JPS5882569A - Field effect transistor - Google Patents
Field effect transistorInfo
- Publication number
- JPS5882569A JPS5882569A JP56180370A JP18037081A JPS5882569A JP S5882569 A JPS5882569 A JP S5882569A JP 56180370 A JP56180370 A JP 56180370A JP 18037081 A JP18037081 A JP 18037081A JP S5882569 A JPS5882569 A JP S5882569A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- source
- gate electrode
- poly
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000009792 diffusion process Methods 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 4
- 229910001415 sodium ion Inorganic materials 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 230000035515 penetration Effects 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
Abstract
Description
【発明の詳細な説明】
l)発明の技術分野
一界効来トランジスタに係シ、特にシリコンゲート電界
効果トランジスタのゲート構造の改良に関する。DETAILED DESCRIPTION OF THE INVENTION l) Technical Field of the Invention The present invention relates to field effect transistors, and in particular to improvements in the gate structure of silicon gate field effect transistors.
2) *来の技術
亀界幼米トランジスタを電力用素子として形成する4s
遺に2重拡散型モス構造かめる。これは41図に示すよ
うにN型の基板かドレイン領域(11上にゲート酸化層
(2Jを形成し、これに積層し写真蝕刻が施された多結
晶シリコン層(Jをマスクにしてベース領域(4)およ
びソース領域(5)を2重拡散により形成している。上
記構造を電力用素子にするため、2重拡散によって形成
されるチャンネル長りは一般に3μ以下でW/L(WF
iチャンネル@)を大にして大電流化がはかられている
。2) *Future technology: 4S, which uses the Kamekai Yomai transistor as a power device
A double diffusion type moss structure was built. As shown in Figure 41, a gate oxide layer (2J is formed on an N-type substrate or drain region (11), and a polycrystalline silicon layer (J is used as a mask to form a base region (4) and source region (5) are formed by double diffusion.In order to use the above structure as a power device, the channel length formed by double diffusion is generally 3μ or less, W/L (WF
The i-channel @) is enlarged to achieve a large current.
3)従来の問題点
上記Wは数十億以上もめシ、この全域にわたって均一に
3μ以下にするには製造上非常な困難を伴ない歩留を低
下させていた。3) Conventional Problems The above-mentioned W requires billions or more, and it is very difficult to make it uniformly less than 3μ over this entire area, which lowers the yield.
4) 発明の目的 ζO発@は従来の問題点を改良するためのものである。4) Purpose of the invention ζO departure @ is intended to improve the conventional problems.
5) 構成(I!約)
ゲート電極の多結晶シリコン層がアルミナ層を介してr
−)酸化層に積層して構成されたことを特徴とする。5) Configuration (I! approx.) The polycrystalline silicon layer of the gate electrode is
-) It is characterized by being constructed by laminating on an oxide layer.
6) 実施例(構成、作用をよび効果)第2図に示され
るように、ゲート酸化層(2′)と多結晶シリコンJl
f (3’)とがアルミナ層(6)を介し積層して形成
されている。ゲート電極部の構造の一例はゲート酸化層
(基板上面とアルミナ層との間の層)の層厚が500
X 、アルミナ層の層厚がsoo! 、多結晶シリコン
層の層厚が5oooXでるる。また、ベース領域(4)
とソース領域(5)の形成には多結晶シリコン層(3つ
をマスクにして、導電型がPのベース領域(4)にはイ
オン打込によるボロンを、NOソース領域(5)にはP
OC4によるリンを夫々順次拡散を施して2重拡散形成
される。さらに、酸化シリコン層を被板しソース領域(
5)とゲート電極(3′)の各一部を露出させる開孔を
施し、これらを導出する金属層を被着しバターニーング
を施してソース電極(S)、ゲート電極(G)を形成し
、基板の反対側主面に設けたドレイン電極(2)ととも
に導出電極群が形成される。このような構造によっての
ちに述べるモストランジスタの電気的特性の向上が達成
され、た。なお、アルiを層はゲート電極部に限らず、
mos分O分化酸化層設けてブロック効果がある。6) Example (Structure, function and effect) As shown in FIG.
f (3') are laminated with an alumina layer (6) interposed therebetween. An example of the structure of the gate electrode part is that the thickness of the gate oxide layer (layer between the top surface of the substrate and the alumina layer) is 500 mm.
