JPH1126019A - Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery - Google Patents
Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte batteryInfo
- Publication number
- JPH1126019A JPH1126019A JP9194856A JP19485697A JPH1126019A JP H1126019 A JPH1126019 A JP H1126019A JP 9194856 A JP9194856 A JP 9194856A JP 19485697 A JP19485697 A JP 19485697A JP H1126019 A JPH1126019 A JP H1126019A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- battery
- polymer
- electrolytic solution
- batteries
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 229920000867 polyelectrolyte Polymers 0.000 title abstract 3
- 229920000642 polymer Polymers 0.000 claims abstract description 50
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 36
- 239000005518 polymer electrolyte Substances 0.000 claims description 49
- 239000003792 electrolyte Substances 0.000 abstract description 71
- 239000002033 PVDF binder Substances 0.000 abstract description 18
- 229920002981 polyvinylidene fluoride Polymers 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 11
- 150000002500 ions Chemical class 0.000 abstract description 10
- 238000002347 injection Methods 0.000 abstract description 9
- 239000007924 injection Substances 0.000 abstract description 9
- 238000007599 discharging Methods 0.000 abstract description 6
- 238000000638 solvent extraction Methods 0.000 abstract description 5
- 239000000243 solution Substances 0.000 abstract 1
- -1 polyethylene Polymers 0.000 description 17
- 229920000620 organic polymer Polymers 0.000 description 14
- 239000011149 active material Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 239000011148 porous material Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 229920000570 polyether Polymers 0.000 description 7
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000011076 safety test Methods 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 229920005597 polymer membrane Polymers 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 238000009736 wetting Methods 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000005486 organic electrolyte Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910013243 LiyM Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- OMYOBDYSDXYBAL-UHFFFAOYSA-N carbonic acid;diethyl carbonate Chemical compound OC(O)=O.CCOC(=O)OCC OMYOBDYSDXYBAL-UHFFFAOYSA-N 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003214 poly(methacrylonitrile) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は非水電解質電池用高
分子電解質の製造法及び非水電解質電池の製造法に関す
る。The present invention relates to a method for producing a polymer electrolyte for a non-aqueous electrolyte battery and a method for producing a non-aqueous electrolyte battery.
【0002】[0002]
【従来の技術】非水系の電解液を使用し、負極にアルカ
リ金属を使用する電池は、3V以上の高電圧系電池とす
ることが可能であるため、高エネルギー密度電池とする
ことができるが、二次電池においては、充電時のアルカ
リ金属のデンドライト析出によって短絡が発生しやす
く、寿命が短いという欠点があり、また、アルカリ金属
の反応性が高いために、安全性を確保することが困難で
ある。そのために、例えばリチウム電池においては、金
属リチウムのかわりに、金属リチウムのデンドライトが
析出しにくいグラファイトやカーボン等の炭素系負極を
使用し、正極にコバルト酸リチウムやニッケル酸リチウ
ムを使用する、いわゆるリチウムイオン電池が考案さ
れ、高エネルギー密度電池として用いられてきている。2. Description of the Related Art A battery using a non-aqueous electrolytic solution and using an alkali metal for the negative electrode can be a high-voltage battery of 3 V or more. However, secondary batteries have the drawback that short-circuiting is likely to occur due to dendritic deposition of alkali metal during charging, and the life is short, and it is difficult to ensure safety due to high reactivity of alkali metal. It is. Therefore, for example, in a lithium battery, instead of metallic lithium, a carbon-based negative electrode such as graphite or carbon in which dendrites of metallic lithium are unlikely to be used is used, and lithium cobaltate or lithium nickelate is used for a positive electrode, so-called lithium. Ion batteries have been devised and used as high energy density batteries.
【0003】上記の非水電解質電池においては、ポリエ
チレン又はポリプロピレン等の微孔膜がセパレータとし
て使用されている。微孔性有機高分子膜の製作法には、
主に溶媒抽出法と延伸法とが用いられる。溶媒抽出法
は、有機高分子を液体に溶解してシート状に広げたもの
を、液漕に浸漬することによって有機高分子を溶解して
いた液体を除去して、その液体が抜けた部分を孔とす
る、方向性のない微孔性有機高分子膜の製造法であり、
その円形又は楕円形の孔を有する微孔膜セパレータは密
閉型ニッケルカドミウム電池へ適用されている。延伸法
は、有機高分子膜を延伸することによって、膜に方向性
のある孔をあける微孔膜の製造法であり、広く二次電池
に適用されている。また、これら以外に、塩やでんぷん
等の微粒子を有機高分子中に加えてシート状にし、その
後に微粒子を液体に溶解させて除去することによる微孔
性有機高分子膜の製作方法もある。また、有機高分子を
高温で液体に溶解させ、冷却することによって有機高分
子を固化させた後に液体を取り除く微孔性有機高分子膜
の製作法もある。また、熱による微孔性有機高分子膜の
融解によって孔が塞がるシャットダウン効果を利用し
て、セパレータに電池の安全機構を持たせることが行わ
れている。この機構によって、電池が発熱して危険な状
態になった場合においても、正極と負極の間を絶縁する
ことができ、更なる正負極の反応を抑制することができ
る。In the above nonaqueous electrolyte battery, a microporous membrane such as polyethylene or polypropylene is used as a separator. The method for producing a microporous organic polymer membrane includes:
Mainly, a solvent extraction method and a stretching method are used. In the solvent extraction method, a liquid obtained by dissolving an organic polymer in a liquid and spreading it in a sheet shape is immersed in a liquid tank to remove the liquid in which the organic polymer has been dissolved, and the portion from which the liquid has escaped is removed. It is a method for producing a microporous organic polymer membrane having no pores and orientation,
The microporous membrane separator having circular or elliptical holes has been applied to sealed nickel cadmium batteries. The stretching method is a method for producing a microporous film in which a directional hole is formed in a film by stretching an organic polymer film, and is widely applied to secondary batteries. In addition, there is a method for producing a microporous organic polymer film by adding fine particles such as salt and starch into an organic polymer to form a sheet, and then dissolving and removing the fine particles in a liquid. There is also a method of manufacturing a microporous organic polymer film in which an organic polymer is dissolved in a liquid at a high temperature and cooled to solidify the organic polymer and then remove the liquid. In addition, a separator is provided with a battery safety mechanism by utilizing a shutdown effect in which pores are closed by melting of a microporous organic polymer film due to heat. With this mechanism, even when the battery generates heat and enters a dangerous state, it is possible to insulate between the positive electrode and the negative electrode, and further suppress the reaction between the positive electrode and the negative electrode.
【0004】非水系電池は、電解質に水溶液を使用した
鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池
などと異なり、電解質に可燃性の有機電解液を使用する
ため、電池の安全な使用を可能にするために、その安全
性上の問題から、安全弁、保護回路、PTC素子等の、
様々な安全化素子を備える必要があり、コストが高くな
るという問題があり、また、電池の安全性上の問題から
活物質の利用率も制限されているため、電池のエネルギ
ー密度が活物質の理論容量から期待される値よりも大幅
に小さくなるという問題点がある。従って、有機電解液
の代わりに、より化学反応性に乏しい固体高分子電解質
を用いることによって電池の安全性を向上させることが
試みられている。また、電池形状の柔軟性、製造工程の
簡易化、製造コストの削減等の目的においても固体高分
子電解質の適用が試みられている。A non-aqueous battery uses a flammable organic electrolyte for the electrolyte, unlike lead-acid batteries, nickel-cadmium batteries, nickel-metal hydride batteries, etc., which use an aqueous solution for the electrolyte, thus enabling safe use of the battery. Because of the safety problems, safety valves, protection circuits, PTC elements, etc.
