[go: up one dir, main page]

JP4041998B2 - Method for producing non-aqueous electrolyte battery - Google Patents

Method for producing non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4041998B2
JP4041998B2 JP35832996A JP35832996A JP4041998B2 JP 4041998 B2 JP4041998 B2 JP 4041998B2 JP 35832996 A JP35832996 A JP 35832996A JP 35832996 A JP35832996 A JP 35832996A JP 4041998 B2 JP4041998 B2 JP 4041998B2
Authority
JP
Japan
Prior art keywords
active material
polymer
electrode
material layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35832996A
Other languages
Japanese (ja)
Other versions
JPH10199569A (en
Inventor
幹雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP35832996A priority Critical patent/JP4041998B2/en
Publication of JPH10199569A publication Critical patent/JPH10199569A/en
Application granted granted Critical
Publication of JP4041998B2 publication Critical patent/JP4041998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高分子を備えた電極の製造法及びその電極を備えた電池に関する。
【0002】
【従来の技術】
リチウム電池およびリチウムイオン電池(以後、リチウム系電池と記述する)は、電解質に水溶液を使用した鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池などと異なり、電解質に可燃性の有機電解液を使用するため、その安全性上の問題から、安全弁、保護回路、PTC素子などの、様々な安全化素子を備える必要があり、コストが高くなるという問題がある。従って、有機電解液の代わりに、より化学反応性に乏しい固体高分子電解質を用いることによって電池の安全性を向上させ、上記の安全化素子を不要とすることが試みられている。また、電池形状の柔軟性、製造工程の簡易化、製造コストの削減等の目的においても固体高分子電解質の適用が試みられている。
【0003】
イオン伝導性高分子としては、ポリエチレンオキシド、ポリプロピレンオキシドなどのポリエーテルとアルカリ金属塩との錯体が多く研究されている。しかし、ポリエーテルは十分な機械的強度を保ったまま高いイオン導電性を得ることが困難であり、しかも導電率が温度に大きく影響されるために室温で十分な導電率が得られないことから、ポリエーテルを側鎖に有するくし型高分子、ポリエーテル鎖と他のモノマーの共重合体、ポリエーテルを側鎖に有するポリシロキサンまたはポリフォスファゼン、ポリエーテルの架橋体などが試みられている。
【0004】
さらに、高分子に電解液を含浸させることによってゲル状の固体電解質を製作し、リチウム系電池に適用することも試みられている。このゲル状の固体電解質において使用されている高分子には、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリビニルサルフォン、ポリビニルピロリジノン等がある。フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体を用いることによって高分子の結晶化度を低下させ、電解液を含浸し易くして導電率を向上させることも試みられている。また、ニトリルゴム、スチレンブタジエンゴム、ポリブタジエン、ポリビニルピロリドン等のラテックスの乾燥によって高分子膜を製作し、これに電解液を含浸させることによってリチウムイオン導電性高分子膜を製作することも試みられている。
【0005】
【発明が解決しようとする課題】
電極の活物質粒子と高分子電解質とを良好に接触させるためには、活物質層の孔中に十分に高分子を充填する必要がある。また、高分子電解質と遊離の有機電解液を併用する場合であっても、電池の安全性を向上させるために遊離の電解液量を減らすためには、活物質層の孔中に極力多量の高分子を充填することが望ましい。
【0006】
活物質層の孔中に高分子を充填する方法としては、予め高分子を活物質粒子のペーストに加えた後に、活物質と高分子とを同時に集電体に塗布叉は充填する方法と、活物質を集電体に塗布叉は充填した後に高分子ペーストを活物質層の孔中に充填する方法とがある。予め高分子を活物質粒子のペーストに加えた後に、活物質と高分子とを同時に集電体に塗布叉は充填する方法は、活物質層に多量の高分子を容易に充填することができるが、活物質粒子同士の接触が高分子によって遮られ易いために、活物質粒子間の電子伝導性が不十分となるという問題点がある。
【0007】
また、活物質を集電体に塗布叉は充填した後に高分子ペーストを活物質層の孔中に充填する方法は、活物質粒子同士の接触が高分子によって遮られることがないために活物質粒子間の電子伝導性は十分に保たれるが、高分子ペーストは高粘度であるため、活物質層に十分深く浸透させることが困難であり、電極表面に近い部分のみに塗布されてしまい、活物質層に均一に充填することができず、その充填量も少量となるという問題点があった。
【0008】
本発明は、上記問題点に鑑みなされたものであり、電極の活物質粒子間の電子伝導性を保ちながら、活物質層に十分深く均一に高分子を充填することを可能にするものである。
【0009】
【課題を解決するための手段】
そこで、下記発明により上記課題を解決するものである。
【0010】
