[go: up one dir, main page]

JPS5882569A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS5882569A
JPS5882569A JP56180370A JP18037081A JPS5882569A JP S5882569 A JPS5882569 A JP S5882569A JP 56180370 A JP56180370 A JP 56180370A JP 18037081 A JP18037081 A JP 18037081A JP S5882569 A JPS5882569 A JP S5882569A
Authority
JP
Japan
Prior art keywords
layer
source
gate electrode
poly
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56180370A
Other languages
Japanese (ja)
Inventor
Hirohito Tanabe
田辺 博仁
Takeshi Kuramoto
倉本 毅
Yukinobu Miwa
三輪 行信
Tamotsu Ohata
大畑 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56180370A priority Critical patent/JPS5882569A/en
Publication of JPS5882569A publication Critical patent/JPS5882569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Abstract

PURPOSE:To enhance greatly voltage withstand performance between a drain and a source by a method wherein the poly-Si layer for a gate electrode is laminated on a gate oxide layer interposing an alumina layer between them. CONSTITUTION:The N<+> type source layer 5 is doubly diffused in the P type base layer 4 in an N type Si substrate 1, the poly-Si electrode 3' is provided on the gate oxide layer 2' interposing the alumina layer 6 between them, the oxide layer 2' is accumulated again, openings are formed selectively, and the electrodes S, G are adhered to the source layer 5, the gate electrode 3'. By this constitution, because the alumina layer blocks diffusing impurities, reduction of the withstand voltage according to penetration of impurities to the substrate from the poly-Si layer 3' is not generated when the source is diffused. The alumina layer is effective even when it is provided at the part other than the gate electrode part, density of the surface state is reduced, mobility of two times or more can be obtained, and an influence of Na ions in the SiO2 film is reduced.

Description

【発明の詳細な説明】 l)発明の技術分野 一界効来トランジスタに係シ、特にシリコンゲート電界
効果トランジスタのゲート構造の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION l) Technical Field of the Invention The present invention relates to field effect transistors, and in particular to improvements in the gate structure of silicon gate field effect transistors.

2)  *来の技術 亀界幼米トランジスタを電力用素子として形成する4s
遺に2重拡散型モス構造かめる。これは41図に示すよ
うにN型の基板かドレイン領域(11上にゲート酸化層
(2Jを形成し、これに積層し写真蝕刻が施された多結
晶シリコン層(Jをマスクにしてベース領域(4)およ
びソース領域(5)を2重拡散により形成している。上
記構造を電力用素子にするため、2重拡散によって形成
されるチャンネル長りは一般に3μ以下でW/L(WF
iチャンネル@)を大にして大電流化がはかられている
2) *Future technology: 4S, which uses the Kamekai Yomai transistor as a power device
A double diffusion type moss structure was built. As shown in Figure 41, a gate oxide layer (2J is formed on an N-type substrate or drain region (11), and a polycrystalline silicon layer (J is used as a mask to form a base region (4) and source region (5) are formed by double diffusion.In order to use the above structure as a power device, the channel length formed by double diffusion is generally 3μ or less, W/L (WF
The i-channel @) is enlarged to achieve a large current.

3)従来の問題点 上記Wは数十億以上もめシ、この全域にわたって均一に
3μ以下にするには製造上非常な困難を伴ない歩留を低
下させていた。
3) Conventional Problems The above-mentioned W requires billions or more, and it is very difficult to make it uniformly less than 3μ over this entire area, which lowers the yield.

4) 発明の目的 ζO発@は従来の問題点を改良するためのものである。4) Purpose of the invention ζO departure @ is intended to improve the conventional problems.

5) 構成(I!約) ゲート電極の多結晶シリコン層がアルミナ層を介してr
−)酸化層に積層して構成されたことを特徴とする。
5) Configuration (I! approx.) The polycrystalline silicon layer of the gate electrode is
-) It is characterized by being constructed by laminating on an oxide layer.

