[go: up one dir, main page]

JPH1140201A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH1140201A
JPH1140201A JP9207301A JP20730197A JPH1140201A JP H1140201 A JPH1140201 A JP H1140201A JP 9207301 A JP9207301 A JP 9207301A JP 20730197 A JP20730197 A JP 20730197A JP H1140201 A JPH1140201 A JP H1140201A
Authority
JP
Japan
Prior art keywords
polymer
electrolyte
adhesive
negative electrode
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9207301A
Other languages
Japanese (ja)
Inventor
Junichi Toriyama
順一 鳥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9207301A priority Critical patent/JPH1140201A/en
Publication of JPH1140201A publication Critical patent/JPH1140201A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery which maintains contact with an interface between a positive and/or negative electrode and a polymer electrolyte and is good in charging and discharging at a high rate by adhering the positive and/or negative electrode to the polymer electrolyte with an adhesive. SOLUTION: Since a polymer electrolyte is adhered to a positive and/or negative electrode by an adhesive in a lithium battery, the electrolyte can follow expansion and shrinkage of electrode volume, and its cycle characteristic is improved compared to a conventional one. In this case, if the adhesive connecting the positive and/or negative electrode to the polymer electrolyte has ion conductivity, ions can move in the adhesive and food charging and discharging electrolyte is obtained. Furthermore, if this adhesive and the polymer electrolyte are made of a same material, ions can move more uniformly. A polymer which swells or expands through electrolyte, e.g. polyvinyliden fluoride is preferable for the polymer electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質電池に
関する。
[0001] The present invention relates to a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】リチウム電池およびリチウムイオン電池
は、電解質に水溶液を使用した鉛蓄電池、ニッケルカド
ミウム電池、ニッケル水素電池などと異なり、電解質に
可燃性の有機電解液を使用するため、その安全性に問題
がある。従って、有機電解液の代わりに、より化学反応
性に乏しい固体高分子電解質を用いることによって電池
の安全性を向上させることが試みられている。また、電
池形状の柔軟性、製造工程の簡易化、製造コストの削減
等の目的においても固体高分子電解質の適用が試みられ
ている。
2. Description of the Related Art Unlike lithium-ion batteries, nickel-cadmium batteries and nickel-metal hydride batteries which use an aqueous solution for the electrolyte, lithium batteries and lithium-ion batteries use a flammable organic electrolyte for the electrolyte. There's a problem. Therefore, it has been attempted to improve the safety of the battery by using a solid polymer electrolyte having less chemical reactivity instead of the organic electrolyte. Also, application of solid polymer electrolytes has been attempted for the purpose of flexibility of battery shape, simplification of manufacturing process, reduction of manufacturing cost, and the like.

【0003】イオン伝導性高分子としては、ポリエチレ
ンオキシド、ポリプロピレンオキシドなどのポリエーテ
ルとアルカリ金属塩との錯体が多く研究されている。し
かし、ポリエーテルは十分な機械的強度を保ったまま高
いイオン導電性を得ることが困難であり、しかも導電率
が温度に大きく影響されるために室温で十分な導電率が
得られないことから、ポリエーテルを側鎖に有するくし
型高分子、ポリエーテル鎖と他のモノマーの共重合体、
ポリエーテルを側鎖に有するポリシロキサンまたはポリ
フォスファゼン、ポリエーテルの架橋体などが試みられ
ている。
As an ion conductive polymer, a complex of a polyether such as polyethylene oxide or polypropylene oxide with an alkali metal salt has been studied. However, polyether is difficult to obtain high ionic conductivity while maintaining sufficient mechanical strength, and since conductivity is greatly affected by temperature, sufficient conductivity cannot be obtained at room temperature. , A comb polymer having a polyether in a side chain, a copolymer of a polyether chain and another monomer,
Attempts have been made to use polysiloxane or polyphosphazene having a polyether in a side chain, a crosslinked product of polyether, or the like.