活物質層が多孔性である電極を製造する第1の工程と、前記電極の活物質層の孔中に電解液の湿潤により高分子電解質となる高分子を保持させる第2の工程と、前記活物質層の孔中に高分子を保持させた前記電極を所定の厚さに加工する第3の工程と、電解液を注液する第4の工程とを備えたことを特徴とする非水電解質電池の製造法である第1の発明。
【0011】
第1の発明において、第3の工程における加工手段がプレス装置であることが好ましい
【0013】
第1の工程により製造された電極の活物質層は有孔性であり、第2の工程により電極に保持された高分子は前記活物質層の孔中に保持されたものである
【0014】
第1の発明にかかり、電極の活物質層の孔中に保持された高分子が有孔性であることが好ましい。
【0015】
第1の発明にかかり、高分子を溶解した第1の溶媒を前記高分子に対し不溶性かつ第1の溶媒と相溶性のある第2の溶媒で置換することにより、電極に保持された高分子を有孔性とすることが好ましい。
【0018】
第1の発明にかかる電池が非水電解質電池もしくはリチウム電池であることが好ましい。
【0019】
【発明の実施の形態】
従来の、高分子を備えた電極の製造法では、電極の活物質粒子間の電子伝導性を保ちながら、活物質層に十分に深く均一に高分子を充填することができないという問題点があった。本発明による高分子を備えた非水電解質電池の製造法は、多孔性活物質層を備えた電極を製造した後、電極の活物質層の孔中に電解液の湿潤により高分子電解質となる高分子を保持させ、さらにこの後、プレスなどによって所定の厚さとし、電解液を注液することを特徴とする。本発明においては、予め多孔性活物質層を備えた電極を製造した後に、活物質層の孔中に電解液の湿潤により高分子電解質となる高分子を保持させるために、活物質粒子同士の接触が高分子によって遮られることがなく、活物質粒子間の電子伝導性は十分に保たれる。また、本発明においては、電極の活物質層の孔中に電解液の湿潤により高分子電解質となる高分子を保持させた後に、プレスなどによって所定の厚さとするため、プレスした後に電極の活物質層の孔中に高分子を保持させる場合と比較して、電極の活物質層中の多孔度が大きく、またその孔径が大きい状態で高分子を保持させることができ、従って高分子の保持に使用する高分子ペーストが高粘度であっても活物質層の孔中に十分に深く均一に高分子を充填することができる。また、電極の活物質層の孔中に高分子を保持させた後のプレスによって、電極の単位体積中に実用的な量の活物質を保持させることができ、従って、本発明によって製作した電池を用いることによって、実用的なエネルギー密度を有する電池を製作することができる。
【0020】
また、本発明においては、活物質層の孔中に多量の高分子を充填することができるため、活物質層の孔中の遊離な電解液量を減らすことができる。従って、リチウム電池などにおける、釘刺しなどの電池の安全性試験の際に、最も発熱連鎖反応の開始しやすい活物質層内において、発熱連鎖反応の開始を抑止する効果が期待でき、本発明による電極を用いることによって、より安全性に優れる電池を製作することができる。
【0021】
結果として、本発明による非水電解質電池の製造法によって、電極の活物質粒子間の電子伝導性を保ちながら、活物質層の孔中に十分に深く均一に高分子を充填することができ、安全で実用的なエネルギー密度を有する電池を製作することができる。
【0022】
本発明において、電極の活物質層の孔中に備えられる高分子は、イオン伝導の妨げとならないように、電池中においてイオン電導性高分子電解質として用いられる。また、イオン電導性高分子電解質は、極性が強い場合が多いために、大気中から不純物として水分、CO2などを吸収しやすく、このことは電池性能に悪影響を及ぼす場合がある。従って、前記のイオン電導性高分子電解質は、電極の活物質層の孔中に高分子を保持させた後に、電極のプレス、乾燥、巻き取り、電池ケースへの電極の挿入、電池ケースの封口などをおこなった後に、電解液の注液によって高分子を電解液で湿潤させて高分子電解質とするものである。
【0023】
電極の活物質層の孔中に備えられる高分子がイオン電導性高分子電解質である場合であっても、高分子中のイオンの拡散速度は電解液中と比較して大幅に遅い。本発明において、電極の活物質層の孔中に備えられる高分子は、イオン伝導の妨げとならないように、孔を有し、孔中に電解液を保持することが望ましい。この場合には電解液中をイオンが速やかに拡散によって移動することができるため、電極の活物質層の孔中に高分子を備える場合であっても、電池性能の低下を抑制することができる。また、電極の活物質層の孔中に備えられる高分子が有する孔は、連通孔であることが望ましく、この連通孔を有する高分子の製作法としては、溶媒抽出法が適している。溶媒抽出法とは、高分子を溶解した第1の溶媒を、前記高分子に対し不溶性で、かつ第1の溶媒と相溶性のある第2の溶媒で置換することによって、連通孔を有する高分子を製作する方法である。
【0024】
本発明による非水電解質電池は、安全性上の問題から、安全弁、保護回路、PTC素子などの、様々な安全化素子を備える必要があり、コストが高くなるという問題がある非水電解質、とりわけリチウム電池に使用される場合に特に有効である。本発明による、電極に高分子を保持させた電極を用いることによって、これらの電池をより安全なものとすることができ、安全化素子を不要とすることが期待できる。尚、図1は、上記第4の発明にかかる電極の模式図であり、1は金属箔からなる集電体、2は活物質粒子、3は活物質層中に形成された孔中に保持された高分子である。
【0025】
【実施例】
下記の手順にしたがって、実施例の高分子を備えた電極を製造し、さらにその電極を用いて高分子電解質を備えたリチウムイオン電池を製作した。
【0026】
まず、本発明による負極(A)の製作法を記述する。グラファイト81wt%、ポリビニリデンフルオライド(PVDF)9wt%、n−メチルピロリドン(NMP)10Wt%を混合した活物質ペーストを幅22mm、長さ500mm、厚さ14μmの銅箔上に塗布し、150℃で乾燥してNMPを蒸発させた。この作業を銅箔の両面に対しておこない、両面に活物質層を備えた負極を製作した。この負極の両面に、PVDF12wt%をNMP88wt%に溶解した高分子ペーストを塗布し、浸透圧によって活物質層の孔中に浸透させた後に、ローラーの間を通すことによって、電極の活物質層の孔内に浸透せず、活物質層上に付着している状態の高分子ペーストを除去した。この負極を水中に浸漬させて、NMPを水で置換するという溶媒抽出法を用いて、連通多孔化処理を施してPVDFを固化した。その後にプレスをおこない、電極の厚さを300μmから190μmまで薄くして、本発明による負極(A)を製作した。この負極の切断面を顕微鏡で観察した結果、PVDFは活物質層の全体に均一に分布しており、活物質層の深部へも十分に充填されていた。また、活物質層を形成した後に塗布したPVDFの、電極単位面積当たりの充填重量は、両面併せて3.6×10−4g/cmであった。
