JPH1126025A - Cylindrical nonaqueous battery - Google Patents
Cylindrical nonaqueous batteryInfo
- Publication number
- JPH1126025A JPH1126025A JP9191863A JP19186397A JPH1126025A JP H1126025 A JPH1126025 A JP H1126025A JP 9191863 A JP9191863 A JP 9191863A JP 19186397 A JP19186397 A JP 19186397A JP H1126025 A JPH1126025 A JP H1126025A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- polymer
- electrolytic solution
- electrolyte
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 49
- 239000003792 electrolyte Substances 0.000 claims abstract description 23
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 22
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 22
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 13
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 13
- 239000002033 PVDF binder Substances 0.000 claims description 20
- 239000011148 porous material Substances 0.000 claims description 14
- 239000011149 active material Substances 0.000 claims description 13
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 6
- 239000004800 polyvinyl chloride Substances 0.000 claims description 6
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 10
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 abstract description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 abstract description 6
- 239000005518 polymer electrolyte Substances 0.000 abstract description 6
- 238000007599 discharging Methods 0.000 abstract description 4
- 150000002500 ions Chemical class 0.000 abstract description 4
- 238000002347 injection Methods 0.000 abstract description 3
- 239000007924 injection Substances 0.000 abstract description 3
- 239000010935 stainless steel Substances 0.000 abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 3
- 229910001290 LiPF6 Inorganic materials 0.000 abstract 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 26
- 238000000034 method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- -1 polypropylene Polymers 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920003214 poly(methacrylonitrile) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910012820 LiCoO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 229910013243 LiyM Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、円筒型非水電池に
関する。The present invention relates to a cylindrical non-aqueous battery.
【0002】[0002]
【従来の技術】円筒型非水電池は、あらかじめ調製され
た正極と負極とをセパレータを介在させて組み合わせた
のち、剛直に巻回して作られる。よって、正極と負極の
間隔が均一に保持されるため、電流分布が均一となり、
高率や低温での放電特性に優れている。しかしながら、
電極群が剛直に卷回されているため、組み立てた後電解
液を注液してもセパレータの孔や電極活物質層の孔の奥
まで十分に電解液を供給することができない。そのた
め、電池を高温で放置すると正極と負極の間の電解液が
枯渇してしまい、その後の放電容量が大きく低下した。2. Description of the Related Art A cylindrical nonaqueous battery is manufactured by combining a positive electrode and a negative electrode prepared in advance with a separator interposed therebetween, and then winding the resultant rigidly. Therefore, since the interval between the positive electrode and the negative electrode is kept uniform, the current distribution becomes uniform,
Excellent discharge characteristics at high rate and low temperature. However,
Since the electrode group is wound stiffly, it is not possible to supply the electrolyte sufficiently to the inside of the hole of the separator or the hole of the electrode active material layer even if the electrolyte is injected after assembly. Therefore, when the battery was left at a high temperature, the electrolyte between the positive electrode and the negative electrode was depleted, and the subsequent discharge capacity was significantly reduced.
【0003】[0003]
【発明が解決しようとする課題】円筒型非水電池は、高
温で放置すると正極と負極の間の電解液が枯渇してしま
い、その後の放電容量が大きく低下するという問題点が
あった。本発明は、上記問題点に鑑みなされたものであ
り、電解液により膨潤または湿潤する高分子層を正極と
負極の間に備えたことにより、高温で放置してもその後
の充放電特性が優れた円筒型非水電池を提供するもので
ある。The cylindrical non-aqueous battery has a problem that when left at a high temperature, the electrolyte between the positive electrode and the negative electrode is depleted, and the subsequent discharge capacity is greatly reduced. The present invention has been made in view of the above problems, and by providing a polymer layer that swells or wets with an electrolytic solution between a positive electrode and a negative electrode, excellent charge / discharge characteristics even after being left at a high temperature. And a cylindrical non-aqueous battery.
【0004】[0004]
【課題を解決するための手段】本発明の円筒型非水電池
は電解液により膨潤または湿潤する高分子層を、正極と
負極の間に備えたことを特徴とする。さらに、高分子層
が有孔性リチウムイオン導電性高分子を有すること、有
孔性リチウムイオン導電性高分子を有する電解液により
膨潤または湿潤する高分子層の多孔度が10%から80
%であること、高分子層がポリフッ化ビニリデン、ポリ
塩化ビニル、またはポリアクリロニトリルまたはそれら
を主成分とするコポリマーを含むこと、正極または/お
よび負極の活物質層の孔中に電解液により膨潤または湿
潤する高分子を備えることを特徴とする。The cylindrical nonaqueous battery according to the present invention is characterized in that a polymer layer which swells or wets with an electrolyte is provided between a positive electrode and a negative electrode. Further, the polymer layer has a porous lithium ion conductive polymer, and the porosity of the polymer layer swelled or wetted by the electrolytic solution having the porous lithium ion conductive polymer is 10% to 80%.
%, The polymer layer contains polyvinylidene fluoride, polyvinyl chloride, or polyacrylonitrile or a copolymer containing these as a main component. The polymer layer swells or swells in the pores of the active material layer of the positive electrode and / or the negative electrode by the electrolytic solution. It is characterized by comprising a wetting polymer.