【0004】さらに、高分子に電解液を含浸させること
によってゲル状の固体電解質を製作し、リチウム系電池
に適用することも試みられている。このゲル状の固体電
解質において使用されている高分子には、ポリアクリロ
ニトリル、ポリフッ化ビニリデン、ポリ塩化ビニル等が
ある。また、ニトリルゴム、スチレンブタジエンゴム、
ポリブタジエン、ポリビニルピロリドン等のラテックス
の乾燥によって高分子膜を製作し、これに電解液を含浸
させることによってリチウムイオン導電性高分子膜を製
作することも試みられている。
Further, it has been attempted to produce a gel-like solid electrolyte by impregnating a polymer with an electrolytic solution and to apply it to a lithium-based battery. Polymers used in the gel solid electrolyte include polyacrylonitrile, polyvinylidene fluoride, polyvinyl chloride and the like. Also, nitrile rubber, styrene butadiene rubber,
Attempts have also been made to produce a polymer membrane by drying a latex such as polybutadiene and polyvinylpyrrolidone, and impregnate the polymer membrane with an electrolyte to produce a lithium ion conductive polymer membrane.

【0005】[0005]

【発明が解決しようとする課題】リチウムイオン電池に
おいては、正極または負極に充放電によって体積の膨張
および収縮を繰り返す活物質、例えばLiCoO2 、L
iNiO2 等の層状化合物、またはLiMn2 4 等の
スピネル化合物の正極活物質、カーボン、グラファイト
等の層状負極活物質が使用されている。そのため、充放
電を繰り返すと、正極または負極と高分子電解質との界
面が解離してしまうという問題点があった。
In a lithium ion battery, an active material such as LiCoO 2 , L, which repeatedly expands and contracts in volume by charging and discharging a positive electrode or a negative electrode.
A positive electrode active material of a layered compound such as iNiO 2 or a spinel compound such as LiMn 2 O 4 , and a layered negative electrode active material such as carbon or graphite are used. Therefore, when charge and discharge are repeated, the interface between the positive electrode or the negative electrode and the polymer electrolyte is dissociated.

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題点に
鑑みなされたものであり、正極および/または負極と、
高分子電解質とが、接着剤で接着されていることを備え
たことを特徴とし、充放電を繰り返しても、正極または
負極と高分子電解質との界面の接触を維持し、高率での
充放電が良好な非水電解質電池を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a positive electrode and / or a negative electrode;
It is characterized in that the polymer electrolyte is adhered with an adhesive, so that even when charge and discharge are repeated, contact at the interface between the positive electrode or the negative electrode and the polymer electrolyte is maintained, and charging at a high rate is performed. An object of the present invention is to provide a non-aqueous electrolyte battery having good discharge.

【0007】[0007]

【発明の実施の形態】従来の高分子電解質を利用したリ
チウムイオン電池では、正極または負極と高分子電解質
が接着されていないため、充放電を繰り返すと、正極ま
たは負極の体積の膨張および収縮に高分子電解質が追随
できず、充放電性能が著しく低下するという欠点があっ
た。本発明による電池は、高分子電解質が接着剤によっ
て正極または負極と接着されているため、電極の体積の
膨張および収縮に追随することが可能となり、従来の高
分子電解質リチウムイオン電池よりもサイクル特性が向
上する。このとき、正極または負極と高分子電解質とを
接着している接着剤が、イオン導電性を有している場合
は接着剤の中もイオンの移動が可能であり、良好な充放
電特性を得ることができる。さらに、正極または負極と
高分子電解質とを接着している接着剤と高分子電解質が
同じ材料からできている場合は、より均一なイオンの移
動が可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional lithium ion battery using a polymer electrolyte, since the positive electrode or the negative electrode is not bonded to the polymer electrolyte, repeated charging and discharging causes expansion and contraction of the volume of the positive electrode or the negative electrode. There was a drawback that the polymer electrolyte could not follow and the charge / discharge performance was significantly reduced. The battery according to the present invention can follow the expansion and contraction of the volume of the electrode because the polymer electrolyte is bonded to the positive electrode or the negative electrode with an adhesive, and the cycle characteristics are higher than those of the conventional polymer electrolyte lithium ion battery. Is improved. At this time, when the adhesive bonding the positive electrode or the negative electrode and the polymer electrolyte has ionic conductivity, ions can be moved even in the adhesive, and good charge / discharge characteristics are obtained. be able to. Further, when the adhesive for bonding the positive electrode or the negative electrode and the polymer electrolyte and the polymer electrolyte are made of the same material, more uniform ion transfer becomes possible.

【0008】[0008]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments.