【0027】
高分子ペーストを塗布する前に、電極を300μmから190μmまでプレスし、高分子ペーストを塗布した後はプレスをおこなわなかったこと以外は、本発明による負極(A)と同様にして、従来から公知である製作法による負極(B)を製作した。この負極(B)の切断面を顕微鏡で観察した結果、PVDFは活物質層の表面のみに偏って分布しており、活物質層の深部へはほとんど充填されていなかった。また、電極単位面積当たりのPVDFの充填重量は、両面併せて1.1×10-4g/cm2であり、本発明による負極(A)と比較して非常に少ない量のPVDFしか充填することができなかった。
【0028】
つぎに、本発明による正極(C)の製作法を記述する。コバルト酸リチウム70wt%、アセチレンブラック6wt%、PVDF9wt%、NMP15wt%を混合したものを幅20mm、長さ480mm、厚さ20μmのアルミニウム箔上に塗布し、150℃で乾燥してNMPを蒸発させた。この作業をアルミニウム箔の両面に対しておこない、両面に活物質層を備えた正極を製作した。この正極の両面に、PVDF12wt%をNMP88wt%に溶解した高分子ペーストを塗布し、浸透圧によって活物質層の孔中に浸透させた後に、ローラーの間を通すことによって、電極の活物質層の孔内に浸透せず、活物質層上に付着している状態の高分子ペーストを除去した。この正極を水中に浸漬させて、NMPを水で置換するという溶媒抽出法を用いて、連通多孔化処理を施してPVDFを固化した。その後にプレスをおこない、電極の厚さを280μmから175μmまで薄くして、本発明による正極(C)を製作した。この正極の切断面を顕微鏡で観察した結果、PVDFは活物質層の全体に均一に分布しており、活物質層の深部へも十分に充填されていた。また、活物質層を形成した後に塗布したPVDFの、電極単位面積当たりの充填重量は、両面併せて3.4×10−4g/cmであった。
【0029】
高分子ペーストを塗布する前に、電極を280μmから175μmまでプレスし、高分子ペーストを塗布した後はプレスをおこなわなかったこと以外は、本発明による正極(C)と同様にして、従来から公知である製作法による正極(D)を製作した。この正極(D)の切断面を顕微鏡で観察した結果、PVDFは活物質層の表面のみに偏って分布しており、活物質層の深部へはほとんど充填されていなかった。また、電極単位面積当たりのPVDFの充填重量は、両面併せて1.0×10-4g/cm2であり、本発明による正極(C)と比較して非常に少ない量のPVDFしか充填することができなかった。
【0030】
上記の本発明による負極(A)、正極(C)および従来から公知である負極(B)および正極(D)に充填することができたPVDF重量の結果を表1に示す。
【0031】
【表1】

Figure 0004041998
上記のようにして製作した、本発明による負極(A)と正極(C)とを、間に厚さ30μmのポリエチレンセパレータを介在させて重ねて巻き、高さ47.0mm、幅22.2mm、厚さ6.4mmの角形のステンレスケース中に挿入した。エチレンカーボネート(EC)とジメチルカーボネート(DMC)を体積比率1:1で混合し、1mol/lのLiPF6を加えた電解液を注液して、公称容量400mAhの、本発明による負極(A)および正極(C)を用いた電池(E)を製作した。注液によって、正・負極中のPVDFは電解液で膨潤し、ポリマー電解質となった。電極内には活物質もPVDFも存在しない孔が存在し、その孔およびセパレータの孔中には電解液が満たされて、ポリマー電解質と遊離の電解液とを併用した電池となった。上記ステンレスケースには溝を堀り(いわゆる非復帰式の安全弁)、電池の内圧が上昇するとその溝の部分に亀裂が生じて電池内部のガスが放出されるようにし、電池ケースが破裂しないようにした。
【0032】
本発明による負極(A)と正極(C)の代わりに、従来から公知である負極(B)および正極(D)を用いたこと以外は、電池(E)と同様にして電池(F)を製作した。
【0033】
本発明による負極(A)および正極(C)を用いた電池(E)と、従来から公知である負極(B)および正極(D)を用いた電池(F)とを用いて、つぎのような安全性の比較試験をおこなった。これらの電池(E)及び(F)を用いて、室温において、400mAの電流で4.5Vまで充電し、続いて4.5Vの定電圧で2時間充電した後、3mm径の釘を電池に刺して貫通させた。その結果、本発明による負極(A)および正極(C)を用いた電池(E)においては安全弁が作動して発煙がなかったのに対し、従来から公知である負極(B)および正極(D)を用いた電池(F)においては安全弁が作動し、発煙が生じた。この安全性試験の結果を、表2に示す。
【0034】
【表2】
Figure 0004041998
この結果から、本発明による負極(A)および正極(C)を用いた電池(E)は、従来から公知である負極(B)および正極(D)を用いた電池(F)よりも安全性に優れた電池であるということができる。このことは、本発明による負極(A)および正極(C)が、従来から公知である負極(B)および正極(D)よりも多量のPVDFを電極の活物質層の孔内に充填することができたために、電極内の遊離な電解液量を少なくすることができ、釘差し時の内部短絡による発熱による、電解液と電極との化学反応による発熱量および電解液の気化による電池の内圧上昇を抑えることができたためである。
【0035】
本発明の製造法による負極(A)および正極(C)においては、電極内に含浸する高分子としてポリビニリデンフルオライドを使用しているが、その他に、次のような高分子を単独で、あるいは混合して用いてもよい。
【0036】
ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアクリロニトリル、ポリビニリデンフルオライド、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、ポリイソプレン及びこれらの誘導体。
【0037】
また、上記ポリマーを構成する各種モノマーを共重合させた高分子を用いてもよい。
【0038】
