾値とが、切削加工中に得られる振幅データSb1を基に随時算出され更新されるため、たとえ振動データSb、振幅データSb1にバラつきが生じたとしても、加工異常の検出にはその影響を受けることが無い。また、同様にして短期平均振幅値Aと閾値との間には時間的なズレが生じることが無い。 As described above, the abnormality detecting how the cutting according to the present invention, a threshold used for determining the short-term average amplitude value A and the processing abnormality is optionally calculated based on the amplitude data Sb1 obtained during cutting Therefore, even if variations occur in the vibration data Sb and the amplitude data Sb1, the detection of the machining abnormality is not affected. Similarly, there is no time lag between the short-term average amplitude value A and the threshold value.

更に、短期平均振幅値A及び長期平均振幅値Bの移動平均をとる時間間隔、閾値を算出するための値等の初期設定が最適化されていれば、従来、切削加工毎に行われていた閾値設定に必要な切削加工前のデータ取得が不要で、極めて効率的に切削加工を行う事ができる。   Furthermore, if the initial settings such as the time interval for taking the moving average of the short-term average amplitude value A and the long-term average amplitude value B, the value for calculating the threshold value, etc. have been optimized, it has been conventionally performed for each cutting process. It is not necessary to acquire data before cutting necessary for threshold setting, and cutting can be performed extremely efficiently.

上記のことから、本発明に係る切削加工における異常検出方法によれば、誤検出が少なく高精度に切削加工における異常を検出することができるのである。 From the above, according to the abnormality detection how the cutting according to the present invention, it is possible to detect an abnormality in cutting the less erroneous detection precision.

尚、加工異常検出装置50の初期設定は手動で入力することもできるし、予めメモリに記録させておいた値を選択して入力することもできる。また、切削加工機10に入力される切削加工プログラムとリンクさせ自動的に設定するようにしても良い。また、本発明は本発明の要旨を逸脱しない範囲で変更して実施することができる。   The initial setting of the machining abnormality detection device 50 can be manually input, or a value recorded in advance in a memory can be selected and input. Further, it may be automatically set by linking with a cutting program input to the cutting machine 10. In addition, the present invention can be modified and implemented without departing from the gist of the present invention.

本発明に係る異常検出方法を適用した加工異常検出装置の構成を示す概略図である。It is the schematic which shows the structure of the processing abnormality detection apparatus to which the abnormality detection method which concerns on this invention is applied . 本発明に係る短期平均振幅値及び長期平均振幅値の算出方法を説明する図である。It is a figure explaining the calculation method of the short-term average amplitude value and long-term average amplitude value which concern on this invention. 本発明に係る異常検出方法を説明する図である。It is a figure explaining the abnormality detection method which concerns on this invention. 本発明に係る異常検出方法を説明する図である。It is a diagram for explaining an abnormality detecting how according to the present invention.

14 切削工具
18 振動データ取得手段
50 加工異常検出装置
Sb 振動データ
Sb1 振幅データ
Sa 異常検出信号
A 短期平均振幅値
B 長期平均振幅値
C 上限値
C’ 第2上限値
D 下限値
E 空転振幅値
F 空転振幅上限値
14 Cutting tools
18 Vibration data acquisition means
50 Processing abnormality detection device
Sb vibration data
Sb1 amplitude data
Sa abnormality detection signal
A Short-term average amplitude value
B Long-term average amplitude value
C Upper limit
C 'second upper limit
D Lower limit
E Idling amplitude value
F idling amplitude upper limit

Claims (3)