【0005】[0005]
【発明の実施の形態】従来の円筒型非水電池では、セパ
レータとしてポリプロピレンまたはポリエチレン等の多
孔性高分子膜を用いており、その孔の中に電解液を保持
している。この場合、セパレータはイオン伝導において
絶縁物であり、電解液を保持する能力もない。本発明に
よる電池においては、電解液によって膨潤または湿潤す
る高分子層を正極と負極間に有することにより、高温で
放置した後も、その高分子層中に電解液が保持されてお
り、従来の円筒型非水電池と比較して充放電が可能とな
る。さらに、本発明による電池において、高分子層が有
孔性リチウムイオン導電性高分子である場合には、細孔
中の電解液によって、イオンが速く拡散する通路が確保
されているため、従来の円筒型非水電池よりも高率での
充放電が良好となる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional cylindrical non-aqueous battery, a porous polymer membrane such as polypropylene or polyethylene is used as a separator, and an electrolyte is held in the pores. In this case, the separator is an insulator in ion conduction, and has no ability to hold the electrolytic solution. In the battery according to the present invention, by having a polymer layer that swells or wets with the electrolyte between the positive electrode and the negative electrode, the electrolyte is retained in the polymer layer even after being left at a high temperature. Charging / discharging becomes possible as compared with a cylindrical nonaqueous battery. Furthermore, in the battery according to the present invention, when the polymer layer is a porous lithium ion conductive polymer, the electrolyte in the pores secures a path through which ions are rapidly diffused. The charge / discharge at a higher rate is better than that of the cylindrical nonaqueous battery.
【0006】また、正極または/および負極の活物質層
の孔中に電解液によって膨潤または湿潤する高分子層を
存在させることによって、電極と電解質との界面を有孔
性リチウムイオン導電性高分子で覆った場合には、高電
圧電池であるために問題となる正極および負極による有
機電解液の酸化および還元を減少させることができ、充
電放置特性を改善することができるとともに電池の安全
性も向上する。この場合においても、リチウムイオン導
電性高分子が有孔性であるが故に、高率での充放電が可
能となる。また、活物質層の孔中に有孔性高分子を存在
させた場合には、活物質層の孔中に含まれる電解液量を
大幅に減少させることができるため安全性も向上する。Further, by providing a polymer layer which swells or wets with an electrolytic solution in pores of an active material layer of a positive electrode and / or a negative electrode, an interface between an electrode and an electrolyte is formed by a porous lithium ion conductive polymer. When covered with a high-voltage battery, oxidation and reduction of the organic electrolyte by the positive electrode and the negative electrode, which are problematic for a high-voltage battery, can be reduced, and the charge storage characteristics can be improved and the battery safety can be improved. improves. Also in this case, charge / discharge at a high rate becomes possible because the lithium ion conductive polymer is porous. Further, when a porous polymer is present in the pores of the active material layer, the amount of the electrolyte contained in the pores of the active material layer can be significantly reduced, so that the safety is also improved.
【0007】[0007]
【実施例】以下、本発明を好適な実施例を用いて説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments.
【0008】(実施例1)コバルト酸リチウム(LiC
oO2 )70wt%、アセチレンブラック6wt%、ポ
リフッ化ビニリデン(PVdF)9wt%、n−メチル
−2−ピロリドン(NMP)15wt%を混合したもの
を、厚さ20μmのアルミニウム箔上に塗布し、150
℃で乾燥してNMPを蒸発させた。以上の操作をアルミ
ニウム箔の両面におこなった後に、プレスして正極板と
した。プレス後の正極板の厚さは、170μmであっ
た。(Example 1) Lithium cobaltate (LiC)
A mixture of 70 wt% of oO 2 ), 6 wt% of acetylene black, 9 wt% of polyvinylidene fluoride (PVdF), and 15 wt% of n-methyl-2-pyrrolidone (NMP) is applied on an aluminum foil having a thickness of 20 μm.
Dry at <RTIgt; C </ RTI> to evaporate the NMP. After the above operation was performed on both surfaces of the aluminum foil, it was pressed to obtain a positive electrode plate. The thickness of the positive electrode plate after pressing was 170 μm.
【0009】つぎに、グラファイト81wt%、PVd
F9wt%、NMP15wt%を混合したものを、厚さ
14μmの銅箔上に塗布し、150℃で乾燥してNMP
を蒸発させた。以上の操作を銅箔の両面に対しておこな
った後に、プレスして負極板とした。プレス後の負極の
厚さは190μmであった。Next, graphite 81% by weight, PVd
A mixture of 9 wt% of F9 and 15 wt% of NMP is coated on a 14 μm-thick copper foil, dried at 150 ° C., and dried.
Was evaporated. After performing the above operation on both surfaces of the copper foil, it was pressed to obtain a negative electrode plate. The thickness of the negative electrode after pressing was 190 μm.
【0010】また、電解液により膨潤または湿潤する高
分子層として、つぎのように微孔性PVdF膜を製作し
た。平均分子量60,000のPVdF粉末12gを8
8gのNMPに溶解した。この溶液を水中に浸漬するこ
とによってNMPを洗い流し、多孔度10%、20%、
30%、40%、50%、60%、70%および80%
の厚さ25μmの微孔性PVdF膜とした。Further, a microporous PVdF film was produced as a polymer layer which swells or wets with an electrolytic solution as follows. 12 g of PVdF powder having an average molecular weight of 60,000
Dissolved in 8 g of NMP. The NMP was washed away by immersing this solution in water and the porosity was 10%, 20%,
30%, 40%, 50%, 60%, 70% and 80%
Of a microporous PVdF membrane having a thickness of 25 μm.