本発明の製造法による負極(A)および正極(C)を備えた電池(E)においては、非水系電解液として、ECとDMCとの混合溶液を用いているが、その他に次の溶媒を使用してもよい。
【0039】
エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒およびこれらの混合物。
【0040】
本発明の製造法による負極(A)および正極(C)を備えた電池(E)においては、非水系電解液に含有させるリチウム塩としてLiPFを使用しているが、その他に、LiBF、LiAsF、LiClO、LiSCN、LiI、LiCFSO、LiCl、LiBr、LiCFCO等のリチウム塩およびこれらの混合物を用いてもよい。
【0041】
さらに、前記実施例においては、正極材料たるリチウムを吸蔵放出可能な化合物として LiCoO2を使用したが、これに限定されるものではない。これ以外にも、無機化合物としては、組成式LixMO2、またはLiy24(ただし、Mは遷移金属、0≦x≦1、0≦y≦2)で表される、複合酸化物、トンネル状の孔を有する酸化物、層状構造の金属カルコゲン化物を用いることができる。その具体例としては、LiCoO2、LiNiO2、LiMn24、Li2Mn24、MnO2、FeO2、V25、V613、TiO2、TiS2等が挙げられる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。さらに、無機化合物、有機化合物を問わず、上記各種活物質を混合して用いてもよい。
【0042】
さらに、前記実施例においては、負極材料たる化合物としてグラファイトを使用しているが、その他に、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe23等の遷移金属複合酸化物、MoO2等の遷移金属酸化物、グラファイト、カーボン等の炭素質材料、Li5(Li3N)等の窒化リチウム、錫またはケイ素の酸化物、もしくは金属リチウム箔、又はこれらの混合物を用いてもよい。
【0043】
【発明の効果】
以上述べたように、本発明による、高分子を備えた非水電解質電池の製造法は、多孔性活物質層を備えた電極を製造した後、電極の活物質層の孔中に電解液の湿潤により高分子電解質となる高分子を保持させ、その後、所定の厚さとし、電解液を注液することを特徴とし、電極の活物質層中の活物質粒子間の電子伝導性を十分に保ちながら、活物質層の孔中に十分に深く均一に高分子を充填することを可能にする。本発明による、電極の活物質層の孔中に電解液の湿潤により高分子電解質となる高分子を備えた非水電解質電池の製造法によって製作した電池は、安全性に優れた電池となる。
【図面の簡単な説明】
【図1】第4の発明にかかる電極の模式図でありる。
【符号の説明】
1 集電体
2 活物質粒子
3 活物質層中に形成された孔中に保持された高分子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrode including a polymer and a battery including the electrode.
[0002]
[Prior art]
Lithium batteries and lithium ion batteries (hereinafter referred to as lithium batteries) use flammable organic electrolytes for electrolytes, unlike lead-acid batteries, nickel cadmium batteries, and nickel metal hydride batteries that use aqueous solutions as electrolytes. Because of the safety problem, it is necessary to provide various safety elements such as a safety valve, a protection circuit, and a PTC element, which increases the cost. Therefore, it has been attempted to improve the safety of the battery by using a solid polymer electrolyte having poor chemical reactivity instead of the organic electrolyte, and to eliminate the need for the above-described safety element. In addition, application of solid polymer electrolytes has been attempted for purposes such as battery shape flexibility, simplification of the manufacturing process, and reduction of manufacturing costs.
[0003]
As ion-conducting polymers, many complexes of polyethers such as polyethylene oxide and polypropylene oxide and alkali metal salts have been studied. However, polyethers are difficult to obtain high ionic conductivity while maintaining sufficient mechanical strength, and because conductivity is greatly affected by temperature, sufficient conductivity cannot be obtained at room temperature. Comb-type polymers having polyether in the side chain, copolymers of polyether chain and other monomers, polysiloxane or polyphosphazene having polyether in the side chain, cross-linked polyether .