切削加工時に生じる振動データから切削加工時の異常を検出する異常検出方法において、
切削加工前に生じる空転振動データを取得するステップと、
前記空転振動データの絶対値を基に空転振幅値を算出するステップと、
前記空転振幅値を基にして空転振幅上限値を算出するステップと、
切削加工時に生じる振動データを取得するステップと、
前記振動データの絶対値を基に振幅データを算出するステップと、
前記振幅データを所定の時間間隔にて移動平均処理を行うことにより短期平均振幅値を算出するステップと、
前記振幅データを前記時間間隔よりも長い時間間隔にて移動平均処理を行うことにより長期平均振幅値を算出するステップと、
前記長期平均振幅値を基にして閾値を算出するステップと、
前記短期平均振幅値と前記閾値とを比較して異常が検出され且つ前記短期平均振幅値が前記空転振幅上限値を超えている場合に異常検知信号を出力し、前記短期平均振幅値が前記空転振幅上限値を下回っている場合には前記閾値による異常検出を無効とするステップと、
を有することを特徴とする切削加工における異常検出方法。
In the abnormality detection method for detecting abnormalities during cutting from vibration data generated during cutting,
Acquiring idling vibration data generated before cutting;
Calculating an idling amplitude value based on an absolute value of the idling vibration data;
Calculating an idle amplitude upper limit based on the idle amplitude value;
Obtaining vibration data generated during cutting;
Calculating amplitude data based on the absolute value of the vibration data;
Calculating a short-term average amplitude value by performing a moving average process on the amplitude data at predetermined time intervals;
Calculating a long-term average amplitude value by performing a moving average process on the amplitude data at a time interval longer than the time interval;
Calculating a threshold based on the long-term average amplitude value;
When an abnormality is detected by comparing the short-term average amplitude value and the threshold value and the short-term average amplitude value exceeds the idling amplitude upper limit value , an anomaly detection signal is output, and the short-term average amplitude value is the idling Invalidating the abnormality detection by the threshold when the amplitude is below the upper limit value ;
A method for detecting an abnormality in cutting, characterized by comprising:
短期平均振幅値が閾値を所定の時間継続して越え且つ前記短期平均振幅値が前記空転振幅上限値を超えている場合に異常検知信号を出力することを特徴とする請求項1記載の切削加工における異常検出方法。 2. The cutting process according to claim 1, wherein an abnormality detection signal is output when the short-term average amplitude value continuously exceeds a threshold value for a predetermined time and the short-term average amplitude value exceeds the idling amplitude upper limit value. Anomaly detection method. 短期平均振幅値が空転振幅上限値を所定の時間継続して下回った場合に、
長期平均振幅値と短期平均振幅値とをリセットするとともに、
リセット後に所定の時間経過しても短期平均振幅値が空転振幅上限値を下回っている場合には、
異常検知信号を出力するようにしたことを特徴とする請求項1または請求項2記載の切削加工における異常検出方法。
When the short-term average amplitude value continues below the upper limit value of the idling amplitude for a predetermined time,
While resetting the long-term average amplitude value and the short-term average amplitude value,
If the short-term average amplitude value is below the upper limit of the idling amplitude even after a predetermined time has elapsed after resetting,
The abnormality detection method in cutting processing according to claim 1 or 2, wherein an abnormality detection signal is output.
JP2006319757A 2006-11-28 2006-11-28 Abnormality detection method in cutting Active JP4860444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319757A JP4860444B2 (en) 2006-11-28 2006-11-28 Abnormality detection method in cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319757A JP4860444B2 (en) 2006-11-28 2006-11-28 Abnormality detection method in cutting

Publications (2)

Publication Number Publication Date
JP2008132558A JP2008132558A (en) 2008-06-12
JP4860444B2 true JP4860444B2 (en) 2012-01-25

Family

ID=39557764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319757A Active JP4860444B2 (en) 2006-11-28 2006-11-28 Abnormality detection method in cutting

Country Status (1)