【0011】以上のように準備した正極板と負極板との
間に微孔性PVdF膜を介在させて巻回し、長さ180
mm、直径6.5mmの円筒型ステンレスケース中に挿
入して、円筒型電池を組み立てた。この電池の内部に、
エチレンカーボネート(EC)とジエチルカーボネート
(DEC)とを体積比率1:1で混合し、1mol/l
のLiPF6 を溶解させた電解液3.0gを真空注液に
よって加え、微孔性PVdF膜を電解液によって膨潤さ
せることにより、電解液により膨潤または湿潤する高分
子層とした。このようにして、公称容量1400mAh
の、本発明による実施例1の電池(A)を製作した。A microporous PVdF film is wound between the positive electrode plate and the negative electrode plate prepared as described above,
The cylindrical battery was assembled by inserting it into a cylindrical stainless case having a diameter of 6.5 mm and a diameter of 6.5 mm. Inside this battery,
Ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1 and 1 mol / l
3.0 g of an electrolytic solution in which LiPF 6 was dissolved was added by vacuum injection, and the microporous PVdF membrane was swelled with the electrolytic solution to form a polymer layer which swelled or wetted with the electrolytic solution. Thus, the nominal capacity of 1400 mAh
A battery (A) of Example 1 according to the present invention was manufactured.
【0012】(実施例2)実施例2として、電解液によ
り膨潤または湿潤する高分子層を微孔性PVdF膜の代
わりに、平均分子量60,000のPVdF粉末12g
を88gのNMPに溶解し、この溶液を多孔度40%、
厚さ25μmのポリプロピレン膜に塗布した後、水中に
浸漬することによってNMPを洗い流し、総厚みが35
μmとなるように、多孔度10%、20%、30%、4
0%、50%、60%、70%および80%の微孔性P
VdF膜をポリプロピレン膜上に製作したこと以外は上
記実施例1と同一構成である公称容量1400mAh
の、本発明による実施例1の電池(B)を製作した。Example 2 In Example 2, 12 g of PVdF powder having an average molecular weight of 60,000 was replaced by a polymer layer which swells or wets with an electrolyte instead of a microporous PVdF membrane.
Is dissolved in 88 g of NMP, and this solution is porosity 40%,
After being applied to a polypropylene film having a thickness of 25 μm, the NMP was washed away by immersion in water to give a total thickness of 35 μm.
porosity of 10%, 20%, 30%, 4%
0%, 50%, 60%, 70% and 80% microporous P
Except that the VdF film was formed on a polypropylene film, a nominal capacity of 1400 mAh
A battery (B) of Example 1 according to the present invention was manufactured.
【0013】(比較例1)比較例1として、微孔性PV
dF膜の代わりに、厚さ25μm、多孔度を変えたポリ
プロピレン膜を使用したこと以外は上記実施例1と同一
構成である、公称容量が1400mAhの、従来から公
知の電池(a)を製作した。Comparative Example 1 As Comparative Example 1, microporous PV
A conventionally known battery (a) having a nominal capacity of 1400 mAh and having the same configuration as that of Example 1 except that a polypropylene film having a thickness of 25 μm and a different porosity was used instead of the dF film was manufactured. .
【0014】これらの電池(A)、(B)および(a)
を用いて、25℃において、1CAの電流で4.1Vま
で充電し、続いて4.1Vの定電圧で3時間充電した
後、充電状態のまま30日間60℃で放置した。放置
後、25℃において1CAの電流で2.75Vまで放電
した。These batteries (A), (B) and (a)
The battery was charged to 4.1 V at a current of 1 CA at 25 ° C., then charged at a constant voltage of 4.1 V for 3 hours, and left at 60 ° C. for 30 days in the charged state. After standing, the battery was discharged at 2.degree. C. to 2.75 V with a current of 1 CA.
【0015】図1は、これら電池を60℃で30日間放
置した後の放電容量と、使用したリチウムイオン電池の
高分子電解質層またはセパレータの多孔度の関係を示す
図である。図から、本発明による電池(A)および
(B)は、高温で放置した後も、高分子電解質層の多孔
度が10%から80%の間において、ポリプロピレン膜
を用いた従来から公知の電池(a)よりも、優れた放電
容量を示していることが理解される。FIG. 1 is a diagram showing the relationship between the discharge capacity after leaving these batteries at 60 ° C. for 30 days and the porosity of the polymer electrolyte layer or separator of the used lithium ion battery. From the figure, it can be seen that the batteries (A) and (B) according to the present invention show that a conventionally known battery using a polypropylene membrane has a porosity of 10% to 80% even after being left at a high temperature. It is understood that the discharge capacity is superior to that of (a).