X, the thickness of the alumina layer is soooo! , the thickness of the polycrystalline silicon layer is 500X. Also, the base area (4)
The polycrystalline silicon layer (3) was used as a mask to form the source region (5), and boron was ion-implanted into the base region (4) of P conductivity type, and P into the NO source region (5).
Double diffusion is formed by sequentially diffusing phosphorus using OC4. Furthermore, a silicon oxide layer is applied to the source region (
5) A hole is made to expose a part of each of the gate electrode (3'), a metal layer is deposited to lead these out, and butter kneading is performed to form a source electrode (S) and a gate electrode (G). A lead-out electrode group is formed together with the drain electrode (2) provided on the opposite main surface of the substrate. With this structure, improvements in the electrical characteristics of the MOS transistor, which will be described later, were achieved. Note that the Al i layer is not limited to the gate electrode part.
There is a blocking effect by providing a MOS O differentiated oxidation layer.
7)発明の効果
(a) 界面率位置度を小にすることが可能とl〉、
界面移動度が従来の400aL’Vs の2倍以上に
大きくでき丸、この丸め、例えばLを3sから6μにし
ても同程度の電流が得られ、素子員造上の困難も少なく
、歩留が向上する。まえ、従来OLでも特性の向上が可
能でらり、らるいはチップの縮小が可能でるる。7) Effects of the invention (a) It is possible to reduce the interface ratio position.
The interface mobility can be more than twice as large as the conventional 400aL'Vs, and the same current can be obtained even if L is changed from 3s to 6μ, for example, there are fewer difficulties in device fabrication, and the yield is lower. improves. First, it is possible to improve the characteristics of conventional OLs, and it is also possible to reduce the size of the chip.
(b) アルイナ層線アルイナと酸化シリコンの界面
に負電荷がToに、酸化シリコン中のナトリウムイオン
の影響を少なくするため、Nチャンネルエンハンスメン
ト素子の製造が容易になつ九。(b) Aluina layer line The negative charge on the interface between Alina and silicon oxide reduces the influence of sodium ions in the silicon oxide, making it easier to manufacture N-channel enhancement devices.
(c) 従来はベース拡散、ソース拡散時に多結晶シ
リコン層に拡散され九不純物がゲート故化層を央き抜は
基板(ドレイン領域)に不所望な拡散層を形成し、ドレ
イン・ソース間耐圧を劣化させる問題がめったが、アル
ミナ層に拡散不純物に対してプロッタ効果が大で耐圧性
能を飛躍的に向上させ歩留も向上する。(c) Conventionally, during base diffusion and source diffusion, impurities diffused into the polycrystalline silicon layer and left the gate deterioration layer in the center, forming an undesired diffusion layer in the substrate (drain region) and lowering the drain-source breakdown voltage. However, it has a large plotter effect against impurities diffused into the alumina layer, dramatically improving breakdown voltage performance and improving yield.
(d) 放射線耐圧も増大する。(d) Radiation withstand voltage also increases.
