[go: up one dir, main page]

JPS58215169A - Method and device for binary coding picture signal - Google Patents

Method and device for binary coding picture signal

Info

Publication number
JPS58215169A
JPS58215169A JP57099026A JP9902682A JPS58215169A JP S58215169 A JPS58215169 A JP S58215169A JP 57099026 A JP57099026 A JP 57099026A JP 9902682 A JP9902682 A JP 9902682A JP S58215169 A JPS58215169 A JP S58215169A
Authority
JP
Japan
Prior art keywords
adder
error
luminance value
value
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57099026A
Other languages
Japanese (ja)
Other versions
JPH0354511B2 (en
Inventor
Hideki Morita
秀樹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP57099026A priority Critical patent/JPS58215169A/en
Publication of JPS58215169A publication Critical patent/JPS58215169A/en
Publication of JPH0354511B2 publication Critical patent/JPH0354511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Input (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To obtain a binary-coded signal within a short arithmetic processing time, by finding an error of a binary-coded luminance value of an already determined picture element of the peripheral of an aimed picture element with respect to a correction luminance value, and finding a correction luminance value of the aimed picture element by multiplying said error by a specified weight coefficient in order to compare the correction luminance value with a threshold. CONSTITUTION:A coefficient which can be expressed in the form of 2-N (N: natural number) is used as a weight coefficient of an average error minimum method. An analog picture signal which is an input read by a CCD, etc., is performed digital conversion 1 and subtraction processing 2 and inputted in an adder 3. Initially, (a), (b) and (c) are set to zeros, and a luminance value J1,1 related to the first picture element (1,1) is added with nothing and inputted in a latch 19. Thereafter, the J1,1 is latched to the latch 19 and inputted in an adder 4, and simultaneously a J2,1 is inputted in the adder 3. In the same manner, the J1,1 is continuously shifted and supplied to a comparator 17 out of a latch 28. An I1,1 is found, and an E1,1 is calculated. The E1,1 is led to an arithmetic processing part 18 to be supplied to ech adder. As it is clear from the numbers of adders 3-7 and 9-16 and stage numbers of shift registers 8 and 14, numbers of error addition is gradually increased, and the comparator 17 outputs a binary-coded signal IX,Y corresponding to the negative/positive of a J'X,Y.

Description

【発明の詳細な説明】 本発明は、平均誤差最小法を利用した両信号の2値化方
法及び2値化装置に関し、更に詳しくは、楓「1画素周
辺の既決定画素に43 tノる2値化脛度値の昨1[輝
度値に対重る誤差を求め、該誤差に所定の申み係数を掛
t)、これを着目画素の実際の輝度値に加締しで着目画
素の修正輝度値を求め、該修正輝度値と閾値との比較に
より2値化信号を得ることを特徴とした画信号の2値化
方法及び2賄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a binarization method and a binarization device for both signals using the minimum average error method. The value of the binarized brightness value (calculate the error that weighs against the brightness value, multiply the error by a predetermined coefficient), and adjust this to the actual brightness value of the pixel of interest to obtain the value of the pixel of interest. The present invention relates to a method and device for binarizing an image signal, characterized in that a corrected luminance value is obtained and a binarized signal is obtained by comparing the corrected luminance value with a threshold value.

ディザ法によれば、白黒の2レベルで中間調を実質的に
表現できるのC1最近イの手法が注目され、ファクシミ
リ等には採用され始めている。このアイザ法には、組織
的デイリ”法とランダムディザ法があるが、ハードウェ
ア構成の間中さから、前当の組織的fイリ“法が用いら
れ、後者のランダムディザ法は、はとんど用いられてい
ない。
According to the dither method, halftones can be substantially expressed at two levels, black and white.Recently, this method has attracted attention and is beginning to be adopted in facsimiles and the like. There are two types of Iser methods: the systematic daily method and the random dither method.Due to the intermediate nature of the hardware configuration, the systematic daily method is used, and the latter random dither method is unique. It is hardly used.

ところで、画像伝送シス−71\においては、入出力装
置間の画素密度の相違から画素密度変換が必要になる。
By the way, in the image transmission system 71\, pixel density conversion is required due to the difference in pixel density between input and output devices.