6) 実施例(構成、作用をよび効果)第2図に示され
るように、ゲート酸化層(2′)と多結晶シリコンJl
f (3’)とがアルミナ層(6)を介し積層して形成
されている。ゲート電極部の構造の一例はゲート酸化層
(基板上面とアルミナ層との間の層)の層厚が500 
X 、アルミナ層の層厚がsoo! 、多結晶シリコン
層の層厚が5oooXでるる。また、ベース領域(4)
とソース領域(5)の形成には多結晶シリコン層(3つ
をマスクにして、導電型がPのベース領域(4)にはイ
オン打込によるボロンを、NOソース領域(5)にはP
OC4によるリンを夫々順次拡散を施して2重拡散形成
される。さらに、酸化シリコン層を被板しソース領域(
5)とゲート電極(3′)の各一部を露出させる開孔を
施し、これらを導出する金属層を被着しバターニーング
を施してソース電極(S)、ゲート電極(G)を形成し
、基板の反対側主面に設けたドレイン電極(2)ととも
に導出電極群が形成される。このような構造によっての
ちに述べるモストランジスタの電気的特性の向上が達成
され、た。なお、アルiを層はゲート電極部に限らず、
mos分O分化酸化層設けてブロック効果がある。
6) Example (Structure, function and effect) As shown in FIG.
f (3') are laminated with an alumina layer (6) interposed therebetween. An example of the structure of the gate electrode part is that the thickness of the gate oxide layer (layer between the top surface of the substrate and the alumina layer) is 500 mm.
X, the thickness of the alumina layer is soooo! , the thickness of the polycrystalline silicon layer is 500X. Also, the base area (4)
The polycrystalline silicon layer (3) was used as a mask to form the source region (5), and boron was ion-implanted into the base region (4) of P conductivity type, and P into the NO source region (5).
Double diffusion is formed by sequentially diffusing phosphorus using OC4. Furthermore, a silicon oxide layer is applied to the source region (
5) A hole is made to expose a part of each of the gate electrode (3'), a metal layer is deposited to lead these out, and butter kneading is performed to form a source electrode (S) and a gate electrode (G). A lead-out electrode group is formed together with the drain electrode (2) provided on the opposite main surface of the substrate. With this structure, improvements in the electrical characteristics of the MOS transistor, which will be described later, were achieved. Note that the Al i layer is not limited to the gate electrode part.
There is a blocking effect by providing a MOS O differentiated oxidation layer.

7)発明の効果 (a)  界面率位置度を小にすることが可能とl〉、
界面移動度が従来の400aL’Vs  の2倍以上に
大きくでき丸、この丸め、例えばLを3sから6μにし
ても同程度の電流が得られ、素子員造上の困難も少なく
、歩留が向上する。まえ、従来OLでも特性の向上が可
能でらり、らるいはチップの縮小が可能でるる。
7) Effects of the invention (a) It is possible to reduce the interface ratio position.
The interface mobility can be more than twice as large as the conventional 400aL'Vs, and the same current can be obtained even if L is changed from 3s to 6μ, for example, there are fewer difficulties in device fabrication, and the yield is lower. improves. First, it is possible to improve the characteristics of conventional OLs, and it is also possible to reduce the size of the chip.

(b)  アルイナ層線アルイナと酸化シリコンの界面
に負電荷がToに、酸化シリコン中のナトリウムイオン
の影響を少なくするため、Nチャンネルエンハンスメン
ト素子の製造が容易になつ九。
(b) Aluina layer line The negative charge on the interface between Alina and silicon oxide reduces the influence of sodium ions in the silicon oxide, making it easier to manufacture N-channel enhancement devices.

(c)  従来はベース拡散、ソース拡散時に多結晶シ
リコン層に拡散され九不純物がゲート故化層を央き抜は
基板(ドレイン領域)に不所望な拡散層を形成し、ドレ
イン・ソース間耐圧を劣化させる問題がめったが、アル
ミナ層に拡散不純物に対してプロッタ効果が大で耐圧性
能を飛躍的に向上させ歩留も向上する。
(c) Conventionally, during base diffusion and source diffusion, impurities diffused into the polycrystalline silicon layer and left the gate deterioration layer in the center, forming an undesired diffusion layer in the substrate (drain region) and lowering the drain-source breakdown voltage. However, it has a large plotter effect against impurities diffused into the alumina layer, dramatically improving breakdown voltage performance and improving yield.