【0016】図2は、多孔度が40%である実施例1の
電池(A)、多孔度が40%である実施例2の電池
(B)、および多孔度が40%である比較例1の電池
(a)を用いて、図1と同様の実験をおこなったときの
放置後の放電特性を比較したものである。図によって、
本発明による電池(A)および(B)は、従来から公知
の電池(a)と比べて、優れた放置後の放電特性を示す
ことが理解される。FIG. 2 shows a battery (A) of Example 1 having a porosity of 40%, a battery (B) of Example 2 having a porosity of 40%, and a comparative example 1 having a porosity of 40%. This is a comparison of the discharge characteristics after standing when the same experiment as in FIG. 1 was performed using the battery (a). By the figure,
It is understood that the batteries (A) and (B) according to the present invention show superior discharge characteristics after being left as compared with the conventionally known battery (a).
【0017】(実施例3)正極活物質としてLiCoO
2 の代わりにニッケル酸リチウム(LiNiO2)を使
用すること以外は、実施例1と同様にして正極板を製作
した。負極板は実施例1と同様にして製作した。Example 3 LiCoO as a positive electrode active material
A positive electrode plate was manufactured in the same manner as in Example 1 except that lithium nickelate (LiNiO 2 ) was used instead of 2 . The negative electrode plate was manufactured in the same manner as in Example 1.
【0018】つぎに電解液により膨潤または湿潤する高
分子層をつぎのように製作した。まず、平均分子量6
0,000のPVdF粉末12gを88gのNMPに溶
解した。この溶液を真空減圧下であらかじめ調製した上
記正極板および負極板上に塗布することによって活物質
層の孔中に溶液を充填し、水中に浸漬することによって
NMPを洗い流し、正極板および負極板の活物質層の孔
中に多孔度40%の微孔性PVdF層を充填した。Next, a polymer layer which swells or wets with the electrolytic solution was produced as follows. First, an average molecular weight of 6
12 g of 000 PVdF powder was dissolved in 88 g of NMP. The solution is applied to the holes of the active material layer by applying the solution on the above-prepared positive electrode plate and negative electrode plate prepared in advance under reduced pressure under vacuum, and the NMP is washed away by immersion in water. The pores of the active material layer were filled with a microporous PVdF layer having a porosity of 40%.
【0019】以上ように準備した、微孔性PVdF層が
塗布された正極板および負極板の間に、多孔度が40%
で厚さが25μmの従来から公知のポリエチレン製セパ
レータを介在させて巻回し、長さ180mm、直径6.
5mmの円筒型ステンレスケース中に挿入して、円筒型
電池を組み立てた。この電池の内部に、ECとDECと
を体積比率1:1で混合し、1mol/lのLiPF6
を溶解させた電解液3.0gを真空注液によって加え、
電極孔中の微孔性PVdF層を電解液によって膨潤させ
て、公称容量1400mAhの、本発明による実施例2
の電池(D)を製作した。The porosity between the positive electrode plate and the negative electrode plate coated with the microporous PVdF layer prepared as described above is 40%.
And wound with a conventionally known polyethylene separator having a thickness of 25 μm and a length of 180 mm and a diameter of 6.
It was inserted into a 5 mm cylindrical stainless steel case to assemble a cylindrical battery. Inside the battery, EC and DEC were mixed at a volume ratio of 1: 1 and 1 mol / l of LiPF 6 was mixed.
Was added by vacuum injection of 3.0 g of an electrolytic solution in which
Example 2 according to the invention in which the microporous PVdF layer in the electrode holes was swollen by the electrolyte and had a nominal capacity of 1400 mAh.
Battery (D) was manufactured.
【0020】(比較例2)比較例2として、電極の孔中
に微孔性PVdF層を作製しないこと以外は上記実施例
3と同一構成である、公称容量が1400mAhの、従
来から公知の電池(b)を製作した。Comparative Example 2 As Comparative Example 2, a conventionally known battery having a nominal capacity of 1400 mAh has the same configuration as that of Example 3 except that a microporous PVdF layer is not formed in the hole of the electrode. (B) was manufactured.
【0021】これらの電池(D)および(b)を用い
て、25℃において、1CAの電流で4.1Vまで充電
し、続いて4.1Vの定電圧で3時間充電した後、充電
状態のまま30日間60℃で放置した。放置後、25℃
において1CAの電流で2.75Vまで放電した。図3
は、多孔度が40%である実施例3の電池(D)および
比較例2の電池(b)を用いて、上記の実験をおこなっ
たときの放電特性を比較したものである。図によって、
本発明による電池(D)は、従来から公知の電池(b)
と比べて、優れた放置後の放電特性を示すことが理解さ
れる。Using these batteries (D) and (b), the battery was charged to 4.1 V at a current of 1 CA at 25 ° C., and then charged at a constant voltage of 4.1 V for 3 hours. It was left at 60 ° C. for 30 days. 25 ℃ after standing
Was discharged to 2.75 V at a current of 1 CA. FIG.
Fig. 9 compares the discharge characteristics when the above experiment was performed using the battery (D) of Example 3 and the battery (b) of Comparative Example 2 having a porosity of 40%. By the figure,
The battery (D) according to the present invention comprises a conventionally known battery (b)
It is understood that the battery exhibits excellent discharge characteristics after being left as compared with the case of FIG.