It is necessary to provide various safety elements, and there is a problem that the cost is high.In addition, since the utilization rate of the active material is limited due to the problem of the battery safety, the energy density of the battery is reduced. There is a problem that the value is much smaller than expected from the theoretical capacity. Therefore, it has been attempted to improve the safety of the battery by using a solid polymer electrolyte having less chemical reactivity instead of the organic electrolyte. Also, application of solid polymer electrolytes has been attempted for the purpose of flexibility of battery shape, simplification of manufacturing process, reduction of manufacturing cost, and the like.
【0005】高分子電解質としては、ポリエチレンオキ
シド、ポリプロピレンオキシドなどのポリエーテルとア
ルカリ金属塩との錯体が多く研究されている。しかし、
ポリエーテルは十分な機械的強度を保ったまま高いイオ
ン伝導性を得ることが困難であり、しかも導電率が温度
に大きく影響されるために室温で十分な導電率が得られ
ないことから、ポリエーテルを側鎖に有するくし型高分
子、ポリエーテル鎖と他のモノマーの共重合体、ポリエ
ーテルを側鎖に有するポリシロキサン又はポリフォスフ
ァゼン、ポリエーテルの架橋体などが試みられている。As the polymer electrolyte, many studies have been made on complexes of polyethers such as polyethylene oxide and polypropylene oxide with alkali metal salts. But,
Polyether is difficult to obtain high ionic conductivity while maintaining sufficient mechanical strength, and since the conductivity is greatly affected by temperature, sufficient conductivity cannot be obtained at room temperature. Attempts have been made to use a comb-type polymer having an ether in the side chain, a copolymer of a polyether chain and another monomer, a polysiloxane or polyphosphazene having a polyether in the side chain, a crosslinked product of a polyether, and the like.
【0006】また、ポリエーテル系高分子電解質のよう
に、塩を溶解した高分子電解質では、カチオン及びアニ
オンの両方が移動し、通常室温でのカチオンの輸率は
0.5以下である。従って、−SO3-や−COO- のよ
うなアニオン基を有する高分子電解質を合成し、そのカ
チオンの輸率を1とすることも試みられているが、カチ
オンが強くアニオン基に束縛されるためにイオン導電率
が非常に低く、電池に使用することは非常に困難であっ
た。Further, in a polymer electrolyte in which a salt is dissolved, such as a polyether-based polymer electrolyte, both cations and anions move, and the cation transport number at room temperature is usually 0.5 or less. Therefore, -SO 3- or -COO - by combining a polymer electrolyte having an anionic group such as, but attempts have been made to the transference number of the cation and 1, it is bound to anionic groups strongly cation Therefore, the ionic conductivity was very low, and it was very difficult to use it for batteries.
【0007】さらに、電解液で高分子を湿潤又は膨潤さ
せることによってゲル状の高分子電解質を製作し、非水
系電池に適用することも試みられている。このゲル状の
高分子電解質において使用されている高分子には、ポリ
アクリロニトリル、ポリビニルサルフォン、ポリ塩化ビ
ニル、ポリビニリデンフルオライド、ポリビニルピロリ
ジノン等がある。ビニリデンフルオライドとヘキサフル
オロプロピレンとの共重合体を用いることによって高分
子の結晶化度を低下させ、電解液で湿潤又は膨潤し易く
して導電率を向上させることも試みられている。また、
ニトリルゴム、スチレンブタジエンゴム、ポリブタジエ
ン、ポリビニルピロリドン等のラテックスの乾燥によっ
て高分子膜を製作し、これを電解液で湿潤又は膨潤させ
ることによって高分子電解質膜を製作することも試みら
れている。このラテックスを用いた高分子電解質の製作
においては二種類の高分子を混合し、電解液が染み込み
難く強い機械的強度を保つ高分子相と、電解液が染み込
みやすく高いイオン導電率を示す高分子相との混合系と
することによって機械的強度とイオン伝導性を供与する
高分子膜が提案されている。Further, it has been attempted to produce a gel polymer electrolyte by wetting or swelling the polymer with an electrolytic solution, and to apply it to a non-aqueous battery. Polymers used in the gel polymer electrolyte include polyacrylonitrile, polyvinyl sulfone, polyvinyl chloride, polyvinylidene fluoride, polyvinyl pyrrolidinone, and the like. Attempts have also been made to reduce the crystallinity of the polymer by using a copolymer of vinylidene fluoride and hexafluoropropylene, and to improve the conductivity by facilitating wetting or swelling with an electrolytic solution. Also,
Attempts have also been made to produce a polymer membrane by drying a latex such as nitrile rubber, styrene-butadiene rubber, polybutadiene, polyvinylpyrrolidone, etc., and wetting or swelling it with an electrolyte solution. In the production of a polymer electrolyte using this latex, two types of polymers are mixed, and a polymer phase that does not easily penetrate the electrolyte and maintains strong mechanical strength, and a polymer that easily permeates the electrolyte and exhibits high ionic conductivity A polymer membrane that provides mechanical strength and ionic conductivity by using a mixed system with a phase has been proposed.
【0008】また、高分子電解質膜の機械的強度の増強
及び扱い易さの向上のために、ポリオレフィンの微孔性
膜の孔中に高分子電解質を充填した固体電解質や、イオ
ン導電率向上及びカチオンの輸率の増大等を目的とする
無機固体電解質粉末を含む有機高分子電解質についても
報告されている。Further, in order to enhance the mechanical strength of the polymer electrolyte membrane and to improve the ease of handling, a solid electrolyte in which the polymer electrolyte is filled in the pores of the polyolefin microporous membrane, an ionic conductivity improvement and An organic polymer electrolyte containing an inorganic solid electrolyte powder for the purpose of increasing the cation transport number has also been reported.
【0009】しかし、リチウム電池及びリチウムイオン
等の非水電解質電池は、充放電反応において電極反応に
関与するリチウムイオンの量の大部分が、電解質に溶解
しているリチウムイオンではなく、電極の活物質から放
出するリチウムイオンが電解質中を移動して対極に到達
するものであるため、そのリチウムイオンの移動距離は
長い。しかも、水溶液系電池中のプロトン及び水酸化物
イオンの輸率が1に近い値を示すのに対して、非水電解
質電池の電解質中のリチウムイオンの室温での輸率は通
常0.5以下であり、電解質中のイオンの移動速度はイ
オンの濃度拡散に支配される。従って、非水電解液を使
用した電池では、水溶液系の電池と比較して高率での充
放電性能に劣るという問題点があった。非水電解液の代
わりに高分子電解質を用いた場合には、非水電解質と比
較してもさらに著しく電解質中のイオンの拡散が遅くな
るために、高率及び低温での充放電性能が劣り、非水電
解質二次電池の主な用途であるパーソナルコンピュータ
ー、携帯通信機等の主電源としては実用的な性能が得ら
れないという問題点があった。However, in lithium batteries and non-aqueous electrolyte batteries such as lithium ions, most of the amount of lithium ions involved in the electrode reaction in the charge / discharge reaction is not the lithium ions dissolved in the electrolyte, but the activity of the electrodes. Since the lithium ions released from the substance move in the electrolyte and reach the counter electrode, the movement distance of the lithium ions is long. Moreover, while the transport numbers of protons and hydroxide ions in the aqueous battery show values close to 1, the transport numbers of lithium ions in the electrolyte of the nonaqueous electrolyte battery at room temperature are usually 0.5 or less. And the movement speed of the ions in the electrolyte is governed by the concentration diffusion of the ions. Therefore, a battery using a non-aqueous electrolyte has a problem in that the charge / discharge performance at a high rate is inferior to that of an aqueous battery. When a polymer electrolyte is used in place of a non-aqueous electrolyte, the diffusion of ions in the electrolyte is much slower than in a non-aqueous electrolyte, so the charge / discharge performance at high rates and low temperatures is inferior. However, there has been a problem that practical performance cannot be obtained as a main power source of a personal computer, a portable communication device, or the like, which is a main use of the nonaqueous electrolyte secondary battery.