又、編集機能を持ったインテリジェント」ピー等でも、
特定の領域に画像を割付【ノる場合に画素密度変換が心
間になる。しかし、上記組織的ディザ法により得られる
1411画像では、画素密度変換によって、モアレによ
る画質劣化が1しる。、111ら、組織的ディザ法では
、mxm画素の閾値マトリックスを多値画像の対応する
画素の値と比較して、その2値化表現を行うため、例え
ば、全面一定i疫の画像は、この2値化により、…×m
画素のパターンが繰返し配置されるiiI像に変換され
る。一般の多値画像に対づるディザ画像においても、上
記一定輝度の場合のような周期性が当然残されている。
Also, even with intelligent "P" etc. that have editing functions,
When an image is allocated to a specific area, pixel density conversion becomes center-to-center. However, in the 1411 images obtained by the systematic dither method described above, image quality deterioration due to moiré is reduced by 1 due to pixel density conversion. , 111 et al., the systematic dithering method compares the mxm pixel threshold matrix with the corresponding pixel values of the multivalued image and performs its binary representation. By binarization,...×m
The pattern of pixels is converted into a iii image in which the pattern is repeated. Even in a dithered image corresponding to a general multivalued image, periodicity as in the case of constant luminance described above naturally remains.

このため、組織的デ゛イヂ画像に画素密度変換を/11
Mと、変換画像にIアレが発生する。
For this reason, a pixel density transformation of /11 is applied to the systematic digital image.
M and I irregularities occur in the converted image.

−h、ランダムディザ画像では、画像に周期性が与えら
れ工いない。従って、画素密度変換には、このランダム
ディザ画像が適しており、特にランダムディザ法の一つ
である平均誤差最小法によるディザ画像は、画素密度変
換に適しているlごけでなく、階調表現においてら優れ
ている。このよう’、’X @ ’t11性があるにも
拘わらず、平均誤差最小法が用いられていないのは、上
述の如く、そのハードウェア構成が複雑であることと、
演算時間がかかるためである。
-h, Random dither images give periodicity to the image and are not distorted. Therefore, this random dither image is suitable for pixel density conversion, and in particular, a dither image based on the minimum mean error method, which is one of the random dither methods, is suitable for pixel density conversion, rather than a gradation image. Excellent in expression. The reason why the minimum average error method is not used despite this 'X @ 't11 property is that its hardware configuration is complex, as mentioned above.
This is because calculation time is required.

本発明は、このような事情に鑑みてなされたもので、平
均誤差最小法の隠み係数とし工、2″N(但し、Nは自
然数)の形で表現rきるものを用いることにより、ハー
ドウェア構成を簡単化でき、部枠時間も短縮できる両信
号の2鎖化方法及び2値化装置を実現したちのである。
The present invention has been made in view of these circumstances, and uses a hidden coefficient of the minimum average error method, which can be expressed in the form of 2''N (where N is a natural number), to improve the hardware efficiency. We have realized a two-chain method and binarization device for both signals that can simplify the hardware configuration and shorten the processing time.

以下、図面を参照し本発明の詳細な説明づる。Hereinafter, the present invention will be described in detail with reference to the drawings.

先ず、本発明方法の説明に先だも、平均誤差最小法につ
いて)ホベる。平均誤差最小法は、着目画素周辺の′既
決窓画素にお【Jる2値化i度値の、條正p度値に対す
る誤差を求め、該誤差に所定の重み係数を計り0重画素
の実際の輝度値に加粋し、着目画素の修正輝度値を求め
、該修1F輝度値と閾値とを比較づるもので、具体的に
は、第1図(×方向が主走査方向、V 15向が副走査
方向である)に示づように、多値画像の画素(X 、 
V )の実際の輝度値をJx、y(0−R)、当該画素
(x 、 y )の2値化輝度値をIX、V(O或いは
R)、当該画素(x 、 y )の修正輝度値をJ ’
X pV N誤差をEX、V=J’X+y  Ix、y
とし、重み係数のマトリックス(Ai、i>を、例えば
、 どづれば、修正輝II Wi J ’x 、yは次の(
2)式から求められる。
First, before explaining the method of the present invention, let us first discuss the minimum average error method. The minimum average error method calculates the error of the binarized i-degree value of the determined window pixels around the pixel of interest with respect to the positive p-degree value, and calculates the error by a predetermined weighting coefficient to calculate the error of the 0-fold pixel. The corrected luminance value of the pixel of interest is calculated by adding it to the actual luminance value, and the modified 1F luminance value is compared with the threshold value. The direction is the sub-scanning direction), the pixels (X,
The actual brightness value of V) is Jx, y (0-R), the binarized brightness value of the pixel (x, y) is IX, V (O or R), the corrected brightness of the pixel (x, y) value J'
X pV N error EX, V=J'X+y Ix, y
Let the matrix of weighting coefficients (Ai,i> be
2) It can be found from Eq.