(d)  放射線耐圧も増大する。(d) Radiation withstand voltage also increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電界効果トランジスタの断面図、第2図
はl実施例の電界効果トランジスタの断面図でるる。 l     ドレイン領域(基板) 2.2゛    ゲート酸化層 3.3′    多結晶シリコン層(ゲート電極)4 
    ベース領域 5     ソース領域 6     アルばす層 代理人 弁理士  井 上 −男 第1図 り 第2図
FIG. 1 is a sectional view of a conventional field effect transistor, and FIG. 2 is a sectional view of a field effect transistor according to an embodiment. l Drain region (substrate) 2.2゛ Gate oxide layer 3.3' Polycrystalline silicon layer (gate electrode) 4
Base area 5 Source area 6 Albas layer agent Patent attorney Inoue - Male 1st diagram 2nd diagram

Claims (1)

【特許請求の範囲】[Claims] ベース領域とソース領域が2重拡散層で形成されたシリ
コンゲート電界効果トランジスタにおいて、ゲート電極
の多結晶シリコン層がアルミナ層を介しゲー)[化鋤に
積層して形成されていることを特徴とするシリコンゲー
ト電界効果トランジスタ。
In a silicon gate field effect transistor in which the base region and the source region are formed of double diffusion layers, the polycrystalline silicon layer of the gate electrode is formed by laminating the polycrystalline silicon layer with an alumina layer interposed therebetween. silicon gate field effect transistor.
JP56180370A 1981-11-12 1981-11-12 Field effect transistor Pending JPS5882569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180370A JPS5882569A (en) 1981-11-12 1981-11-12 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180370A JPS5882569A (en) 1981-11-12 1981-11-12 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS5882569A true JPS5882569A (en) 1983-05-18

Family

ID=16082051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180370A Pending JPS5882569A (en) 1981-11-12 1981-11-12 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS5882569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561311A (en) * 1988-03-25 1996-10-01 Kabushiki Kaisha Toshiba Semiconductor memory with insulation film embedded in groove formed on substrate
JP2004228172A (en) * 2003-01-20 2004-08-12 Fuji Electric Device Technology Co Ltd Semiconductor device
US7441560B2 (en) 2002-11-29 2008-10-28 Keihin Corporation Solenoid valve for fuel cell
DE112004001489B4 (en) * 2003-08-18 2017-10-05 Globalfoundries Inc. FIELD EFFECT TRANSISTOR AND METHOD FOR FORMING A FET

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561311A (en) * 1988-03-25 1996-10-01 Kabushiki Kaisha Toshiba Semiconductor memory with insulation film embedded in groove formed on substrate
US7441560B2 (en) 2002-11-29 2008-10-28 Keihin Corporation Solenoid valve for fuel cell
JP2004228172A (en) * 2003-01-20 2004-08-12 Fuji Electric Device Technology Co Ltd Semiconductor device
JP4529355B2 (en) * 2003-01-20 2010-08-25 富士電機システムズ株式会社 Semiconductor device
DE112004001489B4 (en) * 2003-08-18 2017-10-05 Globalfoundries Inc. FIELD EFFECT TRANSISTOR AND METHOD FOR FORMING A FET

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
EP0586835A1 (en) High speed, low gate/drain capacitance dmos device
JPS63102264A (en) Thin film semiconductor device
JPH0237777A (en) vertical field effect transistor
JPS5882569A (en) Field effect transistor
JPH06163906A (en) Insulated gate semiconductor device and fabrication thereof
JPH05251694A (en) Mos type semiconductor device and its manufacture
JPH0555593A (en) Method for manufacturing insulated gate field effect transistor
JPH0521800A (en) Soimosfet
JPH03214740A (en) Manufacturing method of vertical MOS field effect transistor
JP3526090B2 (en) Method for manufacturing semiconductor device
JPH01196176A (en) MIS type semiconductor device
JPS5788772A (en) Vertical mis semiconductor device
JPS63305566A (en) Semiconductor device and its manufacturing method
JPH0475388A (en) Semiconductor device and manufacture thereof
JPH0234938A (en) Semiconductor device
KR100362187B1 (en) Thin Film Transistor Manufacturing Method
JPS57145372A (en) Manufacture of semiconductor device
JPH0555589A (en) Insulated-gate field-effect transistor and its manufacture
JPS60229373A (en) Semiconductor device
KR100325444B1 (en) Low-drain drain transistor manufacturing method
JP2765142B2 (en) Method for manufacturing semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPS5816567A (en) Method for manufacturing insulated gate field effect semiconductor device
JPH0736441B2 (en) Method for manufacturing vertical field effect transistor