【0009】(実施例1)コバルト酸リチウム(LiC
oO2 )70wt%、アセチレンブラック6wt%、ポ
リフッ化ビニリデン(PVdF)9wt%、n−メチル
−2−ピロリドン(NMP)15wt%を混合したもの
を、厚さ20μmのアルミニウム箔上に塗布し、150
℃で乾燥してNMPを蒸発させた。以上の操作をアルミ
ニウム箔の両面におこなった後に、プレスして正極板と
した。プレス後の正極板の厚さは、170μmであっ
た。
Example 1 Lithium cobaltate (LiC)
A mixture of 70 wt% of oO 2 ), 6 wt% of acetylene black, 9 wt% of polyvinylidene fluoride (PVdF), and 15 wt% of n-methyl-2-pyrrolidone (NMP) is applied on an aluminum foil having a thickness of 20 μm.
Dry at <RTIgt; C </ RTI> to evaporate the NMP. After the above operation was performed on both surfaces of the aluminum foil, it was pressed to obtain a positive electrode plate. The thickness of the positive electrode plate after pressing was 170 μm.

【0010】つぎに、グラファイト76wt%、PVd
F9wt%、NMP15wt%を混合したものを、厚さ
14μmの銅箔上に塗布し、150℃で乾燥してNMP
を蒸発させた。以上の操作を銅箔の両面に対しておこな
った後に、プレスして負極板とした。プレス後の負極の
厚さは190μmであった。
Next, 76% by weight of graphite, PVd
A mixture of 9 wt% of F9 and 15 wt% of NMP is coated on a 14 μm-thick copper foil, dried at 150 ° C., and dried.
Was evaporated. After performing the above operation on both surfaces of the copper foil, it was pressed to obtain a negative electrode plate. The thickness of the negative electrode after pressing was 190 μm.

【0011】また、高分子電解質層は、つぎのように製
作した。平均分子量60,000のPVdF粉末12g
を88gのNMPに溶解した。この溶液を水中に浸漬す
ることによってNMPを洗い流し、多孔度60%、厚さ
25μmの微孔性PVdF膜とした。この膜を、後述す
るように、電解液によって膨潤させることにより、高分
子電解質とした。
The polymer electrolyte layer was manufactured as follows. 12 g of PVdF powder having an average molecular weight of 60,000
Was dissolved in 88 g of NMP. This solution was immersed in water to wash out the NMP, yielding a microporous PVdF membrane having a porosity of 60% and a thickness of 25 μm. This film was swollen with an electrolytic solution to form a polymer electrolyte, as described later.

【0012】以上のように準備した正極板と負極板上に
それぞれ、接着剤としてエチレン−酢酸ビニル共重合体
を塗布し、その間に微孔性PVdF膜を介在させてホッ
トメルトさせた後巻回し、高さ47.0mm、幅22.
2mm、厚さ6.4mmの角型のステンレスケース中に
挿入した。この電池の内部に、エチレンカーボネート
(EC)とジエチルカーボネート(DEC)とを体積比
率1:1で混合し、1mol/lのLiPF6 を溶解さ
せた電解液を真空注液によって加え、微孔性PVdF膜
を電解液によって膨潤させることにより、高分子電解質
とした。このようにして、公称容量400mAhの、本
発明による電池(A)を製作した。
An ethylene-vinyl acetate copolymer is applied as an adhesive on the positive electrode plate and the negative electrode plate prepared as described above, hot-melted with a microporous PVdF film interposed therebetween, and then wound. , Height 47.0 mm, width 22.
It was inserted into a square stainless steel case having a thickness of 2 mm and a thickness of 6.4 mm. Inside the battery, ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1 and an electrolyte in which 1 mol / l of LiPF 6 was dissolved was added by vacuum injection to give a microporous solution. The polymer electrolyte was obtained by swelling the PVdF membrane with the electrolytic solution. Thus, a battery (A) according to the present invention having a nominal capacity of 400 mAh was manufactured.

【0013】(実施例2)実施例2として、接着剤とし
てポリエチレンオキサイドを使用したこと以外は上記実
施例1と同一構成である公称容量400mAhの、本発
明による電池(B)を製作した。
Example 2 As Example 2, a battery (B) according to the present invention having a nominal capacity of 400 mAh and having the same configuration as that of Example 1 except that polyethylene oxide was used as an adhesive was manufactured.

【0014】(実施例3)実施例3として、接着剤とし
てPVdFを使用したこと以外は上記実施例1と同一構
成である公称容量400mAhの、本発明による電池
(C)を製作した。
Example 3 As Example 3, a battery (C) according to the present invention having a nominal capacity of 400 mAh and having the same configuration as that of Example 1 except that PVdF was used as an adhesive was manufactured.