【0010】以上のように、種々の有機高分子セパレー
タや高分子電解質が数多く提案されている。しかし、電
池の安全性上の問題から活物質の利用率を制限すること
なく、電池のエネルギー密度を活物質の理論容量から期
待される値と同程度とすることができる安全な電池であ
って、併せて高率及び低温での充放電性能に優れる非水
電解質電池はなかった。As described above, various organic polymer separators and polymer electrolytes have been proposed. However, it is a safe battery that can make the energy density of the battery almost equal to the value expected from the theoretical capacity of the active material without limiting the utilization rate of the active material due to the problem of battery safety. In addition, there was no non-aqueous electrolyte battery excellent in charge / discharge performance at high rate and low temperature.
【0011】[0011]
【発明が解決しようとする課題】従来の有機電解液を使
用した非水電解質電池は、電解液で膨潤も湿潤もしな
い、保液能に劣るポリエチレン又はポリプロピレンをセ
パレータとして用いていた。従って、セパレータが電解
液を吸収して電極全体に均一に電解液を行き渡らせるこ
とがないために、電池への電解液の注液量が少ない場合
には、電解液が電池全体に均一に行き渡らないために、
十分な電池性能が得られなかった。従って、十分な電池
性能を得るためには、多量に電解液を注液する必要があ
り、その結果として電極及びセパレータの孔中、及び電
極とセパレータとの隙間は、すべて電解液で占められて
いた。従って、釘刺し等の安全性試験をおこなった場
合、局所的な圧力上昇に対してクッションとなる気体が
電極近傍に存在しないために、内部短絡箇所の発熱によ
る、その近辺の電解液の気化によって局所的に圧力が急
激に増大し、発熱連鎖反応の発端となる反応が生じ易く
なり、その安全性が低下する。また、ポリエチレン又は
ポリプロピレンのセパレータは、電解液で膨潤も湿潤も
しないために硬く、正・負極の凹凸に併せて形状変化し
ない。従って、セパレータと正・負極とは共に表面に凹
凸を有するために、その間には隙間が存在して、電解液
の注液によって多量の電解液がその隙間に充填されるこ
ととなる。結果として、釘刺し等の安全性試験によって
電池内温度が上昇した場合、電極近傍に多量の電解液が
存在するために、電解液と活物質との反応による発熱量
が多くなり、その後の爆発的な発熱連鎖反応のトリガー
となるためにその安全性が低下する。従って、電池の安
全性を向上させるために、活物質の利用率を制限する必
要があり電池の容量が制限され、また、様々な安全化素
子を備える必要があるためにコストが高くなるといった
問題点があった。A conventional non-aqueous electrolyte battery using an organic electrolyte solution uses polyethylene or polypropylene, which does not swell or wet with the electrolyte solution and has poor liquid retention ability, as a separator. Therefore, since the separator does not absorb the electrolyte and spread the electrolyte uniformly over the entire electrode, when the amount of the electrolyte injected into the battery is small, the electrolyte is uniformly spread over the entire battery. Not for
Sufficient battery performance was not obtained. Therefore, in order to obtain sufficient battery performance, it is necessary to inject a large amount of the electrolytic solution, and as a result, the electrolyte and the pores of the electrode and the separator and the gap between the electrode and the separator are all occupied by the electrolytic solution. Was. Therefore, when a safety test such as nail penetration is performed, there is no gas that acts as a cushion against local pressure rise near the electrode, and heat is generated at the internal short-circuit point, causing vaporization of the electrolyte near the electrode. The pressure suddenly increases locally, and the reaction that is the starting point of the exothermic chain reaction is likely to occur, and the safety is reduced. Further, the polyethylene or polypropylene separator is hard because it does not swell or wet with the electrolytic solution, and does not change its shape according to the unevenness of the positive and negative electrodes. Therefore, since both the separator and the positive and negative electrodes have irregularities on the surface, there is a gap between them, and a large amount of electrolyte is filled into the gap by injection of the electrolyte. As a result, when the temperature inside the battery rises due to a safety test such as nail penetration, a large amount of electrolyte exists near the electrodes, so the amount of heat generated by the reaction between the electrolyte and the active material increases, and the subsequent explosion The safety is reduced because it triggers an exothermic chain reaction. Therefore, in order to improve the safety of the battery, it is necessary to limit the utilization rate of the active material, thereby limiting the capacity of the battery, and increasing the cost due to the need to provide various safety elements. There was a point.
【0012】従来の固体電解質を使用した非水電解質電
池は、固体電解質中のイオンの拡散速度が有機電解液と
比較して非常に遅いために、電極反応に必要なリチウム
イオンの供給が十分におこなわれず、高率での充放電及
び低温での充放電をおこなった場合に十分な電池性能が
得られないという問題点があった。In a conventional non-aqueous electrolyte battery using a solid electrolyte, the diffusion rate of ions in the solid electrolyte is much lower than that of an organic electrolyte, so that the supply of lithium ions required for an electrode reaction is not sufficient. However, when charging and discharging at a high rate and charging and discharging at a low temperature are performed, sufficient battery performance cannot be obtained.
【0013】本発明は上記問題点に鑑みなされた、有孔
性高分子と電解液とを40℃以上で温度処理することを
特徴とする非水電解質電池用高分子電解質の製造法であ
る。本発明による高分子電解質の製造法を用いることに
よって、低温においても高率での充放電が良好で、従来
の同エネルギー密度電池よりも安全性に優れた電池の製
造が可能となり、活物質の利用率の向上による電池の高
容量化及び安全化素子の省略による電池の低コスト化が
可能となる。The present invention has been made in view of the above problems, and is a method for producing a polymer electrolyte for a non-aqueous electrolyte battery, which comprises subjecting a porous polymer and an electrolytic solution to a temperature treatment at 40 ° C. or higher. By using the method for producing a polymer electrolyte according to the present invention, the charge / discharge at a high rate is good even at a low temperature, and it is possible to produce a battery with higher safety than a conventional same energy density battery, and the active material It is possible to increase the capacity of the battery by improving the utilization factor and to reduce the cost of the battery by omitting the safety element.
【0014】[0014]
【課題を解決するための手段】そこで、下記発明によっ
て上記課題を解決するものである。The object of the present invention is achieved by the following invention.
【0015】有孔性高分子と電解液とを40℃以上で温
度処理することを特徴とする非水電解質電池用高分子電
解質の製造法である第1の発明。A first invention which is a method for producing a polymer electrolyte for a non-aqueous electrolyte battery, wherein the porous polymer and the electrolyte are subjected to a temperature treatment at 40 ° C. or higher.
【0016】有孔性高分子と電解液とを備えた電池を4
0℃以上で温度処理することを特徴とする非水電解質電
池の製造法である第2の発明。A battery provided with a porous polymer and an electrolyte is
A second invention which is a method for producing a non-aqueous electrolyte battery, wherein the temperature treatment is performed at 0 ° C. or higher.