J’x+y=JX 、 V +入Aij・FX +、i
 −3、V  +−i −3・・・(2)1 イし又、2値伯号1x、yは、このJ ’X 、yの値
に応じて次のように決められる。
J'x+y=JX, V + input Aij・FX +, i
-3, V +-i -3 (2) 1 In addition, the binary numbers 1x and y are determined as follows according to the values of J'X and y.

lx 、 y =(訓J’x・・: R、/ 2呪き;
 J ’xp・・R7/2のとき     °°(3)
但し、画素(3,3)に至る前Cは、J’x+yの針幹
ができないため、この画素まぐの條IF輝度値は、例え
ば、J’xpy=JX 、Vとみなし、(3)式よりl
x 、yを求める。
lx, y = (Kun J'x...: R, / 2 curse;
J'xp...When R7/2 °°(3)
However, before C leading to pixel (3, 3), the needle stem of J'x+y is not formed, so the IF brightness value of this pixel is assumed to be, for example, J'xpy=JX,V, and the formula (3) is More l
Find x and y.

以上の方法が平均誤差最小法Cあるが、この方法におい
′Cは、(2)式に示すように、△ii・Fx−+j−
3,V+i −3という掛枠が必要である6重み係数の
マj・リツクス(Δii)として、(1)式の如きもの
を選ぶと、この掛枠に際して一般的な1卦幹器を用いな
ければならず、」−記Aijの例では、1/48.3/
48.5/48.7/48をt赴けるためのtit輝器
が必要になり、ハードウェア構成がWi雑である土、部
枠速度が極めて低い。
The above method is the minimum average error method C, but in this method, 'C' is expressed as △ii・Fx−+j− as shown in equation (2).
If we choose a matrix (Δii) of 6 weighting coefficients that requires a hanging frame of 3. In the example of Aij, 1/48.3/
48.5/48.7/48 is required, the hardware configuration is rough, and the frame speed is extremely low.

そこで、本発明方法では、上記掛枠を一般的’、K I
f) tij器を用いることなく実f−■”Cきるよう
に、申み係数のマトリックス(Aij)の要素を2−N
(但し、Nは自然数)の形C表現Cきる値に選んでいる
(尚、全要素の和は、1若しくはイれに近い伯となって
いる)。この重み係数の7トリツクス(Aij>としC
1次のものを例として挙げることかぐきる。
Therefore, in the method of the present invention, the above-mentioned hanging frame is
f) The elements of the matrix of coefficients (Aij) are reduced to 2-N so that the actual f-■"C can be obtained without using a tij
(However, N is a natural number) is selected to be a value that can be expressed in the form C (note that the sum of all elements is 1 or a fraction close to it). 7 tricks of this weighting coefficient (Aij> and C
I can give an example of the first order.

このように選べば、ディジタル部枠の特性を生かし、簡
単に掛輝を行うことができる。
If selected in this way, it is possible to easily perform hanging by taking advantage of the characteristics of the digital part frame.

本発明の2値化装謂は、上記21i111(化方法を具
体的に実施づるための装置で、第2図にぞの一実施例の
ブロック図を示した。この実施例の説明によって、本発
明の2値化方法及び2値化装置の特徴を明らかにりる。
The binarization system of the present invention is an apparatus for concretely implementing the above-mentioned 21i111 (binarization method), and a block diagram of one embodiment is shown in FIG. The features of the binarization method and binarization device will be clarified.

第2図にJ3いて、1はCOD等によって読み取られた
画信号をディジタル変換4る△/D変換器C1本実施例
ぐは、7ヒツ1−の)゛イジタル信号(O〜127)が
8ビツト加粋器1に出力される。加算器1は、前処理と
してΔ/D変換器1の出力から64(RX2)を減4゛
るためのものぐ、64の補数へ=11000000 (
2値数)が加数として与えられている(第3図参照)。
In FIG. 2, J3 1 converts the image signal read by COD etc. into digital signal 4 △/D converter C1 In this embodiment, the digital signal (O to 127) is 8 It is output to the bit adder 1. The adder 1 is used to subtract 64 (RX2) from the output of the Δ/D converter 1 by 4 as preprocessing, to the complement of 64 = 11000000 (
(binary number) is given as the addend (see Figure 3).