【0015】(比較例1)比較例1として、接着剤を使
用せず、正極板と負極板の間に微孔性PVdF膜を介在
させてホットメルトすることなしに巻回したこと以外は
上記実施例1と同一構成である、公称容量が400mA
hの、従来から公知の電池(a)を製作した。
(Comparative Example 1) As Comparative Example 1, except that the adhesive was not used, the microporous PVdF film was interposed between the positive electrode plate and the negative electrode plate, and the film was wound without hot-melt. Nominal capacity is 400 mA, same configuration as 1
h, a conventionally known battery (a) was manufactured.

【0016】これらの電池(A)、(B)、(C)およ
び(a)を用いて、25℃において、1CAの電流で
4.1Vまで充電し、続いて4.1Vの定電圧で3時間
充電した後、1CAの電流で2.75Vまで放電した。
Using these batteries (A), (B), (C) and (a), the battery was charged to 4.1 V at a current of 1 CA at 25 ° C., and then charged at a constant voltage of 4.1 V to 3 V. After charging for an hour, the battery was discharged to 2.75 V at a current of 1 CA.

【0017】図1は、これら電池を用いて、上記条件で
充放電をおこなったときの放電曲線を示す図である。図
から、本発明による電池(A)、(B)および(C)
は、従来から公知の電池(a)よりも、優れた放電特性
を示していることが理解される。特に、高分子電解質と
接着剤が同じ材料からできている電池(C)において
は、イオンの拡散が均一におこなわれているため、もっ
とも良好な放電特性が得られた。
FIG. 1 is a diagram showing a discharge curve when charging and discharging are performed under the above conditions using these batteries. From the figure it can be seen that the batteries (A), (B) and (C) according to the invention
It can be understood that shows excellent discharge characteristics as compared with the conventionally known battery (a). In particular, in the battery (C) in which the polymer electrolyte and the adhesive were made of the same material, the best discharge characteristics were obtained because the diffusion of ions was performed uniformly.

【0018】また、図2は、図1と同じ条件で充放電を
繰り返したときの放電容量の推移を比較したものであ
る。図から、本発明による電池(A)、(B)および
(C)は、従来から公知の電池(a)と比べて、優れた
サイクル特性を示すことが理解される。
FIG. 2 shows a comparison of changes in discharge capacity when charging and discharging are repeated under the same conditions as in FIG. From the figure, it is understood that the batteries (A), (B) and (C) according to the present invention show superior cycle characteristics as compared with the conventionally known battery (a).

【0019】前記実施例では、微孔性ポリマー膜を製作
する方法として、ポリマーをNMPに溶解した溶液を水
中に浸漬することによってNMPを除去しているが、ポ
リマーを溶解する溶媒はNMPに限定されるものではな
く、ポリマーを溶解するものであればよい。また、ポリ
マーを溶解した溶液を浸漬する液体は水に限定されるも
のではなく、ポリマーを溶解することができなくて、か
つポリマーを溶解する溶媒と相溶性があるものであれば
よい。このような組み合わせのポリマー、ポリマーを溶
解する溶媒、およびポリマーを溶解した溶液を浸漬する
液体とを使用してポリマー溶液から溶媒を除去した場合
には、除去された溶媒が存在していた部分が孔となって
微孔性ポリマー膜を製作することができる。
In the above embodiment, as a method for producing a microporous polymer membrane, NMP is removed by immersing a solution of a polymer in NMP in water, but the solvent for dissolving the polymer is limited to NMP. What is necessary is just what melt | dissolves a polymer instead of what is performed. Further, the liquid in which the solution in which the polymer is dissolved is immersed is not limited to water, and any liquid that does not dissolve the polymer and is compatible with the solvent in which the polymer is dissolved may be used. When the solvent is removed from the polymer solution using such a combination of the polymer, the solvent for dissolving the polymer, and the liquid for immersing the solution in which the polymer is dissolved, the portion where the removed solvent was present is reduced. The microporous polymer film can be manufactured as a hole.