【0017】[0017]
【発明の実施の形態】従来の液体電解質非水系電池で
は、セパレータとしてポリプロピレン又はポリエチレン
等の多孔性高分子膜を用いており、その孔の中に電解液
を保持することによって、イオンの伝導パスを確保して
いる。この場合、セパレータはイオン伝導において絶縁
物であり、高率での充電及び放電をおこなう際の障害と
なる。また、電解質として、孔のあいていない、従来の
高分子電解質を使用した電池においては、電解質中のイ
オンの拡散がさらに遅くなるために、充放電性能が著し
く低下するという欠点があった。DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional liquid electrolyte nonaqueous battery, a porous polymer membrane such as polypropylene or polyethylene is used as a separator. Is secured. In this case, the separator is an insulator in ionic conduction, and becomes an obstacle when charging and discharging at a high rate. Further, in a battery using a conventional polymer electrolyte having no pores as an electrolyte, the diffusion of ions in the electrolyte is further slowed down, so that there is a disadvantage that the charge / discharge performance is significantly reduced.
【0018】本発明による高分子電解質は、有孔性高分
子と電解液とを40℃以上の温度として製作するために
電解液を保持した孔を有する。本発明による高分子電解
質においては、孔中の電解液内のみでなく高分子電解質
内をもイオンが通過可能であり、従来の液体電解質非水
系電池よりも高率での充放電が可能となる。また、本発
明による高分子電解質を用いた非水電解質電池において
は、孔中の電解液によってイオンが速く拡散する通路が
確保されているため、従来の連通孔を有していない高分
子電解質電池よりも高率での充放電が良好となる。The polymer electrolyte according to the present invention has pores for holding the electrolyte in order to manufacture the porous polymer and the electrolyte at a temperature of 40 ° C. or higher. In the polymer electrolyte according to the present invention, ions can pass not only in the electrolyte solution in the pores but also in the polymer electrolyte, and charge / discharge at a higher rate than conventional liquid electrolyte nonaqueous batteries is possible. . Further, in the non-aqueous electrolyte battery using the polymer electrolyte according to the present invention, a passage through which ions are rapidly diffused by the electrolyte solution in the pores is secured, so that the conventional polymer electrolyte battery having no communication hole is used. The charging / discharging at a higher rate becomes better than that.
【0019】本発明において、高分子を電解液で膨潤又
は湿潤させて電解質とした場合、電池への注液量が少な
い場合であっても、高分子が電解液を吸収するために、
電解液が電極全体に均一に行き渡る。従って、有孔性の
高分子電解質の孔及び、電極の孔などの孔のすべてを占
めるのに十分な電解液量よりも少量の電解液を電池に保
持させることによって、有孔性の高分子電解質の孔中又
は、電極の孔中などに気体の部分が残るようにした場合
であっても、電解液を電極全体に行き渡らせて十分な電
池性能を得ることができる。従って、釘刺し等の安全性
試験をおこなった場合、局所的な圧力上昇に対してクッ
ションとなる気体が電極近傍に存在するために、内部短
絡箇所の発熱によってその近辺の電解液が気化した場合
であっても、局所的な圧力上昇が大幅に緩和され、発熱
連鎖反応の発端となる反応が生じ難くなり、その安全性
が向上する。また、電解液で膨潤又は湿潤した高分子電
解質は軟らかいため、正・負極の凹凸に併せて形状変化
する。従って、高分子電解質と正・負極との間の隙間は
非常に狭くなり、電解液の注液によってその隙間に充填
される電解液量は非常に少なくなる。結果として、釘刺
し等の安全性試験によって電池内温度が上昇した場合、
電極近傍に少量の電解液しか存在しないために、電解液
と活物質との反応による発熱量が少なくなり、その後の
爆発的な発熱連鎖反応が生じにくくなるためにその安全
性が向上する。従って、電池の安全性を向上させるため
に制限されていた活物質の利用率を向上させることが可
能となるために高容量の電池とすることができ、また、
様々な安全化素子を省略することが可能になるためにコ
ストを低くすることができる。従って、高分子電解質
は、電解液で膨潤又は湿潤し、保液能に優れたものであ
ることが非常に重要となる。In the present invention, when the polymer is swelled or wetted with the electrolyte to form an electrolyte, the polymer absorbs the electrolyte even when the amount of liquid injected into the battery is small.
The electrolyte spreads evenly over the entire electrode. Therefore, by allowing the battery to retain a smaller amount of electrolyte than the amount of electrolyte sufficient to occupy all of the pores, such as the pores of the porous polymer electrolyte and the electrodes, the porous polymer Even in the case where a gas portion is left in the hole of the electrolyte or in the hole of the electrode, sufficient battery performance can be obtained by spreading the electrolyte over the entire electrode. Therefore, when a safety test such as nail penetration is performed, a gas that serves as a cushion against local pressure rise is present near the electrode, and the heat generated at the internal short-circuit location evaporates the electrolyte near the electrode. Even in this case, the local increase in pressure is greatly reduced, and the reaction that is the starting point of the exothermic chain reaction is unlikely to occur, and the safety is improved. Further, since the polymer electrolyte swelled or wetted with the electrolyte is soft, the shape of the polymer electrolyte changes according to the unevenness of the positive and negative electrodes. Therefore, the gap between the polymer electrolyte and the positive / negative electrode is very narrow, and the amount of the electrolyte filled in the gap by the injection of the electrolyte is very small. As a result, if the temperature inside the battery rises due to safety tests such as nail penetration,
Since only a small amount of the electrolytic solution is present in the vicinity of the electrode, the amount of heat generated by the reaction between the electrolytic solution and the active material is reduced, and the subsequent explosive exothermic chain reaction is less likely to occur, thereby improving the safety. Therefore, it is possible to improve the utilization rate of the active material that has been limited to improve the safety of the battery, it is possible to a high-capacity battery,
The cost can be reduced because various safety elements can be omitted. Therefore, it is very important that the polymer electrolyte swells or wets with the electrolytic solution and has excellent liquid retention ability.
【0020】高分子を電解液によってゲル状とした高分
子電解質を製作した後に電極と重ねて巻回又は積層した
場合、電解液を含むゲルが広い面積で作業雰囲気の気体
と長時間接することになる。電解液は極性が強いために
吸水性が強く、ドライルームなどの低露点雰囲気であっ
ても水分を吸収して電池性能に悪影響を及ぼす。従っ
て、高分子を電解液を含まない状態で固化し、電極と重
ねて巻回又は積層して電池ケース内に収納して蓋をした
後に、注液口から電解液を注液して高分子を膨潤又は湿
潤させて電解質とする方法が望ましい。しかし、室温で
電解液で十分に膨潤又は湿潤する高分子は、電池が完成
した後に高温雰囲気にさらされた場合に、高分子が必要
以上に膨潤又は湿潤し、場合によっては高分子が電解液
に溶解するという問題点がある。逆に、電池が完成した
後に高温雰囲気にさらされた場合においても、必要以上
に膨潤又は湿潤したり、電解液に溶解したりしない高分
子は、室温において膨潤しにくいという問題点がある。In the case where a polymer electrolyte in which a polymer is made into a gel form with an electrolytic solution is manufactured and then wound or laminated with an electrode, the gel containing the electrolytic solution may be in contact with the gas in the working atmosphere over a wide area for a long time. Become. The electrolyte has a strong polarity, and thus has a high water absorption. Even in a low dew point atmosphere such as a dry room, the electrolyte absorbs moisture and adversely affects battery performance. Therefore, after solidifying the polymer in a state where the polymer does not contain the electrolyte, winding or laminating it on the electrode, storing it in the battery case and closing the lid, injecting the electrolyte from the injection port to polymer the polymer. Swelling or wetting to form an electrolyte. However, a polymer that swells or wets sufficiently with an electrolytic solution at room temperature may cause the polymer to swell or wet more than necessary when exposed to a high-temperature atmosphere after the battery is completed. There is a problem of dissolving in water. Conversely, even when the battery is completed and then exposed to a high-temperature atmosphere, a polymer that does not swell or wet unnecessarily or dissolve in the electrolytic solution does not easily swell at room temperature.