【0022】また、本発明による実施例3の電池(D)
と従来から公知の比較例2の電池(b)とを用いて、つ
ぎのような安全性の比較試験をおこなった。これらの電
池における相違点は、電池(D)においては正極および
負極の活物質層の孔中に微孔性ポリマーが充填されてい
るのに対し、電池(b)においては活物質層の孔中に微
孔性ポリマーが充填されておらず、活物質層が多量の有
機電解液を含んでいるということのみである。これらの
電池(D)および(b)を、室温で、1CAの電流で
4.1Vまで充電し、続いて4.1Vの定電圧で2時間
充電した後、直径3mmの釘を電池に刺して貫通させ
た。その結果、本発明による電池(D)においては安全
弁が作動するだけで発煙が生じなかったのに対し、従来
から公知の電池(b)においては安全弁が作動し、発煙
が生じた。The battery (D) of Example 3 according to the present invention
Using the battery (b) of Comparative Example 2 and a conventionally known battery, the following safety comparison test was performed. The difference between these batteries is that in the battery (D), the pores of the positive and negative electrode active material layers are filled with the microporous polymer, whereas in the battery (b), the pores of the active material layer are filled. Is not filled with the microporous polymer, and only the active material layer contains a large amount of the organic electrolyte. The batteries (D) and (b) were charged at room temperature to 4.1 V with a current of 1 CA, and subsequently charged at a constant voltage of 4.1 V for 2 hours, and then a nail having a diameter of 3 mm was inserted into the batteries. Penetrated. As a result, in the battery (D) according to the present invention, the safety valve was only activated and no smoke was generated, whereas in the conventionally known battery (b), the safety valve was activated and smoke was generated.
【0023】これらの結果から、本発明による電池
(D)は低温での放電特性および安全性の両方において
優れた電池であるということができる。From these results, it can be said that the battery (D) according to the present invention is a battery excellent in both low-temperature discharge characteristics and safety.
【0024】前記実施例では、微孔性ポリマー膜を製作
する方法として、ポリマーをNMPに溶解した溶液を水
中に浸漬することによってNMPを除去しているが、ポ
リマーを溶解する溶媒はNMPに限定されるものではな
く、ポリマーを溶解するものであればよい。また、ポリ
マーを溶解した溶液を浸漬する液体は水に限定されるも
のではなく、ポリマーを溶解することができなくて、か
つポリマーを溶解する溶媒と相溶性があるものであれば
よい。このような組み合わせのポリマー、ポリマーを溶
解する溶媒、およびポリマーを溶解した溶液を浸漬する
液体とを使用してポリマー溶液から溶媒を除去した場合
には、除去された溶媒が存在していた部分が孔となって
微孔性ポリマー膜を製作することができる。In the above embodiment, as a method for producing a microporous polymer membrane, NMP is removed by immersing a solution of a polymer in NMP in water, but the solvent for dissolving the polymer is limited to NMP. What is necessary is just what melt | dissolves a polymer instead of what is performed. Further, the liquid in which the solution in which the polymer is dissolved is immersed is not limited to water, and any liquid that does not dissolve the polymer and is compatible with the solvent in which the polymer is dissolved may be used. When the solvent is removed from the polymer solution using such a combination of the polymer, the solvent for dissolving the polymer, and the liquid for immersing the solution in which the polymer is dissolved, the portion where the removed solvent was present is reduced. The microporous polymer film can be manufactured as a hole.
【0025】有孔性ポリマー電解質の製作のための有孔
性ポリマーの製作法としては、上記の方法(湿式法)以
外に、延伸法、微粒子を加えたポリマーから微粒子を除
去する方法、高温のポリマー溶液を冷却することによっ
てポリマーを固化させ液を除去する方法、無孔性のポリ
マー膜を製作した後にステンレスの細針を用いて物理的
に貫通孔あける方法を試みた。これらのうちで、ステン
レスの細針を用いる方法によって製作した電池は湿式法
を用いた場合と同様に優れた充放電特性を示したが、そ
れ以外の方法においては十分な多孔度が得られなかっ
た。As a method for producing a porous polymer for producing a porous polymer electrolyte, in addition to the above-mentioned method (wet method), a drawing method, a method for removing fine particles from a polymer to which fine particles are added, a high-temperature method, We tried a method of solidifying the polymer by cooling the polymer solution to remove the liquid, and a method of physically drilling through holes using a stainless fine needle after fabricating a nonporous polymer film. Among these, batteries manufactured by a method using fine needles of stainless steel exhibited excellent charge / discharge characteristics as in the case of using a wet method, but sufficient porosity was not obtained by other methods. Was.
【0026】また、有孔性ポリマー電解質に使用する高
分子は、上記のPVdF以外にもポリ塩化ビニル(PV
C)、ポリアクリロニトリル(PAN)、ポリエチレン
オキシド、ポリプロピレンオキシド、ポリメチルメタク
リレート、ポリメチルアクリレート、ポリビニルアルコ
ール、ポリメタクリロニトリル、ポリビニルアセテー
ト、ポリビニルピロリドン、ポリエチレンイミン、ポリ
ブタジエン、ポリスチレンおよびポリイソプレンを用い
て有孔性ポリマー電解質およびそれを使用した電池の製
作を試みたが、そのうちPVDF、PVCおよびPAN
を用いた場合がとくに優れていた。The polymer used for the porous polymer electrolyte may be polyvinyl chloride (PVD) in addition to the above-mentioned PVdF.