【0020】有孔性ポリマー電解質の製作のための有孔
性ポリマーの製作法としては、上記の方法以外に、延伸
法、微粒子を加えたポリマーから微粒子を除去する方
法、高温のポリマー溶液を冷却することによってポリマ
ーを固化させ液を除去する方法、無孔性のポリマー膜を
製作した後にステンレスの細針を用いて物理的に貫通孔
あける方法を試みた。これらのうちで、ステンレスの細
針を用いる方法によって製作した電池は湿式法を用いた
場合と同様に優れた充放電特性を示したが、それ以外の
方法においては十分な多孔度が得られなかった。
As a method for producing a porous polymer for producing a porous polymer electrolyte, in addition to the above-mentioned methods, a stretching method, a method of removing fine particles from a polymer to which fine particles are added, and a method of cooling a high-temperature polymer solution are used. A method of solidifying the polymer to remove the liquid and a method of manufacturing a nonporous polymer film and then physically drilling through holes using a fine stainless steel needle were attempted. Among these, batteries manufactured by a method using fine needles of stainless steel exhibited excellent charge / discharge characteristics as in the case of using a wet method, but sufficient porosity was not obtained by other methods. Was.

【0021】また、有孔性ポリマー電解質に使用する高
分子は、上記のPVdF以外にもポリ塩化ビニル(PV
C)、ポリアクリロニトリル(PAN)、ポリエチレン
オキシド、ポリプロピレンオキシド、ポリメチルメタク
リレート、ポリメチルアクリレート、ポリビニルアルコ
ール、ポリメタクリロニトリル、ポリビニルアセテー
ト、ポリビニルピロリドン、ポリエチレンイミン、ポリ
ブタジエン、ポリスチレンおよびポリイソプレンを用い
て有孔性ポリマー電解質およびそれを使用した電池の製
作を試みたが、そのうちPVDF、PVCおよびPAN
を用いた場合がとくに優れていた。
The polymer used for the porous polymer electrolyte may be polyvinyl chloride (PVD) in addition to the above-mentioned PVdF.
C), using polyacrylonitrile (PAN), polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene imine, polybutadiene, polystyrene and polyisoprene. Attempts were made to produce porous polymer electrolytes and batteries using them, but PVDF, PVC and PAN
Was especially excellent.

【0022】前記実施例では、電解液により膨潤または
湿潤する高分子としてポリフッ化ビニリデンを使用して
いるが、これに限定されるものではなく、ポリ塩化ビニ
ル、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル、ポリアクリロニトリル、ポリビニリデ
ンフルオライド、ポリ塩化ビニリデン、ポリメチルメタ
クリレート、ポリメチルアクリレート、ポリビニルアル
コール、ポリメタクリロニトリル、ポリビニルアセテー
ト、ポリビニルピロリドン、ポリエチレンイミン、ポリ
ブタジエン、ポリスチレン、ポリイソプレン、もしくは
これらの誘導体を、単独で、あるいは混合して用いても
よい。また、上記ポリマーを構成する各種モノマーを共
重合させた高分子を用いてもよい。
In the above embodiment, polyvinylidene fluoride is used as the polymer which swells or wets with the electrolytic solution. However, the polymer is not limited to this, and polyethers such as polyvinyl chloride, polyethylene oxide and polypropylene oxide are used. , Polyacrylonitrile, polyvinylidene fluoride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene imine, polybutadiene, polystyrene, polyisoprene, or derivatives thereof. May be used alone or as a mixture. Further, a polymer obtained by copolymerizing various monomers constituting the polymer may be used.

【0023】また、前記実施例においては、高分子中に
含有させる電解液として、ECとDECとの混合溶液を
用いているが、これに限定されるものではなく、エチレ
ンカーボネート、プロピレンカーボネート、ジメチルカ
ーボネート、ジエチルカーボネート、γ- ブチロラクト
ン、スルホラン、ジメチルスルホキシド、アセトニトリ
ル、ジメチルホルムアミド、ジメチルアセトアミド、1,
2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒ
ドロフラン、2-メチルテトラヒドロフラン、ジオキソラ
ン、メチルアセテート等の極性溶媒、もしくはこれらの
混合物を使用してもよい。
In the above embodiment, a mixed solution of EC and DEC is used as the electrolytic solution contained in the polymer. However, the present invention is not limited to this. For example, ethylene carbonate, propylene carbonate, dimethyl Carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,
A polar solvent such as 2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof may be used.

【0024】さらに、前記実施例においては、電解液に
含有させるリチウム塩としてLiPF6 を使用している
が、その他に、LiBF4 、LiAsF6 、LiClO
4 、LiSCN、LiI、LiCF3 SO3 、LiC
l、LiBr、LiCF3 CO2 、Li(CF3
2 2 N等のリチウム塩、もしくはこれらの混合物を
用いてもよい。
Further, in the above embodiment, LiPF 6 is used as the lithium salt to be contained in the electrolytic solution. In addition, LiBF 4 , LiAsF 6 , LiClO
4 , LiSCN, LiI, LiCF 3 SO 3 , LiC
1, LiBr, LiCF 3 CO 2 , Li (CF 3 S
A lithium salt such as O 2 ) 2 N or a mixture thereof may be used.