Country Link
JP (1) JP4860444B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169069A1 (en) 2017-03-16 2018-09-20 Ricoh Company, Ltd. Diagnosis device, diagnosis system, diagnosis method, and program
US11221608B2 (en) 2017-03-16 2022-01-11 Ricoh Company, Ltd. Diagnosis device, diagnosis system, diagnosis method, and computer-readable medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354174B2 (en) * 2008-06-12 2013-11-27 Jfeスチール株式会社 Abnormality diagnosis system for machinery
JP5683826B2 (en) * 2010-03-29 2015-03-11 エスアールエンジニアリング株式会社 Magnetic clamp device
JP5609739B2 (en) * 2011-03-30 2014-10-22 ブラザー工業株式会社 Processing chatter vibration detection device and machine tool
JP6501155B2 (en) * 2014-08-11 2019-04-17 日立金属株式会社 Tool abnormality detection method
JP6501156B2 (en) * 2014-08-11 2019-04-17 日立金属株式会社 Tool abnormality detection method
JP2017007027A (en) * 2015-06-22 2017-01-12 アズビルTaco株式会社 Seating determination method when processing work
WO2017098658A1 (en) 2015-12-11 2017-06-15 株式会社牧野フライス製作所 Machine tool
JP6866217B2 (en) * 2017-04-21 2021-04-28 株式会社ディスコ Cutting equipment
JP6901906B2 (en) * 2017-05-12 2021-07-14 株式会社ディスコ Cutting equipment
JP2020157447A (en) * 2019-03-27 2020-10-01 リコーエレメックス株式会社 Detection device, processing device, and program
CN116175281B (en) * 2023-04-26 2023-06-23 成都瑞雪丰泰精密电子股份有限公司 Vibration abnormality detection method for spindle system of machining center

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329750A (en) * 1992-05-29 1993-12-14 Toshiba Corp Method and device for detecting breakage of tool for nc drilling device
JP2003326438A (en) * 2002-02-28 2003-11-18 Fanuc Ltd Tool anomaly detector
JP2004042208A (en) * 2002-07-12 2004-02-12 Tokyo Seimitsu Co Ltd Machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169069A1 (en) 2017-03-16 2018-09-20 Ricoh Company, Ltd. Diagnosis device, diagnosis system, diagnosis method, and program
US11221608B2 (en) 2017-03-16 2022-01-11 Ricoh Company, Ltd. Diagnosis device, diagnosis system, diagnosis method, and computer-readable medium

Also Published As

Publication number Publication date
JP2008132558A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4860444B2 (en) Abnormality detection method in cutting
CN109799784B (en) Tool wear detection device, detection method thereof and tool wear compensation method
CN103249522B (en) The Cutting Tool Damage sniffer of lathe and Cutting Tool Damage detection method
JPS5890445A (en) Method and apparatus for monitoring abrassion loss of tool
CN113613820B (en) Method for automatic process monitoring in a continuous gear grinding process
US20140123740A1 (en) Working Abnormality Detecting Device and Working Abnormality Detecting Method for Machine Tool
TWI472399B (en) Online cutting tool real-time monitoring method
JP5411055B2 (en) Tool life detection method and tool life detection device
KR102648425B1 (en) The method and device for optimizing machine tool cutting conditions using vibration acceleration
KR101626458B1 (en) Apparatus for detecting malfunction of tool for machine tool
JP2014140918A (en) Cutting vibration inhibition method, arithmetic control device, and machine tool
JP2016135511A (en) Irregular machining detecting apparatus and irregular machining detecting method
JP4919999B2 (en) Tool life detection method and tool life detection device
CN117784718B (en) Cutting system of cutting knife die based on intelligent control
JP6722052B2 (en) Multi-blade tool abnormality detection method
CN107511718A (en) Single product high-volume repeats the intelligent tool state monitoring method of process
JP7396848B2 (en) Detection device and program
US9983567B2 (en) Numerical controller capable of avoiding overheat of spindle
JP7387368B2 (en) Machine tool spindle monitoring device and spindle monitoring method
JP2017209743A (en) Machining device
CN111983972A (en) Abnormality detection device, abnormality detection server, and abnormality detection method
JP6314885B2 (en) Damage prevention system, grinding wheel
JP2008087093A (en) Abnormality detecting device for machine tool
JP2000107987A (en) Tool abnormality detecting device
JP2017064860A (en) Machining abnormality monitoring method and NC machine tool having the function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250