C), using polyacrylonitrile (PAN), polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene imine, polybutadiene, polystyrene and polyisoprene. Attempts were made to produce porous polymer electrolytes and batteries using them, but PVDF, PVC and PAN
Was especially excellent.
【0027】前記実施例では、電解液により膨潤または
湿潤する高分子としてポリフッ化ビニリデンを使用して
いるが、これに限定されるものではなく、ポリ塩化ビニ
ル、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル、ポリアクリロニトリル、ポリビニリデ
ンフルオライド、ポリ塩化ビニリデン、ポリメチルメタ
クリレート、ポリメチルアクリレート、ポリビニルアル
コール、ポリメタクリロニトリル、ポリビニルアセテー
ト、ポリビニルピロリドン、ポリエチレンイミン、ポリ
ブタジエン、ポリスチレン、ポリイソプレン、もしくは
これらの誘導体を、単独で、あるいは混合して用いても
よい。また、上記ポリマーを構成する各種モノマーを共
重合させた高分子を用いてもよい。In the above embodiment, polyvinylidene fluoride is used as the polymer which swells or wets with the electrolytic solution. However, the present invention is not limited to this, and polyethers such as polyvinyl chloride, polyethylene oxide and polypropylene oxide are used. , Polyacrylonitrile, polyvinylidene fluoride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polyethylene imine, polybutadiene, polystyrene, polyisoprene, or derivatives thereof. May be used alone or as a mixture. Further, a polymer obtained by copolymerizing various monomers constituting the polymer may be used.
【0028】また、前記実施例においては、高分子中に
含有させる電解液として、ECとDECとの混合溶液を
用いているが、これに限定されるものではなく、エチレ
ンカーボネート、プロピレンカーボネート、ジメチルカ
ーボネート、ジエチルカーボネート、γ−ブチロラクト
ン、スルホラン、ジメチルスルホキシド、アセトニトリ
ル、ジメチルホルムアミド、ジメチルアセトアミド、
1,2ジメトキシエタン、1,2ジエトキシエタン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、ジ
オキソラン、メチルアセテート等の極性溶媒、もしくは
これらの混合物を使用してもよい。In the above embodiment, a mixed solution of EC and DEC is used as the electrolytic solution to be contained in the polymer. However, the present invention is not limited to this, and ethylene carbonate, propylene carbonate, dimethyl Carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide,
A polar solvent such as 1,2 dimethoxyethane, 1,2 diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof may be used.
【0029】さらに、前記実施例においては、電解液に
含有させるリチウム塩としてLiPF6 を使用している
が、その他に、LiBF4 、LiAsF6 、LiClO
4 、LiSCN、LiI、LiCF3 SO3 、LiC
l、LiBr、LiCF3 CO 2 、Li(CF3 S
O2 )2 N等のリチウム塩、もしくはこれらの混合物を
用いてもよい。Further, in the above embodiment, the electrolyte
LiPF as lithium salt to be contained6Using
But, in addition, LiBFFour, LiAsF6, LiClO
Four, LiSCN, LiI, LiCFThreeSOThree, LiC
1, LiBr, LiCFThreeCO Two, Li (CFThreeS
OTwo)TwoLithium salt such as N, or a mixture thereof
May be used.
【0030】さらに、前記実施例においては、正極活物
質としてLiCoO2 を使用たが、これに限定されるも
のではない。これ以外にも、無機化合物としては、組成
式LixMO2 、またはLiyM2 O4 (ただし、Mは
遷移金属、0≦x≦1、0≦y≦2)で表される、複合
酸化物、トンネル状の空孔を有する酸化物、層状構造の
金属カルコゲン化物を用いることができる。その具体例
としては、LiCoO2 、LiNiO2 、LiMn2 O
4 、Li2 Mn2 O4 、MnO2 、FeO2 、V
2 O5 、V6 O13、TiO2 、TiS2 等が挙げられ
る。また、有機化合物としては、例えばポリアニリン等
の導電性ポリマー等が挙げられる。さらに、無機化合
物、有機化合物を問わず、上記各種活物質を混合して用
いてもよい。Further, in the above embodiment, LiCoO 2 was used as the positive electrode active material, but the present invention is not limited to this. Besides this, as the inorganic compound, composition formula LixMO 2 or LiyM 2 O 4, (although, M is a transition metal, 0 ≦ x ≦ 1,0 ≦ y ≦ 2) represented by the composite oxide, the tunnel An oxide having a vacancy and a metal chalcogenide having a layered structure can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , and LiMn 2 O
4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V
Examples include 2 O 5 , V 6 O 13 , TiO 2 , and TiS 2 . Examples of the organic compound include a conductive polymer such as polyaniline. Further, the above-mentioned various active materials may be mixed and used regardless of an inorganic compound or an organic compound.
【0031】さらに、前記実施例においては、負極活物
質としてグラファイトを使用しているが、その他に、A
l、Si、Pb、Sn、Zn、Cd等とリチウムとの合
金、LiFe2 O3 等の遷移金属複合酸化物、WO2 、
MoO2 等の遷移金属酸化物、グラファイト、カーボン
等の炭素質材料、Li5 (Li3 N)等の窒化リチウ
ム、もしくは金属リチウム箔、又はこれらの混合物を用
いてもよい。Further, in the above embodiment, graphite is used as the negative electrode active material.
alloys of lithium with l, Si, Pb, Sn, Zn, Cd, etc., transition metal composite oxides such as LiFe 2 O 3 , WO 2 ,
A transition metal oxide such as MoO 2, a carbonaceous material such as graphite and carbon, a lithium nitride such as Li 5 (Li 3 N), a metal lithium foil, or a mixture thereof may be used.