【0025】さらに、前記実施例においては、正極活物
質としてLiCoO2 を使用たが、これに限定されるも
のではない。これ以外にも、無機化合物としては、組成
式Lix MO2 、またはLiy 2 4 (ただし、Mは
遷移金属、0≦x≦1、0≦y≦2)で表される、複合
酸化物、トンネル状の空孔を有する酸化物、層状構造の
金属カルコゲン化物を用いることができる。その具体例
としては、LiCoO2 、LiNiO2 、LiMn2
4 、Li2 Mn2 4 、MnO2 、FeO2 、V
2 5 、V6 13、TiO2 、TiS2 等が挙げられ
る。また、有機化合物としては、例えばポリアニリン等
の導電性ポリマー等が挙げられる。さらに、無機化合
物、有機化合物を問わず、上記各種活物質を混合して用
いてもよい。
Further, in the above embodiment, LiCoO 2 was used as the positive electrode active material, but the present invention is not limited to this. In addition, as an inorganic compound, a composite represented by a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2) An oxide, an oxide having tunnel-like holes, and a metal chalcogenide having a layered structure can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , and LiMn 2 O
4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V
Examples include 2 O 5 , V 6 O 13 , TiO 2 , and TiS 2 . Examples of the organic compound include a conductive polymer such as polyaniline. Further, the above-mentioned various active materials may be mixed and used regardless of an inorganic compound or an organic compound.

【0026】さらに、前記実施例においては、負極活物
質としてグラファイトを使用しているが、その他に、A
l、Si、Pb、Sn、Zn、Cd等とリチウムとの合
金、LiFe2 3 等の遷移金属複合酸化物、WO2
MoO2 等の遷移金属酸化物、グラファイト、カーボン
等の炭素質材料、Li5 (Li3 N)等の窒化リチウ
ム、もしくは金属リチウム箔、又はこれらの混合物を用
いてもよい。
Further, in the above embodiment, graphite is used as the negative electrode active material.
alloys of lithium with l, Si, Pb, Sn, Zn, Cd, etc., transition metal composite oxides such as LiFe 2 O 3 , WO 2 ,
A transition metal oxide such as MoO 2, a carbonaceous material such as graphite and carbon, a lithium nitride such as Li 5 (Li 3 N), a metal lithium foil, or a mixture thereof may be used.

【0027】さらに、前記実施例においては、接着剤と
してEVA、ポリエチレンオキサイドおよびPVdFを
使用しているが、その他に、反応性アクリル系樹脂、ア
ミノ樹脂、フェノール樹脂、エポキシ樹脂等を用いても
よい。
Further, in the above embodiment, EVA, polyethylene oxide and PVdF are used as the adhesive, but reactive acrylic resin, amino resin, phenol resin, epoxy resin and the like may also be used. .

【0028】本発明においては、正極および負極と電解
質の界面の一部または全体を有孔性リチウムイオン導電
性ポリマーで覆うことによって、高電圧電池であるため
に問題となる正極および負極による有機電解液の酸化お
よび還元を減少させることができ、充電放置特性を改善
することができた。この場合においても、リチウムイオ
ン導電性ポリマーが有孔性であるが故に、高率での充放
電が可能となった。
In the present invention, by partially or entirely covering the interface between the positive electrode and the negative electrode and the electrolyte with a porous lithium ion conductive polymer, the organic electrolysis using the positive electrode and the negative electrode, which is a problem for a high-voltage battery, is performed. The oxidation and reduction of the solution could be reduced, and the charge storage characteristics could be improved. Also in this case, charge / discharge at a high rate became possible because the lithium ion conductive polymer was porous.