[0004]
Furthermore, an attempt has been made to produce a gel-like solid electrolyte by impregnating a polymer with an electrolyte and to apply it to a lithium battery. Examples of the polymer used in the gel solid electrolyte include polyacrylonitrile, polyvinylidene fluoride, polyvinyl chloride, polyvinyl sulfone, and polyvinylpyrrolidinone. Attempts have also been made to improve the conductivity by decreasing the crystallinity of the polymer by using a copolymer of vinylidene fluoride and hexafluoropropylene, making it easier to impregnate the electrolyte. Attempts have also been made to produce polymer membranes by drying latex such as nitrile rubber, styrene butadiene rubber, polybutadiene, polyvinyl pyrrolidone, etc., and impregnating this with an electrolyte solution to produce a lithium ion conductive polymer membrane. Yes.
[0005]
[Problems to be solved by the invention]
In order to satisfactorily contact the active material particles of the electrode and the polymer electrolyte, it is necessary to sufficiently fill the polymer in the pores of the active material layer. Even when a polymer electrolyte and a free organic electrolyte are used in combination, in order to reduce the amount of the free electrolyte in order to improve the safety of the battery, as much as possible in the pores of the active material layer It is desirable to fill the polymer.
[0006]
As a method of filling the polymer in the pores of the active material layer, after adding the polymer to the active material particle paste in advance, the active material and the polymer are simultaneously applied to the current collector or filled, There is a method in which a polymer paste is filled in the pores of the active material layer after the active material is applied or filled into the current collector. A method in which a polymer is added to a paste of active material particles in advance and then the active material and the polymer are simultaneously applied to the current collector or filled, so that a large amount of polymer can be easily filled in the active material layer. However, since the contact between the active material particles is easily blocked by the polymer, there is a problem that the electron conductivity between the active material particles becomes insufficient.
[0007]
In addition, the method of filling the active material layer into the pores of the active material layer after applying or filling the active material to the current collector is because the contact between the active material particles is not blocked by the polymer. Electron conductivity between particles is sufficiently maintained, but since the polymer paste is highly viscous, it is difficult to penetrate deeply into the active material layer, and it is applied only to the portion close to the electrode surface, There was a problem that the active material layer could not be filled uniformly, and the filling amount was small.
[0008]
The present invention has been made in view of the above problems, and enables the active material layer to be sufficiently deeply and uniformly filled with a polymer while maintaining the electronic conductivity between the active material particles of the electrode. .
[0009]
[Means for Solving the Problems]
Therefore, the above-described problems are solved by the following invention.
[0010]
A first step of the active material layer manufacturing an electrode is porous, and a second step of holding the macromolecules of the polymer electrolyte by the wetting of the electrolyte in the pores of the active material layer of the electrode, the Non-water comprising: a third step of processing the electrode holding the polymer in the pores of the active material layer to a predetermined thickness; and a fourth step of injecting an electrolytic solution 1st invention which is a manufacturing method of an electrolyte battery.
[0011]
Oite to the first invention, it is preferred processing means in the third step is a press device.
[0013]
Active material layer of the electrode fabricated in the first step is porous, polymer held on the electrode by the second step are those which are retained in the pores of the active material layer.
[0014]
According to the first invention, it is preferable that the polymer held in the pores of the active material layer of the electrode is porous.
[0015]
According to the first invention, the first solvent in which the polymer is dissolved is replaced with a second solvent that is insoluble in the polymer and compatible with the first solvent. Is preferably porous.
[0018]
The battery according to the first invention is preferably a nonaqueous electrolyte battery or a lithium battery.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The conventional method for producing an electrode equipped with a polymer has a problem that the active material layer cannot be sufficiently deeply and uniformly filled with the polymer while maintaining the electron conductivity between the active material particles of the electrode. It was. According to the method of manufacturing a nonaqueous electrolyte battery including a polymer according to the present invention, an electrode including a porous active material layer is manufactured, and then a polymer electrolyte is formed by wetting an electrolytic solution in the pores of the active material layer of the electrode. The polymer is held, and after that, it is made a predetermined thickness by a press or the like, and an electrolytic solution is injected. In the present invention, after manufacturing an electrode provided with a porous active material layer in advance, in order to retain the polymer that becomes a polymer electrolyte in the pores of the active material layer by wetting the electrolytic solution , The contact is not blocked by the polymer, and the electron conductivity between the active material particles is sufficiently maintained. In the present invention, after allowed to retain macromolecules of the polymer electrolyte by the wetting of the electrolyte in the pores of the active material layer of the electrode, to a predetermined thickness by a press, the electrode after pressed active Compared with the case where the polymer is held in the pores of the material layer, the porosity in the active material layer of the electrode is large, and the polymer can be held in a state where the pore diameter is large. Even if the polymer paste used in the above method has a high viscosity, the polymer can be filled sufficiently deeply and uniformly in the pores of the active material layer. Further, a practical amount of the active material can be held in the unit volume of the electrode by pressing after holding the polymer in the pores of the active material layer of the electrode, and thus the battery manufactured according to the present invention. By using the battery, a battery having a practical energy density can be manufactured.