【0032】本発明においては、正極および負極と電解
質との界面の一部または全体を有孔性リチウムイオン導
電性ポリマーで覆うことによって、高電圧電池であるた
めに問題となる正極および負極による有機電解液の酸化
および還元を減少させることができ、充電放置特性を改
善することができた。この場合においても、リチウムイ
オン導電性ポリマーが有孔性であるが故に、高率での充
放電が可能となった。In the present invention, a part or the whole of the interface between the positive electrode and the negative electrode and the electrolyte is covered with a porous lithium ion conductive polymer, so that the organic material formed by the positive electrode and the negative electrode, which is a problem for a high-voltage battery, is formed. The oxidation and reduction of the electrolyte could be reduced, and the charge storage characteristics could be improved. Also in this case, charge / discharge at a high rate became possible because the lithium ion conductive polymer was porous.
【0033】[0033]
【発明の効果】以上述べたように、本発明による電池に
おいては、電解液によって膨潤または湿潤する高分子層
を正極と負極間に有することにより、高温で放置した後
も高分子中に電解液が保持されており、従来の円筒型非
水電池と比較して高温で放置した後も充放電が可能とな
る。また、本発明による電池においては、有孔性高分子
電解質の細孔中の電解液によって、イオンが速く拡散す
る通路が確保されているため、従来の円筒型非水電池よ
りも高率での充放電が良好となる。As described above, in the battery according to the present invention, since the polymer layer which swells or wets with the electrolytic solution is provided between the positive electrode and the negative electrode, the electrolytic solution remains in the polymer even after being left at a high temperature. And charge / discharge becomes possible even after being left at a high temperature as compared with a conventional cylindrical nonaqueous battery. Also, in the battery according to the present invention, the electrolyte in the pores of the porous polymer electrolyte secures a passage through which ions diffuse rapidly, so that the battery has a higher efficiency than the conventional cylindrical nonaqueous battery. Good charge / discharge is achieved.
【0034】また、正極または負極の活物質層の孔中に
電解液によって膨潤または湿潤する高分子層を存在させ
ることによって電極と電解質との界面を有孔性リチウム
イオン導電性ポリマーで覆った場合には、高電圧電池で
あるために問題となる正極および負極による有機電解液
の酸化および還元を減少させることができ、充電放置特
性を改善することができるとともに電池の安全性も向上
する。この場合においても、リチウムイオン導電性高分
子が有孔性であるが故に、高率での充放電が可能とな
る。また、活物質層の孔中に有孔性高分子を存在させた
場合には、活物質層の孔中に含まれる電解液量を大幅に
減少させることができるため安全性も向上する。Further, when an interface between the electrode and the electrolyte is covered with a porous lithium ion conductive polymer by providing a polymer layer which swells or wets with the electrolyte in the pores of the active material layer of the positive electrode or the negative electrode. In this method, the oxidation and reduction of the organic electrolyte by the positive electrode and the negative electrode, which are problems due to the high voltage battery, can be reduced, and the charge storage characteristics can be improved, and the safety of the battery can be improved. Also in this case, charge / discharge at a high rate becomes possible because the lithium ion conductive polymer is porous. Further, when a porous polymer is present in the pores of the active material layer, the amount of the electrolyte contained in the pores of the active material layer can be significantly reduced, so that the safety is also improved.
【図1】本発明による電池(A)、(B)および比較例
2の電池(a)の放置後の放電特性を示す図FIG. 1 is a diagram showing discharge characteristics of batteries (A) and (B) according to the present invention and battery (a) of Comparative Example 2 after being left.
【図2】本発明による電池(A)、(B)および比較例
2の電池(a)の放置後の放電曲線を示す図FIG. 2 is a diagram showing a discharge curve of the batteries (A) and (B) according to the present invention and the battery (a) of Comparative Example 2 after being left.
【図3】本発明による電池(D)および比較例2の電池
(b)との放置後の放電曲線を示す図FIG. 3 is a diagram showing a discharge curve of the battery (D) according to the present invention and the battery (b) of Comparative Example 2 after being left.
Claims (5)
層を、正極と負極の間に備えたことを特徴とする円筒型
非水電池。1. A cylindrical non-aqueous battery comprising a polymer layer which swells or wets with an electrolytic solution between a positive electrode and a negative electrode.
層が、有孔性リチウムイオン導電性高分子を有すること
を特徴とする請求項1記載の円筒型非水電池。2. The cylindrical non-aqueous battery according to claim 1, wherein the polymer layer which swells or wets with the electrolytic solution has a porous lithium ion conductive polymer.
する電解液により膨潤または湿潤する高分子層の多孔度
が10%から80%である請求項1または2記載の円筒
型非水電池。3. The cylindrical non-aqueous battery according to claim 1, wherein the porosity of the polymer layer swelled or wetted by the electrolyte containing the porous lithium ion conductive polymer is 10% to 80%.