第1図は従来の電界効果トランジスタの断面図、第2図
はl実施例の電界効果トランジスタの断面図でるる。
l ドレイン領域(基板)
2.2゛ ゲート酸化層
3.3′ 多結晶シリコン層(ゲート電極)4
ベース領域
5 ソース領域
6 アルばす層
代理人 弁理士 井 上 −男
第1図
り
第2図FIG. 1 is a sectional view of a conventional field effect transistor, and FIG. 2 is a sectional view of a field effect transistor according to an embodiment. l Drain region (substrate) 2.2゛ Gate oxide layer 3.3' Polycrystalline silicon layer (gate electrode) 4
Base area 5 Source area 6 Albas layer agent Patent attorney Inoue - Male 1st diagram 2nd diagram
Claims (1)
コンゲート電界効果トランジスタにおいて、ゲート電極
の多結晶シリコン層がアルミナ層を介しゲー)[化鋤に
積層して形成されていることを特徴とするシリコンゲー
ト電界効果トランジスタ。In a silicon gate field effect transistor in which the base region and the source region are formed of double diffusion layers, the polycrystalline silicon layer of the gate electrode is formed by laminating the polycrystalline silicon layer with an alumina layer interposed therebetween. silicon gate field effect transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56180370A JPS5882569A (en) | 1981-11-12 | 1981-11-12 | Field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56180370A JPS5882569A (en) | 1981-11-12 | 1981-11-12 | Field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5882569A true JPS5882569A (en) | 1983-05-18 |
Family
ID=16082051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56180370A Pending JPS5882569A (en) | 1981-11-12 | 1981-11-12 | Field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5882569A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5561311A (en) * | 1988-03-25 | 1996-10-01 | Kabushiki Kaisha Toshiba | Semiconductor memory with insulation film embedded in groove formed on substrate |
JP2004228172A (en) * | 2003-01-20 | 2004-08-12 | Fuji Electric Device Technology Co Ltd | Semiconductor device |
US7441560B2 (en) | 2002-11-29 | 2008-10-28 | Keihin Corporation | Solenoid valve for fuel cell |
DE112004001489B4 (en) * | 2003-08-18 | 2017-10-05 | Globalfoundries Inc. | FIELD EFFECT TRANSISTOR AND METHOD FOR FORMING A FET |
-
1981
- 1981-11-12 JP JP56180370A patent/JPS5882569A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5561311A (en) * | 1988-03-25 | 1996-10-01 | Kabushiki Kaisha Toshiba | Semiconductor memory with insulation film embedded in groove formed on substrate |
US7441560B2 (en) | 2002-11-29 | 2008-10-28 | Keihin Corporation | Solenoid valve for fuel cell |
JP2004228172A (en) * | 2003-01-20 | 2004-08-12 | Fuji Electric Device Technology Co Ltd | Semiconductor device |
JP4529355B2 (en) * | 2003-01-20 | 2010-08-25 | 富士電機システムズ株式会社 | Semiconductor device |
DE112004001489B4 (en) * | 2003-08-18 | 2017-10-05 | Globalfoundries Inc. | FIELD EFFECT TRANSISTOR AND METHOD FOR FORMING A FET |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2585331B2 (en) | High breakdown voltage planar element | |
EP0586835A1 (en) | High speed, low gate/drain capacitance dmos device | |
JPS63102264A (en) | Thin film semiconductor device | |
JPH0237777A (en) | vertical field effect transistor | |
JPS5882569A (en) | Field effect transistor | |
JPH06163906A (en) | Insulated gate semiconductor device and fabrication thereof | |
JPH05251694A (en) | Mos type semiconductor device and its manufacture | |
JPH0555593A (en) | Method for manufacturing insulated gate field effect transistor | |
JPH0521800A (en) | Soimosfet | |
JPH03214740A (en) | Manufacturing method of vertical MOS field effect transistor | |
JP3526090B2 (en) | Method for manufacturing semiconductor device | |
JPH01196176A (en) | MIS type semiconductor device | |
JPS5788772A (en) | Vertical mis semiconductor device | |
JPS63305566A (en) | Semiconductor device and its manufacturing method | |
JPH0475388A (en) | Semiconductor device and manufacture thereof | |
JPH0234938A (en) | Semiconductor device | |
KR100362187B1 (en) | Thin Film Transistor Manufacturing Method | |
JPS57145372A (en) | Manufacture of semiconductor device | |
JPH0555589A (en) | Insulated-gate field-effect transistor and its manufacture | |
JPS60229373A (en) | Semiconductor device | |
KR100325444B1 (en) | Low-drain drain transistor manufacturing method | |
JP2765142B2 (en) | Method for manufacturing semiconductor device | |
JP2658163B2 (en) | Method of manufacturing MIS type semiconductor device | |
JPS5816567A (en) | Method for manufacturing insulated gate field effect semiconductor device | |
JPH0736441B2 (en) | Method for manufacturing vertical field effect transistor |