【0021】本発明においては、室温で膨潤し難く、8
0℃などの高温においても電解液に溶解しない有孔性高
分子と電解液とを、高分子が適度に膨潤する程度の温度
及び時間で加熱することによって、高分子を膨潤させ
る。従って、本発明においては、適度に電解液で膨潤
し、80℃等の高温においても電解液に溶解しない高分
子電解質を、含有水分量が少ない状態で製作することが
できる。従って、高分子電解質を適度に膨潤させること
ができるために、電解液の注液量が少ない場合であって
も高分子が電解液を吸収するために、電解液を電極全体
に均一に行き渡らせることができ、また、高分子電解質
と正・負極との間の隙間が狭くなって電極近傍の余分な
電解液量を減らすことができる。また、本発明は、電解
液で膨潤又は湿潤させる高分子が有孔性であるため、孔
のない高分子を用いた場合と比較して非常に短時間で十
分に膨潤又は湿潤させることができ、量産性に優れた高
分子電解質の製造法である。In the present invention, it is difficult to swell at room temperature,
The polymer is swollen by heating the porous polymer that does not dissolve in the electrolyte even at a high temperature such as 0 ° C. and the electrolyte at a temperature and for a time such that the polymer swells appropriately. Therefore, in the present invention, a polymer electrolyte that swells moderately with the electrolyte solution and does not dissolve in the electrolyte solution even at a high temperature such as 80 ° C. can be manufactured with a small water content. Therefore, since the polymer electrolyte can be appropriately swollen, the polymer absorbs the electrolyte even when the injection amount of the electrolyte is small, so that the electrolyte is uniformly spread over the entire electrode. In addition, the gap between the polymer electrolyte and the positive and negative electrodes is narrowed, so that the amount of excess electrolyte near the electrodes can be reduced. Further, in the present invention, since the polymer to be swollen or wetted with the electrolytic solution is porous, it can be sufficiently swollen or wet in a very short time as compared with a case where a polymer without pores is used. This is a method for producing a polymer electrolyte excellent in mass productivity.
【0022】結果として、本発明を用いることによっ
て、少ない電解液の注液量においても高率及び低温での
充放電性能に優れ、その結果として安全性に優れ、併せ
て電解質中の含有水分量の少ない非水電解質電池を製作
することができる。従って、本発明による非水電解質電
池は、安全化素子の省略化によるコストダウン及び活物
質の利用率の向上による高エネルギー密度化が可能とな
る。As a result, by using the present invention, the charge / discharge performance at a high rate and at a low temperature is excellent even with a small amount of electrolyte injected, and as a result, the safety is excellent, and the water content in the electrolyte is also high. A non-aqueous electrolyte battery with a small amount of water can be manufactured. Therefore, in the nonaqueous electrolyte battery according to the present invention, the cost can be reduced by omitting the safety element, and the energy density can be increased by improving the utilization rate of the active material.
【0023】[0023]
(実施例1)以下、本発明を好適な実施例を用いて説明
する。正極の製作について説明する。まず、コバルト酸
リチウム70Wt%、アセチレンブラック6Wt%、ポ
リビニリデンフルオライド(PVDF)9Wt%、n−
メチル−2−ピロリドン(NMP)15Wt%を混合し
たものを、幅20mm、長さ480mm、厚さ20μm
のステンレスシート上に塗布し、150℃で乾燥してN
MPを蒸発させた。以上の操作をステンレスシートの両
面におこなった後に、プレスをして正極とした。プレス
後の正極の厚さは170μmであり、単位面積当たりに
充填された活物質、導電剤及び結着剤の重量は、23μ
g/cm2 であった。(Embodiment 1) Hereinafter, the present invention will be described using preferred embodiments. The production of the positive electrode will be described. First, 70% by weight of lithium cobalt oxide, 6% by weight of acetylene black, 9% by weight of polyvinylidene fluoride (PVDF), n-
A mixture obtained by mixing 15 wt% of methyl-2-pyrrolidone (NMP) is 20 mm in width, 480 mm in length, and 20 μm in thickness.
And dried at 150 ° C.
The MP was evaporated. After the above operation was performed on both sides of the stainless steel sheet, it was pressed to obtain a positive electrode. The thickness of the positive electrode after pressing was 170 μm, and the weight of the active material, conductive agent, and binder filled per unit area was 23 μm.
g / cm 2 .
【0024】負極は次のようにして製作した。グラファ
イト81Wt%、PVDF9Wt%、NMP10Wt%
を混合したものを厚さ14μmのニッケルシート上に塗
布し、150℃で乾燥してNMPを蒸発させた。以上の
操作をニッケルシートの両面に対しておこなった後に、
プレスを行い、負極とした。プレス後の負極の厚さは1
90μmであった。The negative electrode was manufactured as follows. Graphite 81Wt%, PVDF9Wt%, NMP10Wt%
Was applied onto a nickel sheet having a thickness of 14 μm, and dried at 150 ° C. to evaporate NMP. After performing the above operation on both sides of the nickel sheet,
Pressing was performed to obtain a negative electrode. The thickness of the negative electrode after pressing is 1
It was 90 μm.
【0025】つぎに、正・負極間の有孔性高分子電解質
膜として用いる、多孔性PVDF膜をつぎのように溶媒
抽出法によって製作した。分子量60,000のPVD
F粉末12gを88gのNMPに溶解し、PVDFペー
ストを製作した。このPVDFペーストを、ポリエチレ
ンコートしたリケイ紙上に100μmのブレードギャッ
プでドクターブレード法によって塗布し、水中に浸漬し
てNMPを水で置換することによって、連通孔を有する
多孔度約40%、厚さ約25μmのPVDF膜を製作し
た。Next, a porous PVDF membrane used as a porous polymer electrolyte membrane between the positive electrode and the negative electrode was produced by a solvent extraction method as follows. PVD with a molecular weight of 60,000
12 g of F powder was dissolved in 88 g of NMP to produce a PVDF paste. This PVDF paste was applied on a polyethylene-coated silica paper with a doctor blade method with a blade gap of 100 μm, and was immersed in water to replace NMP with water. A 25 μm PVDF membrane was produced.
【0026】このようにして準備したPVDF有孔性高
分子膜、正極及び負極を重ねて渦巻状に巻き、高さ4
7.0mm、幅22.2mm、厚さ6.4mmのステン
レスケース中に挿入して、レーザー溶接によって蓋をし
て角形電池を組み立てた。この電池の内部に、エチレン
カーボネート(EC)とジエチルカーボネート(DE
C)とを体積比率1:1で混合し、1mol/lのLi
PF6 を加えた電解液を、注液口から真空注液によって
加えた後にボール封口によって注液口を塞いで電池ケー
スを密閉化した。このようにして製作した電池を、40
℃、50℃、60℃、70℃及び80℃の各温度で48
時間加熱して、PVDF有孔性高分子を電解液で膨潤さ
せて有孔性の高分子電解質とした。このようにして、公
称容量400mAh程度の、本発明を用いた実施例1の
電池A、B、C、D及びE(順に加熱温度が40℃、5
0℃、60℃、70℃及び80℃)を製作した。なお、
本発明による電池A、B、C、D及びEのそれぞれにお
いて、電解液の注液量を1.8〜2.6gの間で変化さ
せて数種類の電池を製作した。本発明における電池にお
いては、PVDFの分子量の異なるものを使用すること
によって、電解液の湿潤又は膨潤性を制御できる。The PVDF porous polymer membrane thus prepared, the positive electrode and the negative electrode are stacked and spirally wound, and the height is 4
The battery was inserted into a stainless steel case having a size of 7.0 mm, a width of 22.2 mm and a thickness of 6.4 mm, and was covered with a lid by laser welding to assemble a prismatic battery. Inside this battery, ethylene carbonate (EC) and diethyl carbonate (DE)
C) and 1: 1 by volume, and 1 mol / l of Li
The electrolyte solution to which PF 6 was added was added by vacuum injection from the injection port, and then the injection port was closed with a ball seal to seal the battery case. The battery manufactured in this way is
At 50 ° C, 50 ° C, 60 ° C, 70 ° C and 80 ° C.