層がポリフッ化ビニリデン、ポリ塩化ビニル、またはポ
リアクリロニトリルまたはそれらを主成分とするコポリ
マーを含むことを特徴とする請求項1、2または3記載
の円筒型非水電池。4. The polymer layer swelled or wetted by the electrolyte contains polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile or a copolymer containing these as a main component. Cylindrical non-aqueous battery.
中に電解液により膨潤または湿潤する高分子を備えるこ
とを特徴とする、請求項1、2、3または4記載の円筒
型非水電池。5. The cylindrical non-aqueous solution according to claim 1, wherein a polymer which swells or wets with an electrolytic solution is provided in pores of the active material layer of the positive electrode and / or the negative electrode. battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9191863A JPH1126025A (en) | 1997-07-01 | 1997-07-01 | Cylindrical nonaqueous battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9191863A JPH1126025A (en) | 1997-07-01 | 1997-07-01 | Cylindrical nonaqueous battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1126025A true JPH1126025A (en) | 1999-01-29 |
Family
ID=16281755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9191863A Pending JPH1126025A (en) | 1997-07-01 | 1997-07-01 | Cylindrical nonaqueous battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1126025A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000052774A1 (en) * | 1999-03-04 | 2000-09-08 | Japan Storage Battery Co., Ltd. | Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell |
KR20030073856A (en) * | 2002-03-13 | 2003-09-19 | 주식회사 뉴턴에너지 | Method of Manufacturing Polymer Electrolyte Film and Method of Manufacturing Lithium Polymer Secondary Battery Utilizing Thereof |
SG103316A1 (en) * | 2000-09-19 | 2004-04-29 | Nisshin Spinning | Ion-conductive composition, gel electrolyte, non-aqueous electrolyte battery, and electrical double-layer capacitor |
JP4961654B2 (en) * | 2000-02-24 | 2012-06-27 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
CN108318822A (en) * | 2017-12-18 | 2018-07-24 | 合肥国轩高科动力能源有限公司 | Method and system for measuring conductivity of lithium battery pole piece and diaphragm |
US10403937B2 (en) | 2014-05-20 | 2019-09-03 | Dyson Technology Limited | Method of manufacturing an electrochemical cell |
-
1997
- 1997-07-01 JP JP9191863A patent/JPH1126025A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000052774A1 (en) * | 1999-03-04 | 2000-09-08 | Japan Storage Battery Co., Ltd. | Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell |
US6730404B1 (en) | 1999-03-04 | 2004-05-04 | Japan Storage Battery Co., Ltd. | Composite active material and process for the production thereof, electrode and process for the production thereof, and non-aqueous electrolyte battery |
JP4961654B2 (en) * | 2000-02-24 | 2012-06-27 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
SG103316A1 (en) * | 2000-09-19 | 2004-04-29 | Nisshin Spinning | Ion-conductive composition, gel electrolyte, non-aqueous electrolyte battery, and electrical double-layer capacitor |
KR20030073856A (en) * | 2002-03-13 | 2003-09-19 | 주식회사 뉴턴에너지 | Method of Manufacturing Polymer Electrolyte Film and Method of Manufacturing Lithium Polymer Secondary Battery Utilizing Thereof |
US10403937B2 (en) | 2014-05-20 | 2019-09-03 | Dyson Technology Limited | Method of manufacturing an electrochemical cell |
CN108318822A (en) * | 2017-12-18 | 2018-07-24 | 合肥国轩高科动力能源有限公司 | Method and system for measuring conductivity of lithium battery pole piece and diaphragm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3702318B2 (en) | Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode | |
US6027836A (en) | Nonaqueous polymer cell | |
JP4961654B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2001135359A (en) | Nonaqueous electrolyte battery | |
CN112313818B (en) | Method for manufacturing negative electrode for lithium secondary battery | |
JP3443773B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JPWO2002091514A1 (en) | Non-aqueous electrolyte battery and method for manufacturing the same | |
JP2002216744A (en) | Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery | |
JP3968772B2 (en) | Non-aqueous electrolyte battery | |
JPH1126025A (en) | Cylindrical nonaqueous battery | |
JP4082103B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP2000195522A (en) | Nonaqueous electrolyte seconday battery | |
JP2002343437A (en) | Nonaqueous electrolyte battery | |
JPH09259923A (en) | Polymer battery and manufacture thereof | |
JPH1140201A (en) | Nonaqueous electrolyte battery | |
JPH10284045A (en) | Manufacture of porous polymer electrolyte and nonaqueous electrolyte battery | |
JP2001167794A (en) | Nonaqueous electrolyte cell | |
JP2002093463A (en) | Nonaqueous electrolyte battery | |
JPH10247520A (en) | Nonaqueous electrolyte battery | |
JP4016712B2 (en) | Lithium ion conductive polymer electrolyte and polymer electrolyte battery using the same | |
JP4041998B2 (en) | Method for producing non-aqueous electrolyte battery | |
JPH1126019A (en) | Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery | |
JP4240008B2 (en) | A method for producing a porous lithium ion conductive polymer electrolyte. | |
JP2000058044A (en) | Manufacture of electrode provided with porous polymer electrolyte, and nonaqueous electrolyte secondary battery using the electrode | |
JP3566858B2 (en) | Non-aqueous electrolyte battery |