[0020]
In the present invention, since a large amount of polymer can be filled in the pores of the active material layer, the amount of free electrolyte in the pores of the active material layer can be reduced. Therefore, in the safety test of a battery such as a nail stab in a lithium battery, the effect of suppressing the start of the exothermic chain reaction can be expected in the active material layer where the exothermic chain reaction is most likely to start. By using the electrode, it is possible to manufacture a battery with higher safety.
[0021]
As a result, the method for producing a nonaqueous electrolyte battery according to the present invention can fill the pores of the active material layer sufficiently deeply and uniformly with the polymer while maintaining the electronic conductivity between the active material particles of the electrode, A battery having a safe and practical energy density can be manufactured.
[0022]
In the present invention, the polymer provided in the pores of the active material layer of the electrode is used as an ion conductive polymer electrolyte in the battery so as not to hinder ion conduction. In addition, since the ion conductive polymer electrolyte often has a strong polarity, it easily absorbs moisture, CO 2 and the like as impurities from the atmosphere, which may adversely affect battery performance. Therefore, the above ion conductive polymer electrolyte holds the polymer in the pores of the active material layer of the electrode, and then presses, dries and winds the electrode, inserts the electrode into the battery case, and seals the battery case. After the above, the polymer is wetted with the electrolytic solution by injecting the electrolytic solution to obtain a polymer electrolyte.
[0023]
Even when the polymer provided in the pores of the active material layer of the electrode is an ion conductive polymer electrolyte, the diffusion rate of ions in the polymer is significantly slower than in the electrolyte. In the present invention, it is desirable that the polymer provided in the pores of the active material layer of the electrode has pores and holds the electrolytic solution in the pores so as not to hinder ion conduction. In this case, since ions can quickly move in the electrolyte solution by diffusion, even if a polymer is provided in the pores of the active material layer of the electrode , it is possible to suppress a decrease in battery performance. . In addition, it is desirable that the hole of the polymer provided in the hole of the active material layer of the electrode is a communication hole, and a solvent extraction method is suitable as a method for producing the polymer having the communication hole. The solvent extraction method is a method in which a first solvent in which a polymer is dissolved is replaced with a second solvent that is insoluble in the polymer and compatible with the first solvent. It is a method of manufacturing molecules.
[0024]
The non-aqueous electrolyte battery according to the present invention needs to be provided with various safety elements such as a safety valve, a protection circuit, and a PTC element due to safety problems, and the non-aqueous electrolyte has a problem that the cost becomes high. This is particularly effective when used for lithium batteries. By using the electrode in which the polymer is held in the electrode according to the present invention, these batteries can be made safer and it can be expected that the safety element is unnecessary. FIG. 1 is a schematic diagram of an electrode according to the fourth invention, wherein 1 is a current collector made of a metal foil, 2 is an active material particle, and 3 is held in a hole formed in the active material layer. Polymer.
[0025]
【Example】
According to the following procedure, an electrode including the polymer of the example was manufactured, and a lithium ion battery including a polymer electrolyte was manufactured using the electrode.
[0026]
First, a manufacturing method of the negative electrode (A) according to the present invention will be described. An active material paste in which graphite 81 wt%, polyvinylidene fluoride (PVDF) 9 wt%, and n-methylpyrrolidone (NMP) 10 Wt% were mixed was applied onto a copper foil having a width of 22 mm, a length of 500 mm, and a thickness of 14 μm. And the NMP was evaporated. This operation was performed on both sides of the copper foil to produce a negative electrode having an active material layer on both sides. A polymer paste in which 12 wt% of PVDF is dissolved in 88 wt% of NMP is applied to both surfaces of the negative electrode, and after infiltrating into the pores of the active material layer by osmotic pressure, it is passed between rollers to form the active material layer of the electrode. The polymer paste that did not penetrate into the pores and adhered to the active material layer was removed. Using a solvent extraction method in which the negative electrode was immersed in water and NMP was replaced with water, a continuous porosity treatment was performed to solidify PVDF. Thereafter, pressing was performed to reduce the thickness of the electrode from 300 μm to 190 μm, thereby manufacturing the negative electrode (A) according to the present invention. As a result of observing the cut surface of this negative electrode with a microscope, PVDF was uniformly distributed throughout the active material layer, and the deep part of the active material layer was sufficiently filled. Moreover, the filling weight per electrode unit area of PVDF applied after forming the active material layer was 3.6 × 10 −4 g / cm 2 for both surfaces.
[0027]
Previously known in the same manner as the negative electrode (A) according to the present invention, except that the electrode was pressed from 300 μm to 190 μm before the polymer paste was applied and not pressed after the polymer paste was applied. A negative electrode (B) was produced by the production method. As a result of observing the cut surface of this negative electrode (B) with a microscope, PVDF was distributed only on the surface of the active material layer, and the deep part of the active material layer was hardly filled. Moreover, the filling weight of PVDF per electrode unit area is 1.1 × 10 −4 g / cm 2 on both sides, and only a very small amount of PVDF is filled as compared with the negative electrode (A) according to the present invention. I couldn't.