After heating for a time, the PVDF porous polymer was swollen with an electrolytic solution to obtain a porous polymer electrolyte. In this way, the batteries A, B, C, D and E of Example 1 using the present invention having a nominal capacity of about 400 mAh (the heating temperature was 40 ° C., 5
0 ° C, 60 ° C, 70 ° C and 80 ° C). In addition,
In each of the batteries A, B, C, D, and E according to the present invention, several types of batteries were manufactured by changing the amount of electrolyte injected between 1.8 and 2.6 g. In the battery according to the present invention, by using PVDF having different molecular weights, the wettability or swelling of the electrolytic solution can be controlled.
【0027】比較例1として、電池を40℃以上で加熱
するかわりに、25℃で48時間放置したこと以外は上
記実施例1と同様にして、公称容量が400mAh程度
の、従来から公知である電池(F)を製作した。As Comparative Example 1, a battery having a nominal capacity of about 400 mAh is conventionally known in the same manner as in Example 1 except that the battery was left at 25 ° C. for 48 hours instead of being heated at 40 ° C. or higher. Battery (F) was produced.
【0028】比較例2として、PVDF有孔性高分子膜
の代わりに、厚さ25μm、多孔度40%の延伸ポリプ
ロピレン膜を使用し、電池の40℃以上での加熱処理を
おこなわなかったこと以外は上記実施例1と同一構成で
ある、公称容量が400mAh程度の、従来から公知で
ある電池Gを製作した。As Comparative Example 2, except that a stretched polypropylene membrane having a thickness of 25 μm and a porosity of 40% was used instead of the PVDF porous polymer membrane, and the battery was not heated at 40 ° C. or higher. Manufactured a conventionally known battery G having the same configuration as that of Example 1 described above and a nominal capacity of about 400 mAh.
【0029】従来から公知である電池F及びGにおいて
も、本発明による電池A、B、C、D及びEと同様にし
て、電解液の注液量を1.8〜2.6gの間で変化させ
て数種類の電池を製作した。In the conventionally known batteries F and G, similarly to the batteries A, B, C, D and E according to the present invention, the amount of electrolyte injected is between 1.8 and 2.6 g. Several types of batteries were manufactured with variations.
【0030】本発明による電池A、B、C、D及びE、
及び従来から公知である電池F及びGを用いて、25℃
において、1CAの電流で4.1Vまで充電し、続いて
4.1Vの定電圧で2時間充電した後、2CAの電流で
2.75Vまで放電した。The batteries A, B, C, D and E according to the invention
And 25 ° C. using batteries F and G which are conventionally known.
, The battery was charged to 4.1 V with a current of 1 CA, subsequently charged for 2 hours at a constant voltage of 4.1 V, and then discharged to 2.75 V with a current of 2 CA.
【0031】図1は、これらの電池の放電容量と、電池
に注液した電解液重量との関係を示す図である。図か
ら、本発明による電池A、B、C、D及びEは、従来か
ら公知である電池F及びGよりも少ない電解液の注液量
で優れた高率放電性能を示していることが理解される。
また、本発明による電池A、B、C、D及びEにおいて
は、加熱温度が高いほど少ない電解液の注液量で優れた
高率放電性能を示していることが理解される。FIG. 1 is a diagram showing the relationship between the discharge capacity of these batteries and the weight of the electrolyte injected into the batteries. From the figure, it is understood that the batteries A, B, C, D, and E according to the present invention exhibit excellent high-rate discharge performance with a smaller amount of electrolyte injected than the conventionally known batteries F and G. Is done.
It is also understood that the batteries A, B, C, D, and E according to the present invention exhibit excellent high-rate discharge performance with a smaller amount of electrolyte injected as the heating temperature is higher.
【0032】なお、従来から公知である電池Gを40
℃、50℃、60℃、70℃及び80℃の各温度で48
時間加熱した後に同様の試験をおこなったが、加熱をお
こなわなかった場合と同様の結果となった。It should be noted that the conventionally known battery G
At 50 ° C, 50 ° C, 60 ° C, 70 ° C and 80 ° C.
After heating for an hour, the same test was performed, but the result was the same as when no heating was performed.
【0033】さらに、本発明による電池A、B、C、D
及びE、及び従来から公知である電池F及びGを用い
て、つぎのような安全性の比較試験をおこなった。上記
の各電池を、25℃において1CAの電流で4.5Vま
で充電し、続いて4.5Vの定電圧で2時間充電した
後、3mm径の釘を電池に刺して貫通させた。その結果
を表1に示す。なお、上記の安全性試験において、各電
池への電解液の注液量は、25℃での2CA放電時の放
電容量が公称容量程度となる最低量とした。各電池の電
解液重量を表1に示す。Further, batteries A, B, C, D according to the present invention
And E, and conventionally known batteries F and G, the following safety comparison test was performed. Each of the above batteries was charged to 4.5 V at a current of 1 CA at 25 ° C., and then charged for 2 hours at a constant voltage of 4.5 V. After that, a 3 mm-diameter nail was pierced by penetrating the battery. Table 1 shows the results. In the above-described safety test, the amount of electrolyte injected into each battery was the minimum amount at which the discharge capacity at the time of 2CA discharge at 25 ° C. became about the nominal capacity. Table 1 shows the electrolyte weight of each battery.
【0034】[0034]
【表1】 これらの結果から、本発明による電池A、B、C、D及
びEは、従来から公知である電池F及びGよりも安全性
に優れた電池であるということができ、また本発明を用
いた電池においては、より高温で加熱した電池ほど安全
性に優れた電池であるということができる。[Table 1] From these results, it can be said that the batteries A, B, C, D, and E according to the present invention are batteries having higher safety than the conventionally known batteries F and G, and the present invention was used. In the battery, it can be said that a battery heated at a higher temperature has a higher safety.
【0035】前記実施例では、高分子電解質に用いる高
分子としてPVDFを用いたが、PVDFの代わりにポ
リアクリロニトリル、及びポリ塩化ビニルを用いて同様
の電池製作、充放電試験及び安全性試験をおこなったと
ころ、PVDFを用いた場合と同様の結果を示した。In the above embodiment, PVDF was used as the polymer used for the polymer electrolyte. However, similar battery fabrication, charge / discharge tests and safety tests were carried out using polyacrylonitrile and polyvinyl chloride instead of PVDF. As a result, the same results were obtained as when PVDF was used.
【0036】また、前記実施例においては、ボール封口
によって電池を密閉化した後に加熱処理をおこなった
が、ボール封口によって密閉化する前の開放系の電池を
加熱処理した場合においても、本発明と同様の結果が得
られた。開放系で加熱処理をおこなった場合であって
も、電解質と電池の外の雰囲気との接触面の面積は電極
面積と比較して狭いために、加熱を低露点雰囲気で実施
することによって、電解質が吸収する水分量を十分に少
なく抑えることができた。In the above embodiment, the heat treatment was performed after the battery was sealed by the ball seal. However, even when the open system battery was heat-treated before the battery was sealed by the ball seal, the present invention can be applied. Similar results were obtained. Even if the heat treatment is performed in an open system, the contact area between the electrolyte and the atmosphere outside the battery is small compared to the electrode area. Was able to sufficiently reduce the amount of water absorbed.