【0029】[0029]

【発明の効果】以上述べたように、本発明による電池に
おいては、正極および/または負極と、高分子電解質と
が、接着剤で接着されていることにより、充放電を繰り
返しても、正極または負極と高分子電解質との界面の接
触を維持し、高率での充放電が良好非水電解質電池を提
供することができる。
As described above, in the battery according to the present invention, since the positive electrode and / or the negative electrode and the polymer electrolyte are adhered with the adhesive, the positive electrode and / or the negative electrode can be repeatedly charged and discharged. It is possible to provide a nonaqueous electrolyte battery that maintains good contact at the interface between the negative electrode and the polymer electrolyte and has good charge / discharge at a high rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電池(A)、(B)、(C)およ
び比較例1の電池(a)の放電特性を示す図
FIG. 1 is a diagram showing discharge characteristics of batteries (A), (B), (C) according to the present invention and battery (a) of Comparative Example 1.

【図2】本発明による電池(A)、(B)、(C)およ
び比較例1の電池(a)のサイクル特性を示す図
FIG. 2 is a diagram showing cycle characteristics of batteries (A), (B), (C) according to the present invention and battery (a) of Comparative Example 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極および/または負極と、高分子電解
質とが、接着剤で接着されている非水電解質電池。
1. A non-aqueous electrolyte battery in which a positive electrode and / or a negative electrode and a polymer electrolyte are bonded with an adhesive.
【請求項2】 接着剤が、イオン導電性を有することを
特徴とする請求項1記載の非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the adhesive has ionic conductivity.
【請求項3】 高分子電解質が、電解液により膨潤また
は湿潤する高分子であることを特徴とする請求項1また
は2記載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the polymer electrolyte is a polymer that swells or wets with an electrolytic solution.
【請求項4】 高分子電解質が、有孔性リチウムイオン
導電性高分子であることを特徴とする請求項1、2また
は3記載の非水電解質電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the polymer electrolyte is a porous lithium ion conductive polymer.
【請求項5】 高分子電解質と接着剤が同一材料である
ことを特徴とする請求項1、2、3または4記載の非水
電解質電池。
5. The non-aqueous electrolyte battery according to claim 1, wherein the polymer electrolyte and the adhesive are made of the same material.
JP9207301A 1997-07-15 1997-07-15 Nonaqueous electrolyte battery Withdrawn JPH1140201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9207301A JPH1140201A (en) 1997-07-15 1997-07-15 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9207301A JPH1140201A (en) 1997-07-15 1997-07-15 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH1140201A true JPH1140201A (en) 1999-02-12

Family

ID=16537522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9207301A Withdrawn JPH1140201A (en) 1997-07-15 1997-07-15 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH1140201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100901A1 (en) * 2002-05-23 2003-12-04 Whanjin Roh Lithium secondary battery and its fabrication
WO2006093239A1 (en) * 2005-03-02 2006-09-08 Zeon Corporation Laminate for lithium battery, method for manufacturing same and battery
US8083812B1 (en) 1999-02-19 2011-12-27 Sony Corporation Solid-electrolyte battery and manufacturing method therefor
WO2019077664A1 (en) * 2017-10-16 2019-04-25 日立化成株式会社 Electrolyte sheet, battery member for secondary battery, secondary battery, and production methods therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083812B1 (en) 1999-02-19 2011-12-27 Sony Corporation Solid-electrolyte battery and manufacturing method therefor
WO2003100901A1 (en) * 2002-05-23 2003-12-04 Whanjin Roh Lithium secondary battery and its fabrication
WO2006093239A1 (en) * 2005-03-02 2006-09-08 Zeon Corporation Laminate for lithium battery, method for manufacturing same and battery
WO2019077664A1 (en) * 2017-10-16 2019-04-25 日立化成株式会社 Electrolyte sheet, battery member for secondary battery, secondary battery, and production methods therefor

Similar Documents

Publication Publication Date Title
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
US6027836A (en) Nonaqueous polymer cell
JP4029266B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP4127989B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
EP1079455A2 (en) Nonaqueous electrolyte battery
JP2002015771A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPWO2002091514A1 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2002184462A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH1140201A (en) Nonaqueous electrolyte battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH1126025A (en) Cylindrical nonaqueous battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JP2002343437A (en) Nonaqueous electrolyte battery
JPH09259923A (en) Polymer battery and manufacture thereof
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP2002093463A (en) Nonaqueous electrolyte battery
JPH10247520A (en) Nonaqueous electrolyte battery
JP4041998B2 (en) Method for producing non-aqueous electrolyte battery
JP4240008B2 (en) A method for producing a porous lithium ion conductive polymer electrolyte.
JPH11149942A (en) Manufacture of porous composite electrode
JPH1126019A (en) Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery
JP4016712B2 (en) Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same
JP2002056895A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060306