3へ・7はラッチ19〜22を介し゛(1t1列接続さ
れた第2〜第6の8ビット加粋器C,重み係数のマトリ
ックス<Ai、i)の第1行目の重み係数に基づく誤差
項をそれぞれ第1の加算器2.ラッチ19〜22の出力
に汀線するためのものである。8は加算器7に接続され
”lこ8ピツ1〜のジノ1〜レジスタで、その段数はn
−5である。但し、nは一走査線i゛のφ了化数(画素
数)である。9〜13はラップ23〜?6を介して縦列
接続された第7〜第11の8ビット加粋器゛c、重み係
数の7トリツクス(Aij>の第2行目の重み係数に基
づく誤差項をイねぞれシフトレジスタ8.ラッチ23〜
26の出力に加11iJるためのものである。
3 and 7 are based on the weight coefficients in the first row of the latches 19 to 22 (second to sixth 8-bit adders C connected in one column, weight coefficient matrix <Ai, i). The error terms are respectively added to first adders 2. It is used to shore wire the outputs of the latches 19-22. 8 is a register connected to the adder 7, and the number of stages is n.
-5. However, n is the number of pixels (number of pixels) of one scanning line i'. 9-13 is lap 23~? The seventh to eleventh 8-bit adders ゛c are cascade-connected through 6, and the error terms based on the weighting coefficients in the second row of 7 tricks of weighting coefficients (Aij>) are transferred to the shift register 8. .Latch 23~
This is for adding 11iJ to the output of 26.

14は加算器13に接続された8ビツトのシフトレジス
タで、前記シフトレジスタ8と同一構成のものである。
Reference numeral 14 denotes an 8-bit shift register connected to the adder 13, which has the same configuration as the shift register 8.

15及び16はラッチ27を介して接続されており、季
み係数のマトリックス(Aij)の第3行目の重み係数
に基づき誤差項をそれぞれシフトレジスタ14.ラッチ
27の出力に加綽するための8ビツト加輝器、17は最
終段の加算器16の出力(J’x、y)をラッチ28を
介して受は閾値(本実施例では加算器1を設けているた
め閾値は零)と比較器る比較器である。本実施例の比較
器17は、lx 、 yだりでなくEx、yをら出ツノ
するものである。
15 and 16 are connected via a latch 27, and shift the error term to the shift register 14. An 8-bit brightener 17 receives the output (J'x, y) of the adder 16 at the final stage through a latch 28 and a threshold value (in this embodiment, the adder 1 The threshold value is zero). The comparator 17 of this embodiment detects Ex and y rather than lx and y.

即ち、 J’x+y≧0のとき lx、y=1 [×+ V −LJ ’x、y −64J ’x +y
 < 0のどき tx 、 y =。
That is, when J'x+y≧0, lx,y=1 [×+ V -LJ 'x,y -64J'x +y
<0 throat tx, y =.

FX 、 V = J ’x 、y + 64をイれぞ
れ出力りるもので、その具体的構成は、第4図に示づ如
く、極め(簡単なもの(ある。
It outputs FX, V = J 'x, and y + 64, respectively, and its specific configuration is extremely simple (some examples exist), as shown in Figure 4.

J’x+y≧0のときの[×、yは、正確には、EX 
 、   y  =、) ’x、y  −(RX  r
X  、   V     64  )−−J ’X 
rV−(127X1−64)=J’x、y  63 となるが、MF、 3.IFの如< E X 、 V 
= J ’X 、y−64と近似しても、特に問題は生
じず、むしろ、第4図の如き簡単な構成の比較器17が
らEX。
When J'x+y≧0, [×, y are EX
, y =, ) 'x, y - (RX r
X, V64) --J'X
rV-(127X1-64)=J'x,y63, but MF, 3. As in IF < EX, V
= J'

■を求められるので、このように構成した方が好都合で
ある。
(2) is required, so this configuration is more convenient.

第4図の構成の比較器17では、J ’X #Vの正負
が最終段の加算器16の出力J’xpyのMSBにJ、
つ(決まることに着目し、それをインバータに作え]×
、yを+7でいる。又、Ex 、yの演算においては、
64の補数が2進数11000000で表わされ、64
が2進数oioo。
In the comparator 17 having the configuration shown in FIG. 4, the positive and negative values of J'X #V are J,
(Focus on what is determined and make it into an inverter) ×
, y is +7. Also, in the calculation of Ex and y,
The complement of 64 is represented by the binary number 11000000, and 64
is the binary number oioo.

o o o ’r表わされるため、1ビツト目(1−S
’B )から6ビツト目までは、J ’x pvと同一
の値をそのままEx、yのそのビットの出力とし、−上
位2ビツトに゛ついてのみ演算すればよいことになる。
Since o o o 'r is expressed, the 1st bit (1-S
From bit 'B) to the 6th bit, the same value as J'x pv is used as the output of that bit of Ex, y, and only the upper two bits need to be calculated.