【0037】前記実施例では、高分子電解質の高分子と
してポリビニリデンフルオライドを使用しているが、本
発明における高分子電解質の高分子はこれに限定される
ものではなく、ポリエチレンオキシド、ポリプロピレン
オキシド等のポリエーテル、ポリアクリロニトリル、ポ
リビニリデンフルオライド、ポリ塩化ビニリデン、ポリ
メチルメタクリレート、ポリメチルアクリレート、ポリ
ビニルアルコール、ポリメタクリロニトリル、ポリビニ
ルアセテート、ポリビニルピロリドン、ポリエチレンイ
ミン、ポリブタジエン、ポリスチレン、ポリイソプレ
ン、もしくはこれらの誘導体を、単独で、あるいは混合
して用いてもよい。なお、上記の各高分子は、その高分
子を主成分とする共重合体であってもよい。In the above embodiment, polyvinylidene fluoride is used as the polymer of the polymer electrolyte. However, the polymer of the polymer electrolyte in the present invention is not limited to this. Such as polyether, polyacrylonitrile, polyvinylidene fluoride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene imine, polybutadiene, polystyrene, polyisoprene, or These derivatives may be used alone or as a mixture. In addition, each of the above polymers may be a copolymer containing the polymer as a main component.
【0038】また、前記実施例における電池において
は、有孔性高分子電解質として溶媒抽出法によって多孔
化したPVDFを用いたが、本発明における高分子の多
孔化法はこれに限定されるものではなく、延伸法、発泡
剤を用いる方法、粉末を接着する方法、又は、高分子中
に固体を析出させる方法のいずれであってもよい。In the battery of the above embodiment, PVDF made porous by a solvent extraction method was used as the porous polymer electrolyte. However, the method of making the polymer porous in the present invention is not limited to this. Alternatively, any of a stretching method, a method using a foaming agent, a method of bonding powder, or a method of depositing a solid in a polymer may be used.
【0039】また、前記実施例における電池において
は、有孔性高分子を固化した後に正極及び負極と重ねて
渦巻状に巻いているが、本発明はこれに限定されるもの
ではなく、有孔性高分子は正極又は負極上で固化しても
よい。また、有孔性高分子電解質は、正極又は負極の活
物質層の孔中に充填してもよい。エレメントは、渦巻き
状の巻回体以外にも、積層体であってもよい。Further, in the battery of the above embodiment, the porous polymer is solidified and then spirally wound on the positive electrode and the negative electrode. However, the present invention is not limited to this. The conductive polymer may be solidified on the positive electrode or the negative electrode. Further, the porous polymer electrolyte may be filled in the holes of the active material layer of the positive electrode or the negative electrode. The element may be a laminated body other than the spirally wound body.
【0040】また、本発明において、電解液とともに加
熱する有孔性高分子は、加熱する以前に既に高分子電解
質となっていてもよい。この場合であっても、加熱によ
って膨潤又は湿潤を促進し、より優れた高分子電解質と
することができる。In the present invention, the porous polymer to be heated together with the electrolytic solution may already be a polymer electrolyte before heating. Even in this case, swelling or wetting is promoted by heating, and a more excellent polymer electrolyte can be obtained.
【0041】また、前記実施例における電池において
は、非水電解液としてECとDECとの混合溶液を用い
ているが、これに限定されるものではなく、エチレンカ
ーボネート、プロピレンカーボネート、ジメチルカーボ
ネート、ジエチルカーボネート、γ−ブチロラクトン、
スルホラン、ジメチルスルホキシド、アセトニトリル、
ジメチルホルムアミド、ジメチルアセトアミド、1,2
−ジメトキシエタン、1,2−ジエトキシエタン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、ジオ
キソラン、メチルアセテート等の極性溶媒、もしくはこ
れらの混合物を使用してもよい。Further, in the battery of the above embodiment, a mixed solution of EC and DEC is used as the non-aqueous electrolyte, but the present invention is not limited to this, and ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate Carbonate, γ-butyrolactone,
Sulfolane, dimethyl sulfoxide, acetonitrile,
Dimethylformamide, dimethylacetamide, 1,2
A polar solvent such as -dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof may be used.
【0042】さらに、前記実施例においては、非水電解
液に含有させる塩としてLiPF6を使用しているが、
その他に、LiBF4 、 LiAsF6 、 LiClO4 、
LiSCN、LiI、LiCF3 SO3 、 LiCl、L
iBr、LiCF3 CO2 等のリチウム塩、もしくはこ
れらの混合物を用いてもよい。Further, in the above embodiment, LiPF 6 is used as a salt contained in the non-aqueous electrolyte.
In addition, LiBF 4 , LiAsF 6 , LiClO 4 ,
LiSCN, LiI, LiCF 3 SO 3 , LiCl, L
A lithium salt such as iBr or LiCF 3 CO 2 or a mixture thereof may be used.
【0043】さらに、前記実施例においては、正極材料
たるアルカリ金属を吸蔵放出可能な化合物としてLiC
oO2 を使用したが、これに限定されるものではない。
これ以外にも、無機化合物としては、組成式LixMO
2 、 又はLiyM2 O4 (ただし、Mは遷移金属、0≦
x≦1、0≦y≦2)で表される、複合酸化物、トンネ
ル状の空孔を有する酸化物、層状構造の金属カルコゲン
化物を用いることができる。その具体例としては、Li
CoO2 、 LiNiO2 、 LiMn2 O4 、 Li2 Mn
2 O4 、 MnO2 、 FeO2 、 V2 O5 、 V6 O13、 T
iO2 、 TiS2 等が挙げられる。また、有機化合物と
しては、例えばポリアニリン等の導電性有機高分子等が
挙げられる。さらに、無機化合物、有機化合物を問わ
ず、上記各種活物質を混合して用いてもよい。Further, in the above embodiment, the compound capable of occluding and releasing the alkali metal as the positive electrode material is LiC
Although oO 2 was used, it is not limited to this.
In addition, as the inorganic compound, the composition formula LixMO
2 or LiyM 2 O 4 (where M is a transition metal, 0 ≦
Complex oxides, oxides having tunnel-like vacancies, and metal chalcogenides having a layered structure represented by x ≦ 1, 0 ≦ y ≦ 2) can be used. As a specific example, Li
CoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn
2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , T
iO 2 , TiS 2 and the like. Examples of the organic compound include a conductive organic polymer such as polyaniline. Further, the above-mentioned various active materials may be mixed and used regardless of an inorganic compound or an organic compound.
【0044】さらに、前記実施例においては、負極材料
たる化合物としてグラファイトを使用しているが、その
他に、Al、Si、Pb、Sn、Zn、Cd等とリチウ
ムとの合金、LiFe2 O3 等の遷移金属複合酸化物、
MoO2 、スズ酸化物等の遷移金属酸化物、グラファイ
ト、カーボン等の炭素質材料、Li5 (Li3 N)等の
窒化リチウム、もしくは金属リチウム箔、又はこれらの
混合物を用いてもよい。Further, in the above embodiment, graphite is used as a compound as a negative electrode material. In addition, alloys of lithium with Al, Si, Pb, Sn, Zn, Cd, etc., LiFe 2 O 3, etc. Transition metal composite oxide,
Transition metal oxides such as MoO 2 and tin oxide, carbonaceous materials such as graphite and carbon, lithium nitride such as Li 5 (Li 3 N), or metallic lithium foil, or a mixture thereof may be used.
【0045】[0045]
【発明の効果】本発明においては、室温で膨潤し難く、
80℃などの高温においても電解液に溶解しない有孔性
高分子と電解液とを、高分子が適度に膨潤する程度の温
度及び時間で加熱することによって、高分子を膨潤させ
る。従って、本発明においては、適度に電解液で膨潤
し、80℃等の高温においても電解液に溶解しない高分
子電解質を製作することができる。従って、高分子電解
質を適度に膨潤させることができるために、電解液の注
液量が少ない場合であっても高分子が電解液を吸収する
ために、電解液を電極全体に均一に行き渡らせることが
でき、また、高分子電解質と正・負極との間の隙間が狭
くなって電極近傍の余分な電解液量を減らすことができ
る。また、本発明は、電解液で膨潤又は湿潤させる高分
子が有孔性であるため、孔のない高分子を用いた場合と
比較して非常に短時間で十分に膨潤又は湿潤させること
ができ、量産性に優れた高分子電解質の製造法である。
さらに、本発明における有孔性高分子と電解液との加熱
を電池ケース内で実施することによって、含有水分量の
少ない高分子電解質を製作することができる。According to the present invention, it is difficult to swell at room temperature,
The polymer is swollen by heating the porous polymer that does not dissolve in the electrolyte even at a high temperature such as 80 ° C. and the electrolyte at a temperature and for a time such that the polymer swells appropriately. Therefore, in the present invention, it is possible to manufacture a polymer electrolyte that swells moderately with the electrolyte and does not dissolve in the electrolyte even at a high temperature such as 80 ° C. Therefore, since the polymer electrolyte can be appropriately swollen, the polymer absorbs the electrolyte even when the injection amount of the electrolyte is small, so that the electrolyte is uniformly spread over the entire electrode. In addition, the gap between the polymer electrolyte and the positive and negative electrodes is narrowed, so that the amount of excess electrolyte near the electrodes can be reduced. Further, in the present invention, since the polymer to be swollen or wetted with the electrolytic solution is porous, it can be sufficiently swollen or wet in a very short time as compared with a case where a polymer without pores is used. This is a method for producing a polymer electrolyte excellent in mass productivity.
Furthermore, by heating the porous polymer and the electrolyte solution in the present invention in the battery case, a polymer electrolyte having a small water content can be manufactured.
【0046】結果として、本発明を用いることによっ
て、少ない電解液の注液量においても高率及び低温での
充放電性能に優れ、その結果として安全性に優れ、併せ
て電解質中の含有水分量の少ない非水電解質電池を製作
することができる。従って、本発明による非水電解質電
池は、安全化素子の省略化によるコストダウン及び活物
質の利用率の向上による高エネルギー密度化が可能とな
る。As a result, by using the present invention, the charge / discharge performance at a high rate and at a low temperature is excellent even with a small amount of injected electrolyte, and as a result, the safety is excellent, and the water content in the electrolyte is also high. A non-aqueous electrolyte battery with a small amount of water can be manufactured. Therefore, in the nonaqueous electrolyte battery according to the present invention, the cost can be reduced by omitting the safety element, and the energy density can be increased by improving the utilization rate of the active material.
【図1】本発明による電池と従来電池の電解液重量と放
電容量との関係を比較した図FIG. 1 is a diagram comparing the relationship between electrolyte weight and discharge capacity of a battery according to the present invention and a conventional battery.
Claims (2)
温度処理することを特徴とする非水電解質電池用高分子
電解質の製造法。1. A method for producing a polymer electrolyte for a non-aqueous electrolyte battery, comprising subjecting a porous polymer and an electrolytic solution to a temperature treatment at 40 ° C. or higher.
40℃以上で温度処理することを特徴とする非水電解質
電池の製造法。2. A method for producing a non-aqueous electrolyte battery, comprising subjecting a battery provided with a porous polymer and an electrolytic solution to a temperature treatment at 40 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9194856A JPH1126019A (en) | 1997-07-04 | 1997-07-04 | Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9194856A JPH1126019A (en) | 1997-07-04 | 1997-07-04 | Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1126019A true JPH1126019A (en) | 1999-01-29 |
Family
ID=16331433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9194856A Withdrawn JPH1126019A (en) | 1997-07-04 | 1997-07-04 | Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1126019A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000323173A (en) * | 1999-05-11 | 2000-11-24 | At Battery:Kk | Non-aqueous electrolyte secondary battery |
JP2001332302A (en) * | 2000-05-22 | 2001-11-30 | Toshiba Battery Co Ltd | Gel electrolyte precursor, nonaqueous secondary cell and method of manufacturing nonaqueous secondary cell |
WO2002027854A1 (en) * | 2000-09-29 | 2002-04-04 | Sharp Corporation | Lithium polymer secondary cell and the method for manufacture thereof |
US7781090B2 (en) | 1998-10-16 | 2010-08-24 | Sony Corporation | Solid electrolyte battery |
-
1997
- 1997-07-04 JP JP9194856A patent/JPH1126019A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781090B2 (en) | 1998-10-16 | 2010-08-24 | Sony Corporation | Solid electrolyte battery |
JP2000323173A (en) * | 1999-05-11 | 2000-11-24 | At Battery:Kk | Non-aqueous electrolyte secondary battery |
JP2001332302A (en) * | 2000-05-22 | 2001-11-30 | Toshiba Battery Co Ltd | Gel electrolyte precursor, nonaqueous secondary cell and method of manufacturing nonaqueous secondary cell |
WO2002027854A1 (en) * | 2000-09-29 | 2002-04-04 | Sharp Corporation | Lithium polymer secondary cell and the method for manufacture thereof |
US7273503B2 (en) | 2000-09-29 | 2007-09-25 | Sharp Corporation | Lithium polymer secondary battery and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3702318B2 (en) | Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode | |
US6027836A (en) | Nonaqueous polymer cell | |
JP4431304B2 (en) | Lithium ion secondary battery separator and lithium ion secondary battery provided with the same | |
JP2001135359A (en) | Nonaqueous electrolyte battery | |
US5789107A (en) | Nonaqueous polymer battery | |
JP3443773B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP2002216744A (en) | Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery | |
JPH1126019A (en) | Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery | |
JPH09259923A (en) | Polymer battery and manufacture thereof | |
JPH10284045A (en) | Manufacture of porous polymer electrolyte and nonaqueous electrolyte battery | |
JP2003263984A (en) | Nonaqueous electrolyte cell and manufacturing method thereof | |
JP2022552894A (en) | Method for pre-lithiation of negative electrode | |
JPH1126025A (en) | Cylindrical nonaqueous battery | |
JPH10247520A (en) | Nonaqueous electrolyte battery | |
JP4240008B2 (en) | A method for producing a porous lithium ion conductive polymer electrolyte. | |
JP2002093463A (en) | Nonaqueous electrolyte battery | |
JP4041998B2 (en) | Method for producing non-aqueous electrolyte battery | |
JPH10255840A (en) | Nonaqueous electrolyte battery | |
JP3566858B2 (en) | Non-aqueous electrolyte battery | |
JP2002056895A (en) | Nonaqueous electrolyte battery | |
JP2001167794A (en) | Nonaqueous electrolyte cell | |
JP2007172878A (en) | Battery and its manufacturing method | |
JP4016712B2 (en) | Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same | |
JPH10247521A (en) | Nonaqueous electrolyte battery | |
JPH10255765A (en) | Nonaqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050803 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060130 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20060306 |