[0028]
Next, a method for producing the positive electrode (C) according to the present invention will be described. A mixture of 70% by weight of lithium cobaltate, 6% by weight of acetylene black, 9% by weight of PVDF, and 15% by weight of NMP was applied onto an aluminum foil having a width of 20 mm, a length of 480 mm, and a thickness of 20 μm, and dried at 150 ° C. to evaporate NMP. . This operation was performed on both sides of the aluminum foil to produce a positive electrode having an active material layer on both sides. A polymer paste in which 12 wt% of PVDF is dissolved in 88 wt% of NMP is applied to both surfaces of the positive electrode, and after infiltrating into the pores of the active material layer by osmotic pressure, it is passed between rollers to thereby form the active material layer of the electrode. The polymer paste that did not penetrate into the pores and adhered to the active material layer was removed. Using a solvent extraction method in which the positive electrode was immersed in water and NMP was replaced with water, a continuous porosity treatment was performed to solidify PVDF. Thereafter, pressing was performed to reduce the thickness of the electrode from 280 μm to 175 μm, and a positive electrode (C) according to the present invention was manufactured. As a result of observing the cut surface of this positive electrode with a microscope, PVDF was uniformly distributed throughout the active material layer, and the deep part of the active material layer was sufficiently filled. Moreover, the filling weight per electrode unit area of PVDF applied after forming the active material layer was 3.4 × 10 −4 g / cm 2 for both surfaces.
[0029]
Previously known in the same manner as the positive electrode (C) according to the present invention, except that the electrode was pressed from 280 μm to 175 μm before the polymer paste was applied and not pressed after the polymer paste was applied. A positive electrode (D) was produced by the production method. As a result of observing the cut surface of this positive electrode (D) with a microscope, PVDF was distributed only on the surface of the active material layer, and the deep part of the active material layer was hardly filled. The filling weight of PVDF per electrode unit area is 1.0 × 10 −4 g / cm 2 on both sides, and only a very small amount of PVDF is filled as compared with the positive electrode (C) according to the present invention. I couldn't.
[0030]
Table 1 shows the results of PVDF weights that could be filled in the negative electrode (A), the positive electrode (C), and the conventionally known negative electrode (B) and positive electrode (D) according to the present invention.
[0031]
[Table 1]
Figure 0004041998
The negative electrode (A) and the positive electrode (C) according to the present invention produced as described above were wound with a polyethylene separator having a thickness of 30 μm interposed therebetween, and the height was 47.0 mm, the width was 22.2 mm, It inserted in the square stainless steel case of thickness 6.4mm. A negative electrode (A) according to the present invention having a nominal capacity of 400 mAh, in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1, and an electrolytic solution to which 1 mol / l LiPF 6 is added is injected. A battery (E) using the positive electrode (C) was produced. Due to the injection, PVDF in the positive and negative electrodes swelled with the electrolytic solution to become a polymer electrolyte. In the electrode, there was a hole in which neither an active material nor PVDF was present, and the hole and the hole of the separator were filled with the electrolytic solution, so that a battery using a polymer electrolyte and a free electrolytic solution was obtained. Grooves are formed in the above stainless steel case (so-called non-returnable safety valve), and when the internal pressure of the battery rises, the groove part will crack and the gas inside the battery will be released, so that the battery case will not rupture. I made it.
[0032]
A battery (F) was prepared in the same manner as the battery (E) except that the conventionally known negative electrode (B) and positive electrode (D) were used instead of the negative electrode (A) and the positive electrode (C) according to the present invention. Produced.
[0033]
A battery (E) using the negative electrode (A) and the positive electrode (C) according to the present invention and a battery (F) using the conventionally known negative electrode (B) and positive electrode (D) are used as follows. Safety comparison tests were conducted. Using these batteries (E) and (F), at room temperature, the battery was charged to 4.5 V with a current of 400 mA, then charged with a constant voltage of 4.5 V for 2 hours, and then a 3 mm diameter nail was attached to the battery. I stabbed it through. As a result, in the battery (E) using the negative electrode (A) and the positive electrode (C) according to the present invention, the safety valve operated and no smoke was generated, whereas the conventionally known negative electrode (B) and positive electrode (D) In the battery (F) using), the safety valve was activated and smoke was generated. The results of this safety test are shown in Table 2.
[0034]
[Table 2]
Figure 0004041998
From this result, the battery (E) using the negative electrode (A) and the positive electrode (C) according to the present invention is safer than the conventionally known battery (F) using the negative electrode (B) and the positive electrode (D). It can be said that this is an excellent battery. This means that the negative electrode (A) and the positive electrode (C) according to the present invention fill a larger amount of PVDF into the pores of the active material layer of the electrode than the conventionally known negative electrode (B) and positive electrode (D). As a result, the amount of free electrolyte in the electrode can be reduced, the heat generated by an internal short circuit when nailing, the heat generated by the chemical reaction between the electrolyte and the electrode, and the internal pressure of the battery due to the evaporation of the electrolyte. This is because the rise could be suppressed.
[0035]
In the negative electrode according to the onset Ming Process (A) and cathode (C), but using polyvinylidene fluoride as a polymer impregnated into the electrode, the other, alone macromolecules such as: Alternatively, a mixture may be used.
[0036]
Polyethylene oxide, polyether such as polyethylene oxide and polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylated DOO, port Increment polyacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethyleneimine, polybutadiene, polystyrene , Polyisoprene and derivatives thereof.
[0037]
Moreover, you may use the polymer which copolymerized the various monomers which comprise the said polymer.
[0038]
In the negative electrode according to the onset Ming Process (A) and cathode (C) Battery (E) equipped with, as a non-aqueous electrolyte solution, is used a mixed solution of EC and DMC, other the following solvent May be used.