この上(172ビツトの演算を具体的1こ行ったのが1
4表である。
On top of this (one specific 172-bit operation is 1
There are 4 tables.

この表から、[×、yの上位2ビツトは同一の値をとり
、しかも、J ’x 、yの7ビツト目と逆の値をとる
ことがわかる。このため、第4図の構成では、J ’x
 pYの第7ビツト目の出力をインバータを介して、E
x、yの上位2ビツトの信号としている。
From this table, it can be seen that the upper two bits of [x, y take the same value and, moreover, take the opposite value to the 7th bit of J'x, y. Therefore, in the configuration shown in FIG. 4, J'x
The output of the 7th bit of pY is sent to E through an inverter.
The signals are the upper two bits of x and y.

比較器17の−hの出力!×、■は図示しない記録装置
等に送られるが、EX、Vは演梓部18に入力さiする
。本実施例Cは、重み係数のマトリックス(Δi、i)
としC1前記例示の内の(b)のものを用いている。そ
こで、演算部18内には、10−3.10’、10″5
をEX 、 Vに11)Gノるための回路部分18a 
、18b 、18Cが設けられCおり、回路部18aの
出力は加算器5.10〜12.16に与えられ、回路部
18bの出力は加l器4,6.9.13.15に与えら
れ、更に、回路部18cの出力は加算器3.7に与えら
れている。
-h output of comparator 17! × and ■ are sent to a recording device (not shown), while EX and V are input to the amplification section 18. In this embodiment C, a matrix of weighting coefficients (Δi, i)
For example, C1 uses (b) of the above examples. Therefore, in the calculation unit 18, 10-3.10', 10''5
EX, V to 11) Circuit part 18a for G
. , Furthermore, the output of the circuit section 18c is given to an adder 3.7.

本発明では、重み係数△ijが2横の形になつ(いるた
め、回路部分18a〜18Cでの訃梓は、甲にビットを
シフトさせるだけでよい。このため、その構成は極めて
簡単なものとなっている。第5図は、回路部分18aの
構成を示したもので、第7ビツト目より下位のビットを
、3ビツト分、F位ビット側にシフトしたものである。
In the present invention, the weighting coefficient △ij is in the form of 2 horizontal lines (2), so any failure in the circuit portions 18a to 18C can be achieved by simply shifting the bits to the first side.For this reason, the configuration is extremely simple. FIG. 5 shows the configuration of the circuit portion 18a, in which the bits lower than the 7th bit are shifted by 3 bits to the F-order bit side.

回路部分18b、18cLこついても、同様に構成され
る。従って、一般の掛篩器は不要Cある。
The circuit portions 18b and 18cL are constructed in the same manner. Therefore, a general hanging sieve is unnecessary.

以上のような構成の発明装置において、入力である1)
1−1グ画信号は、△/[)変換器1でディジタル変換
され、加算器2で減粋処理されて加算器3にパノノされ
る。当初、イ0ロ、へは「0」にレッ]〜されており、
最初の画素(1゜1)についCのli!度値J+ 、+
は、何も加算され釦、ラッチ19にパノノされる。次に
、ラッチ19にJl、1がラッチされ加算器4に入力さ
れると共に、J2,1が加算器3に入力される。
In the inventive device configured as above, the input is 1)
The 1-1 image signal is digitally converted by a Δ/[) converter 1, subjected to a reduction process by an adder 2, and then sent to an adder 3. Initially, I0ro and I were set to "0",
C li for the first pixel (1°1)! Degree value J+, +
, nothing is added to the button and latch 19. Next, Jl,1 is latched in the latch 19 and input to the adder 4, and J2,1 is input to the adder 3.

同様に次から次にJ+ 、 Iはジノ1〜されていき、
ラッf 28より比較器17に供給される。そしC,イ
こで、1菫、1が求められ、E + + +の粋出もな
される。更に、El、1は演算部18に導かれ、各加誇
器に供給される。この時、加算器3〜7.9〜16の個
数及びシフトレジスタ8,14の段数から明らかなよう
に、各加算器には下表の画信号が入力されている。
Similarly, one after another, J+ and I are changed to Jino 1~,
The signal is supplied to the comparator 17 from the latch f28. Then, at C and A, 1 violet and 1 are found, and E + + + is also derived. Furthermore, El,1 is guided to the calculation section 18 and supplied to each exaggerator. At this time, as is clear from the number of adders 3 to 7 and 9 to 16 and the number of stages of shift registers 8 and 14, the image signals shown in the table below are input to each adder.

従って、この回路では1 、ノー・1−、ノー、1 ノ J2   、  1  =J  ?  、   +  
 十 Δ 3   *   2   F  l   +
   1J3+I−J3+I  +A3+2E2+1+
A!  +  t  E +  ・ 1と徐々に誤差の
加算の個数が増えていき、Jl。
Therefore, in this circuit, 1, no, 1-, no, 1, J2, 1 = J? , +
10 Δ 3 * 2 F l +
1J3+I-J3+I +A3+2E2+1+
A! + t E + ・1 and the number of error additions gradually increases until Jl.

3以降は J’xzy=Jx、 V +T、Aij−EX +J 
 3 、 V +1 3J が加算器16(ラッチ28)から出ツノされることにな
り、比較器17はこのJ’x、yの正負に対1芯した2
値信号1x、yを出ツノづる。
After 3, J'xzy=Jx, V +T, Aij-EX +J
3, V +1 3J will be output from the adder 16 (latch 28), and the comparator 17 will output 2
Output value signals 1x, y.

又、この回路では、演輝部18の出力■、◎。Also, in this circuit, the outputs of the brightening section 18 are ■ and ◎.

のを直接各加綽器に入力せず、切換えによって[01を
入力できるようになっているので、周辺領域の画素にa
3いCは、例えば、前人かられかるように、J’l、I
による誤差項■、◎、(3+を J   (TL −+
   )  、   Q、   Ja、   (1(Q
=  電  、?)に加nしないように1夫している。
01 can be input by switching instead of inputting directly to each adder.
3 C is, for example, J'l, I, as taught by my predecessor.
The error terms due to ■, ◎, (3+ are J (TL −+
) , Q, Ja, (1(Q
= electricity,? ) I have a single husband so that I don't get married.

即ら、比較器17の人力が、 (a)J’+、Vのときは、 加算器6.7,12.13の誤差項入 力を、 (b)J2.Vのときは、 加算器7.13の誤差項入力を、 (C)J’n、yのときは、 加算器3,4.9.10.15−.1.6の誤差項入力
を、 (d ) J ’(,71−菫>、yのときは、加算器
3.9.15の誤差項八ツノを、イれぞれrOJにする
ようにしている。
That is, when the human power of the comparator 17 is (a) J'+, V, the error term input of the adders 6.7 and 12.13 is (b) J2. When V, input the error term of adder 7.13, (C)J'n, when y, adder 3, 4.9.10.15-. When the error term input in 1.6 is (d) J'(,71-violet>,y, the eight error terms of adder 3.9.15 are set to rOJ, respectively. There is.

勿論、画像の周辺領域ではほとんど問題なしとしで、1
−記の如く周辺画素においてことさら上記(a )〜(
(1)に挙げた加n器に101を入ノJせずに、そのま
まh1綽を実行づることもできる。
Of course, there are almost no problems in the peripheral area of the image, and 1
- Especially in the peripheral pixels as shown in (a) to (
It is also possible to execute h1 as is without inputting 101 to the adder listed in (1).

尚、ジノ1−レジスタ8.14のシフ1−パルスやラッ
チ19〜28のタイミングパルス等は、図示しない制御
部から」−開動作を達成するようなタイミングで出力さ
れる。
Incidentally, the shift 1 pulse of the register 8.14 and the timing pulses of the latches 19 to 28 are outputted from a control section (not shown) at timings to achieve the opening operation.

Y−記の本賢明装謂によれば、一般の掛算器を用いるこ
となく、平均誤差最小法に基づく2値化を行える。木馳
置C一番演算時間がかかるのは8ビツト加篩!?iiC
あるが、主1アリ−・ルックアヘッド方式の八L LJ
等を使用りれば、例えば36nsで演紳できる。従って
、数M HzのA/D変換器の出力に同期してtx、y
を出力する装置も容易に構成rきる。
According to the book Y-book, it is possible to perform binarization based on the minimum average error method without using a general multiplier. The 8-bit addition sieve takes the longest calculation time! ? iiC
There is, but the main 1-ary lookahead method is 8L LJ.
If you use , for example, you can perform the performance in 36 ns. Therefore, tx, y is synchronized with the output of several MHz A/D converter.
A device that outputs this can also be easily configured.

以上説明したように、本発明によれば、ハードウェア構
成を簡単化でき、演評時間も短縮できる画信号の2値化
方法及び2値化装置を実現Cきる。
As described above, according to the present invention, it is possible to realize an image signal binarization method and a binarization apparatus that can simplify the hardware configuration and shorten the performance time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図LJ画素の配列の説明図、第2図は本光明方法を
実現する装置(本発明装置の一実施例)の構成図、第3
図は第2図中の加算器2の構成図、第4図は第2図中の
比較器17の構成図、第5図は第2図中の演輝部18(
回路部分18a)の構成図である。 1・・・Al1)変換器 2〜7.9〜13.15.16・・・加算器8.14・
・・シフトレジスタ 17・・・比較器    18・・・部枠部18a 、
18b 、1(llc −・・回路部分19〜28・・
・ラップ 特許出願人  小西六写真工業株式会社代  理  人
   弁理F  井  島  停  泊第1図 尾3図
Fig. 1 is an explanatory diagram of the arrangement of LJ pixels, Fig. 2 is a configuration diagram of a device (one embodiment of the device of the present invention) for realizing the present Komei method, and Fig. 3 is a diagram illustrating the arrangement of LJ pixels.
2 is a block diagram of the adder 2 in FIG. 2, FIG. 4 is a block diagram of the comparator 17 in FIG. 2, and FIG. 5 is a block diagram of the comparator 18 (
It is a block diagram of circuit part 18a). 1...Al1) Converter 2-7.9-13.15.16...Adder 8.14.
...Shift register 17...Comparator 18...Part frame part 18a,
18b, 1(llc--Circuit portions 19-28...
・Wrap patent applicant Roku Konishi Photo Industry Co., Ltd. Agent Patent attorney F Ijima Figure 1 Figure tail 3

Claims (2)

【特許請求の範囲】[Claims] (1) 着目画素周辺の既決定画素における2ts化輝
度値の修正輝度値に対する誤差を求め、該誤差に所定の
重み係数を掛11 、これを着目画素の実際の輝PXm
に加綿しで着目画素の修正輝度値を求め、該修正輝度値
と閾値との比較により2値化信号を得る画信号の2伯化
り法において、前記重み係数として、2南(但し、Nは
自然数)の形で表現できるものを用いたことを特徴とす
る画信号の2値化方法。
(1) Calculate the error of the 2ts converted luminance value in the predetermined pixels around the pixel of interest with respect to the corrected luminance value, multiply the error by a predetermined weighting coefficient11, and calculate this as the actual luminance PXm of the pixel of interest.
In the image signal directization method, in which a corrected brightness value of the pixel of interest is obtained by adding weight to the pixel of interest, and a binarized signal is obtained by comparing the corrected brightness value with a threshold value, the weighting factor is 2min (however, A method for binarizing an image signal, characterized in that it uses a signal that can be expressed in the form (N is a natural number).
(2) 入力画信号をディジタル変換するA/D変換器
と、該A/D変換器の出力段側に前記重み係数のマトリ
ックスに対応した配列状態で縦列接続されIこ複数の加
算器及びシフトレジスタと、曲間複数の加算器の内の最
終段の加算器から出力される修正輝度値ど閾値とを比較
しl’ 2 M化(1gを出力りる比較器と、前記2値
化信号の前記修正輝度値に苅する誤差に重み係数をl)
け、得られた信号を前記加算器に供給す°る演鋒部とを
口備し、前記重み係数は2南(但し、Nは自然数)の形
で表現できる値に選ばれていることを特徴と覆る画信号
の2値化装置。
(2) An A/D converter that digitally converts an input image signal, and a plurality of adders and shifters connected in cascade in an arrangement corresponding to the matrix of weighting coefficients on the output stage side of the A/D converter. The corrected luminance value outputted from the last adder among the plurality of adders between songs is compared with the threshold value, and the comparator outputs 1g, and the binarized signal A weighting factor is applied to the error applied to the corrected luminance value of l)
and an operator for supplying the obtained signal to the adder, and the weighting coefficient is selected to be a value that can be expressed in the form of 2min (where N is a natural number). A binarization device for image signals that correspond to features.
JP57099026A 1982-06-08 1982-06-08 Method and device for binary coding picture signal Granted JPS58215169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099026A JPS58215169A (en) 1982-06-08 1982-06-08 Method and device for binary coding picture signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099026A JPS58215169A (en) 1982-06-08 1982-06-08 Method and device for binary coding picture signal

Publications (2)

Publication Number Publication Date
JPS58215169A true JPS58215169A (en) 1983-12-14
JPH0354511B2 JPH0354511B2 (en) 1991-08-20

Family

ID=14235759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099026A Granted JPS58215169A (en) 1982-06-08 1982-06-08 Method and device for binary coding picture signal

Country Status (1)

Country Link
JP (1) JPS58215169A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231274A (en) * 1984-05-02 1985-11-16 Seiko Epson Corp Rapid picture processor using average error minimizing method
JPS6152777A (en) * 1984-08-21 1986-03-15 Seiko Epson Corp High speed picture processing device using minimum average error method
JPS61194580A (en) * 1985-02-25 1986-08-28 Nippon Telegr & Teleph Corp <Ntt> Binary coding method for light and shade image
JPS63155956A (en) * 1986-12-19 1988-06-29 Matsushita Electric Ind Co Ltd Picture signal processor
JPH02100463A (en) * 1988-10-06 1990-04-12 Fuji Xerox Co Ltd Half-tone image forming device
US5621542A (en) * 1994-01-20 1997-04-15 Canon Kabushiki Kaisha Image processing apparatus and method with weighting of error data generated in quantization
US7339698B1 (en) 1998-07-02 2008-03-04 Canon Kabushiki Kaisha Image processing method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668833A (en) * 1979-11-09 1981-06-09 Fujitsu Ltd Shift process system by multiplier
JPS579170A (en) * 1980-06-19 1982-01-18 Ricoh Co Ltd Method and apparatus for picture processing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668833A (en) * 1979-11-09 1981-06-09 Fujitsu Ltd Shift process system by multiplier
JPS579170A (en) * 1980-06-19 1982-01-18 Ricoh Co Ltd Method and apparatus for picture processing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231274A (en) * 1984-05-02 1985-11-16 Seiko Epson Corp Rapid picture processor using average error minimizing method
JPS6152777A (en) * 1984-08-21 1986-03-15 Seiko Epson Corp High speed picture processing device using minimum average error method
JPS61194580A (en) * 1985-02-25 1986-08-28 Nippon Telegr & Teleph Corp <Ntt> Binary coding method for light and shade image
JPS63155956A (en) * 1986-12-19 1988-06-29 Matsushita Electric Ind Co Ltd Picture signal processor
JPH02100463A (en) * 1988-10-06 1990-04-12 Fuji Xerox Co Ltd Half-tone image forming device
US5621542A (en) * 1994-01-20 1997-04-15 Canon Kabushiki Kaisha Image processing apparatus and method with weighting of error data generated in quantization
US7339698B1 (en) 1998-07-02 2008-03-04 Canon Kabushiki Kaisha Image processing method and apparatus

Also Published As

Publication number Publication date
JPH0354511B2 (en) 1991-08-20

Similar Documents

Publication Publication Date Title
US5172247A (en) High speed digital error diffusion process for continuous tone image-to-binary image conversion
US5285271A (en) Digital color matrixing circuit
JPS58215169A (en) Method and device for binary coding picture signal
US4839719A (en) Color image reading apparatus with an improved sensor
US5321529A (en) Color image processing with smoothing of differential components and addition of the result to a specific color component
US5539476A (en) Color signal processing with luminance signal correction
JPH0322116B2 (en)
JPH0698157A (en) Halftone image forming device
JP3774523B2 (en) Image processing apparatus and control method thereof
JP2578912B2 (en) Notch removal device
JP3461247B2 (en) Image processing apparatus and image processing method
JPS60114086A (en) Picture profile emphasis system
JP2946217B2 (en) Image processing device
JP2658031B2 (en) Color image reading method
JPH03219978A (en) Image processing device
JPS61115177A (en) Image signal filtering method and device
JP2592066B2 (en) Image processing device
JPH06292014A (en) Picture processor
JPS61273073A (en) Edge emphasis processor of color gradation picture information
JP2568187B2 (en) Color masking method
JPH1028223A (en) Image data processor
KR100469287B1 (en) Hardware structure for materializing error diffusion algorithm
JPS61136175A (en) Picture processor
JPH10243231A (en) Image data processor
JPS61157166A (en) Picture processing device