[0039]
Ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran , Polar solvents such as dioxolane, methyl acetate and mixtures thereof.
[0040]
In the battery including the anode according to the onset Ming Process (A) and cathode (C) (E), but using LiPF 6 as a lithium salt to be contained in the nonaqueous electrolytic solution, the other, LiBF 4 LiAsF 6 , LiClO 4 , LiSCN, LiI, LiCF 3 SO 3 , LiCl, LiBr, LiCF 3 CO 2 and the like, and mixtures thereof may be used.
[0041]
Further, in the above embodiment, LiCoO 2 was used as a compound capable of occluding and releasing lithium as the positive electrode material, but the present invention is not limited to this. In addition to this, as the inorganic compound, a compound represented by the composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2) is used. An oxide, an oxide having a tunnel-like hole, or a metal chalcogenide having a layered structure can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , and TiS 2 . Examples of the organic compound include conductive polymers such as polyaniline. Furthermore, the above various active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds.
[0042]
Further, in the above embodiment uses graphite as a negative electrode material serving compounds, Other, Al, Si, Pb, Sn, Zn, alloys of Cd or the like and the lithium transition metal such as LiFe 2 O 3 Composite oxides, transition metal oxides such as MoO 2 , carbonaceous materials such as graphite and carbon, lithium nitrides such as Li 5 (Li 3 N), tin or silicon oxides, metal lithium foils, or mixtures thereof May be used.
[0043]
【The invention's effect】
As described above, according to the method of manufacturing a nonaqueous electrolyte battery including a polymer according to the present invention, an electrode including a porous active material layer is manufactured, and then an electrolyte solution is placed in the pores of the active material layer of the electrode . It is characterized in that the polymer that becomes a polymer electrolyte is retained by wetting , and then the electrolyte is poured to a predetermined thickness, and the electron conductivity between the active material particles in the active material layer of the electrode is sufficiently maintained. However, it is possible to fill the polymer in the pores of the active material layer sufficiently deeply and uniformly. A battery manufactured by the method for producing a non-aqueous electrolyte battery having a polymer that becomes a polymer electrolyte by wetting the electrolyte in the pores of the active material layer of the electrode according to the present invention is an excellent battery.
[Brief description of the drawings]
FIG. 1 is a schematic view of an electrode according to a fourth invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Current collector 2 Active material particle 3 Polymer hold | maintained in the hole formed in the active material layer

Claims (1)

活物質層が多孔性である電極を製造する第1の工程と、前記電極の活物質層の孔中に電解液の湿潤により高分子電解質となる高分子を保持させる第2の工程と、前記活物質層の孔中に高分子を保持させた前記電極を所定の厚さに加工する第3の工程と、電解液を注液する第4の工程とを備えたことを特徴とする非水電解質電池の製造法。A first step of the active material layer manufacturing an electrode is porous, and a second step of holding the macromolecules of the polymer electrolyte by the wetting of the electrolyte in the pores of the active material layer of the electrode, the Non-water comprising: a third step of processing the electrode holding the polymer in the pores of the active material layer to a predetermined thickness; and a fourth step of injecting an electrolytic solution Manufacturing method of electrolyte battery.
JP35832996A 1996-12-28 1996-12-28 Method for producing non-aqueous electrolyte battery Expired - Fee Related JP4041998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35832996A JP4041998B2 (en) 1996-12-28 1996-12-28 Method for producing non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35832996A JP4041998B2 (en) 1996-12-28 1996-12-28 Method for producing non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH10199569A JPH10199569A (en) 1998-07-31
JP4041998B2 true JP4041998B2 (en) 2008-02-06

Family

ID=18458742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35832996A Expired - Fee Related JP4041998B2 (en) 1996-12-28 1996-12-28 Method for producing non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4041998B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178998B2 (en) * 2004-08-03 2013-04-10 三星エスディアイ株式会社 Lithium secondary battery and lithium secondary battery pack
GB201819861D0 (en) * 2018-12-05 2019-01-23 Manchester Metropolitan Univ Composition

Also Published As

Publication number Publication date
JPH10199569A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
US6027836A (en) Nonaqueous polymer cell
JP2001135359A (en) Nonaqueous electrolyte battery
WO2003012896A1 (en) Porous separator and method of manufacturing the same
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPWO2002091514A1 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP4041998B2 (en) Method for producing non-aqueous electrolyte battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using the same
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JP3516133B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH09259923A (en) Polymer battery and manufacture thereof
JP2001319693A (en) Nonaqueous-electrolyte secondary battery
JPH1126025A (en) Cylindrical nonaqueous battery
JPH10208733A (en) Manufacture of electrode for non-aqueous electrolyte battery
JPH10284045A (en) Manufacture of porous polymer electrolyte and nonaqueous electrolyte battery
JPH10247520A (en) Nonaqueous electrolyte battery
JPH1126019A (en) Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery
JPH10255840A (en) Nonaqueous electrolyte battery
JP3965655B2 (en) Method for producing electrode for lithium ion battery
JP4240008B2 (en) A method for producing a porous lithium ion conductive polymer electrolyte.
JP2002093463A (en) Nonaqueous electrolyte battery
JP3566858B2 (en) Non-aqueous electrolyte battery
JP2002056895A (en) Nonaqueous electrolyte battery
JPH11149942A (en) Manufacture of porous composite electrode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees