JPH11235598A - 有機性廃水の処理方法及びその処理装置 - Google Patents
有機性廃水の処理方法及びその処理装置Info
- Publication number
- JPH11235598A JPH11235598A JP23523898A JP23523898A JPH11235598A JP H11235598 A JPH11235598 A JP H11235598A JP 23523898 A JP23523898 A JP 23523898A JP 23523898 A JP23523898 A JP 23523898A JP H11235598 A JPH11235598 A JP H11235598A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- biological treatment
- organic wastewater
- tank
- solubilization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
- C02F3/1268—Membrane bioreactor systems
- C02F3/1273—Submerged membrane bioreactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1221—Particular type of activated sludge processes comprising treatment of the recirculated sludge
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/18—Treatment of sludge; Devices therefor by thermal conditioning
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/10—Temperature conditions for biological treatment
- C02F2301/106—Thermophilic treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/20—Sludge processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/33—Wastewater or sewage treatment systems using renewable energies using wind energy
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Treatment Of Sludge (AREA)
- Activated Sludge Processes (AREA)
Abstract
ンパクトな設備の実現が可能な有機性廃水の処理方法及
びその処理装置を提供すること。 【解決手段】 有機性廃水Aを生物処理槽3にて好気性
生物処理をした後、生物処理槽3にて処理された処理液
Bを沈殿槽5にて処理水Cと汚泥Dに固液分離し、沈殿
槽5で分離された汚泥Dの一部を経路6を経て生物処理
槽3に返送し、沈殿槽5で分離された汚泥の一部の汚泥
Eを濃縮装置8で濃縮した後に可溶化槽10にて好熱菌
により可溶化する。
Description
する装置、例えば、下水処理場、屎尿処理場などの下水
処理プロセス、食品工場、化学工場などの製造プロセス
から排出される有機性汚泥を含有する有機性廃水を生物
消化により処理する方法および装置に関する。
より、かかる有機性廃水を処理する方法としては、活性
汚泥法と呼ばれる好気性生物処理法が、最も一般的に実
施されている。この方法は、図8に示すように、有機性
廃水貯留槽1から生物処理槽3に導入された下水などの
有機性廃水が、生物処理槽3において好気性条件にて、
微生物による酸化分解反応である生物酸化によって、二
酸化炭素もしくは水などの無機物に分解される方法であ
る。そして、生物処理槽3にて処理された廃水は、沈殿
槽5にて処理水Cと汚泥Dに固液分離され、汚泥Dの一
部は微生物源として生物処理槽3に返送されるととも
に、残りの汚泥は余剰汚泥Eとして処理されているのが
一般的である。
した有機性固形物を含む沈殿固形物濃縮液(汚泥)は、
濃縮、消化、脱水、コンポスト化、焼却といった工程を
経て処理されるため、このような処理に手間と費用がか
かり好ましくなかった。
法として、汚泥の滞留時間を長くする長時間曝気法、ま
たは汚泥を接触材表面に付着させることにより、汚泥を
反応槽内に大量に保持する接触酸化法などが提案され実
用化されている((社)日本下水道協会発行、建設省都
市局下水道部監修、「下水道施設計画・設計指針と解
説」後編、1994年版)、しかしながら、これらの方
法では、滞留時間を長くとるために広大な設置面積を必
要とし、また、長時間曝気法は、負荷の低下時に汚泥の
分散が生じ、固液分離に支障をきたすこととなる。ま
た、接触酸化法では、負荷の上昇時に汚泥の目詰まりが
発生するなどの点から好ましくなかった。さらに、これ
らの問題を解決するために、余剰汚泥を一時貯留してお
いて、嫌気消化法によって汚泥を減容化して汚泥量を減
少し、廃棄処理の負荷を少なくする方法も提案されてい
るが、この方法では、処理時間が20〜30日と長く、
有機性汚泥の減容率も30〜50%程度と十分であると
は言い難いものである。
は、有機性廃液を好気性生物処理をした後に、固液分離
した汚泥をオゾン酸化塔で酸化処理することによって余
剰汚泥を低減する方法が開示されている。しかしなが
ら、この方法では、オゾン酸化塔の取り扱いが熟練を要
する上、残存オゾンの処理問題がある他、オゾン酸化塔
での余剰汚泥の分解率も未だ満足できる値ではない。
理方法において、発生する余剰汚泥の量を極めて低減で
きる活性汚泥処理方法として、特開平9−10791号
公報には、「有機廃水を曝気処理装置にて好気性生物処
理をした後、曝気処理装置にて処理された処理液を沈殿
装置にて処理水と汚泥に固液分離し、沈殿装置で分離さ
れた汚泥の一部を環流経路を介して曝気処理装置に返送
し、沈殿装置で分離された汚泥のうち余剰汚泥を可溶化
処理装置にて高温で可溶化し、可溶化処理装置で可溶化
された処理液を返送経路を介して曝気処理装置に返送す
ることを特徴とする活性汚泥処理方法」が開示されてい
る。しかし、この公報に記載された方法では、可溶化処
理設備へ流入する余剰汚泥の最大処理液量に見合うだけ
可溶化処理装置を大きくする必要がある。また、この可
溶化処理装置で可溶化された大量の処理液が曝気処理装
置に返送されるため、曝気処理装置での実質の滞留時間
が短くなるので、処理水質が悪化することがある。
は、図9に示すように、活性汚泥処理槽21と、活性汚
泥処理後の汚泥を固液分離するための固液分離装置22
と、分離汚泥の一部を活性汚泥処理槽21に返送するた
めの汚泥返送手段23と、残りの汚泥を濃縮するための
汚泥濃縮装置24と、濃縮汚泥を40〜100℃に加温
するための加温装置25と、加温した汚泥を活性汚泥処
理槽21に返送するための汚泥返送手段26とを有する
有機性汚水の処理装置が開示されている。この処理装置
によれば、固液分離装置22で分離した汚泥のうち余剰
汚泥は汚泥濃縮装置24で濃縮した後に加温装置25に
送られるので、加温装置25に送られる汚泥量を減少す
ることができるという利点がある。ところが、この処理
装置では汚泥の可溶化が加温処理のみで行われるため、
汚泥の可溶化率が20〜25%程度と低く、大量の汚泥
を可溶化するには、大容量の可溶化槽を用いて長時間か
けて行わなければならず、設備規模が拡大し、それに起
因して加熱や洗浄などにかかるランニングコストおよび
維持費等が増加するという不利益が生じる。
は、必要設備数を減少し、設備占有スペースを小さくす
ることが好ましい。
題点に鑑みてなされたものであって、その目的は、処理
すべき汚泥量を低減することによってコンパクトな設備
の実現が可能な有機性廃水の処理方法及びその処理装置
を提供することにある。また、本発明の目的は、処理水
質を改善することが可能な有機性廃水の処理方法及びそ
の処理装置を提供することにある。さらに、本発明の目
的は、効率的且つ低コストの有機性廃水の処理方法及び
その処理装置を提供することにある。そして、本発明の
目的は、可溶化反応の処理時間を特定することによりそ
の短縮を可能とし、効率的に十分な可溶化を成し遂げる
ことが可能な有機性廃水の処理方法を提供することにあ
る。
に本発明は、有機性廃水を生物処理装置にて生物処理を
した後、生物処理装置にて処理された処理液を固液分離
装置にて処理水と汚泥に固液分離し、固液分離装置で分
離された汚泥の少なくとも一部を濃縮装置で濃縮した後
に可溶化槽に送る方法を採用することにより、可溶化槽
に送られる処理汚泥量を減少することができるので、可
溶化槽を小型化することが可能である。特に、濃縮汚泥
を可溶化槽に送ることにより、好熱菌の生育に適した栄
養条件が得られるので、可溶化槽にて好熱菌による可溶
化処理を行うことにより高い可溶化率が得られる。
生物処理装置に返送することにより、生物処理装置に返
送される微生物量が多くなるので、生物処理装置におけ
る微生物量を高濃度に維持することが可能で、微生物に
よる汚泥の酸化分解反応が十分に行われ、結果的に汚泥
負荷が小さくなるため、処理水質が改善される。さら
に、汚泥の可溶化処理が、熱による可溶化が行われると
共に、微生物から汚泥可溶化酵素が生成および分泌され
且つ該酵素によって可溶化が促進される条件下で行わ
れ、該可溶化処理時間を、可溶化処理装置での被処理液
の水力学的滞留時間(以下「HRT」という)に基づい
て決定することにより、冗長な可溶化反応を回避するこ
とが可能となるため、可溶化槽を縮小し、良好に可溶化
処理を行うことができる。
して、有機性廃水を生物学的に処理する方法であって、
有機性廃水を生物処理装置にて生物処理をした後、生物
処理装置にて処理された処理液を固液分離装置にて処理
水と汚泥に固液分離し、固液分離装置で分離された汚泥
の一部を生物処理装置に返送し、残りの汚泥の少なくと
も一部を濃縮装置で濃縮した後に可溶化槽にて好熱菌に
より可溶化することを特徴とする有機性廃水の処理方法
を提供するものである。この方法により、固液分離装置
で分離された汚泥の少なくとも一部は濃縮装置で濃縮し
た後に可溶化槽に送られるので、好熱菌の生育に適した
栄養条件が得られ、可溶化酵素の生成も行われることに
より、高い可溶化率が得られる。また、汚泥の少なくと
も一部は濃縮した後に可溶化槽に送られるので、可溶化
槽に送られる処理汚泥量は少なくなり、可溶化槽を小型
化することが可能である。
いて、可溶化槽で可溶化された処理液の少なくとも一部
を生物処理装置に返送することにより、汚泥の減容化と
同時に可溶化された処理液の生物学的消化が生物処理装
置により行われる。
物学的に処理する方法であって、有機性廃水を生物処理
装置にて生物処理をした後、生物処理装置にて処理され
た処理液を固液分離装置にて処理水と汚泥に固液分離
し、固液分離装置で分離された汚泥を濃縮装置で濃縮し
た後、汚泥の一部を生物処理装置に返送し、残りの汚泥
の少なくとも一部を可溶化槽にて好熱菌により可溶化す
ることを特徴とする有機性廃水の処理方法を提供するも
のである。この方法により、固液分離装置で分離された
汚泥はすべて濃縮され、濃縮後の汚泥の一部が可溶化槽
に送られるので、第一の発明と同様に、高い可溶化率の
確保と可溶化槽の小型化が可能であるという効果に加え
て、固液分離装置で分離された汚泥の一部は濃縮後に生
物処理装置に送られるので、第一の発明に比べて生物処
理装置中の微生物量が多くなり、生物処理装置における
微生物量を高濃度に維持することが可能で、微生物によ
る有機物の分解反応が十分に行われるので、結果的に汚
泥負荷が小さくなるため、処理水質が改善されるという
利点がある。
いて、可溶化槽で可溶化された処理液の少なくとも一部
を生物処理装置に返送することにより、同上効果が達成
される。
物学的に処理する方法であって、有機性廃水を、膜分離
装置が槽内に配設された生物処理装置にて生物処理を行
うと共に生物処理装置内の汚泥の少なくとも一部を濃縮
装置で濃縮した後に可溶化槽にて好熱菌により可溶化す
ることを特徴とする有機性廃水の処理方法を提供するも
のである。この方法により、有機性廃水の消化分解と膜
分離による固液分離が並行して行われるので、廃水の処
理が効率的である。また、生物処理装置内の汚泥の少な
くとも一部は、濃縮装置で濃縮した後に可溶化槽に送ら
れるので、第一の発明や第三の発明と同様に、高い可溶
化率の確保と可溶化槽の小型化が可能であるという効果
に加えて、重力沈殿槽で認められる汚泥の沈降性悪化に
起因する固液分離障害がないので、生物処理装置内の生
物保持量を容易に高濃度にすることができ、処理水質を
向上できる。
いて、可溶化槽で可溶化された処理液の少なくとも一部
を生物処理装置に返送することにより、同上効果が達成
される。
三、第四、第五または第六の発明において、濃縮装置で
含水率99%以下(汚泥濃度1%以上)まで濃縮するこ
とにより、好熱菌の生育にさらに好適な栄養条件が得ら
れるので、可溶化処理がより効率的に行われ、可溶化槽
の一層の小型化が可能となる。なお、含水率90%以下
まで濃縮しても、上記した利点はそれほど享受できず、
逆に、流動性が悪化し、可溶化槽を好気あるいは微好気
で運転する場合は、曝気による発泡現象が生じるという
不利な点があるので、濃縮装置における汚泥の濃縮は、
含水率90〜99%の範囲にするのが好ましい。
三、第四、第五または第六の発明において、可溶化処理
が、熱による可溶化が行われると共に、微生物から汚泥
可溶化酵素が生成および分泌され且つ該酵素によって可
溶化が促進される条件下で行われ、該可溶化処理時間
が、可溶化処理装置での被処理水のHRTに基づいて決
定されることにより、可溶化酵素の生成と可溶化のいず
れも実施できる条件下にて可溶化を行うことで、冗長な
可溶化反応を回避することが可能となるため可溶化槽を
縮小し、且つ良好に可溶化処理を行うことができる。
けるHRTを3〜24時間とすることにより効率的に汚
泥の可溶化ができる。
物学的に処理する装置であって、有機性廃水の生物処理
をするための生物処理装置と、この生物処理装置で処理
された処理液を処理水と汚泥に固液分離するための固液
分離装置と、この固液分離装置で分離された汚泥の一部
を生物処理装置に返送するための経路と、残りの汚泥の
少なくとも一部を濃縮するための濃縮装置と、この濃縮
装置で濃縮された汚泥を好熱菌により可溶化するための
可溶化槽とを有することを特徴とする有機性廃水の処理
装置を提供するものである。この第十の発明の装置によ
れば、高い可溶化率を確保し、可溶化槽の小型化が可能
である第一の発明に係る処理方法を実施することができ
る。
おいて、可溶化槽で可溶化された処理液の少なくとも一
部を生物処理装置に返送するための経路を有することに
より、汚泥の減容化が可能である第二の発明に係る処理
方法を実施することができる。
生物学的に処理する装置であって、有機性廃水の生物処
理をするための生物処理装置と、この生物処理装置で処
理された処理液を処理水と汚泥に固液分離するための固
液分離装置と、この固液分離装置で分離された汚泥を濃
縮するための濃縮装置と、この濃縮装置で濃縮された汚
泥の一部を生物処理装置に返送するための経路と、残り
の汚泥の少なくとも一部を好熱菌により可溶化するため
の可溶化槽とを有することを特徴とする有機性廃水の処
理装置を提供するものである。この第十二の発明の装置
によれば、処理水質を改善し、高い可溶化率を確保し、
可溶化槽の小型化が可能である第三の発明に係る処理方
法を実施することができる。
において、可溶化槽で可溶化された処理液の少なくとも
一部を生物処理装置に返送するための経路を有すること
により、汚泥の減容化が可能である第四の発明に係る処
理方法を実施することができる。
を生物学的に処理する装置であって、膜分離装置が槽内
に配設された生物処理装置と、この生物処理装置で分離
された汚泥の少なくとも一部を濃縮するための濃縮装置
と、この濃縮装置で濃縮された汚泥を好熱菌により可溶
化するための可溶化槽とを有することを特徴とする有機
性廃水の処理装置を提供するものである。この第十四の
発明の装置によれば、比較的簡単な構成の装置で処理水
質が向上し、効率的且つ低コストである第五の発明に係
る処理方法を実施することができる。
明において、可溶化槽で可溶化された処理液の少なくと
も一部を生物処理装置に返送するための経路を有するこ
とにより、汚泥の減容化が可能である第六の発明に係る
処理方法を実施することができる。
ば、沈殿装置、膜分離装置のごときものを示し、また、
濃縮装置とは、遠心濃縮、浮上濃縮、蒸発濃縮および膜
濃縮などの濃縮装置を示す。また、遊動リング積層方式
の濃縮機も適用できる。
は、好気性生物処理あるいは嫌気性生物処理のいずれに
も適用できる。好気性生物処理に用いられる曝気槽は、
曝気手段を具備するものであればよい。曝気処理は、好
気性消化分解が許容されるよう、好ましくは、0.1〜
0.5vvmの通気量で室温下にて実施されるが、負荷
によっては、これを上回る通気量で、より高温にて処理
してもよい。被処理液は、好ましくは、5.0〜8.0
のpHに調整されるとよい。また、曝気槽には、好気的
消化分解を促進するために、酵母等の微生物や、フロッ
ク形成を促進するための硫酸アルミニウム、ポリ塩化ア
ルミニウム、塩化第二鉄、硫酸第一鉄などの凝集剤を添
加してもよい。好気性生物処理は、曝気槽以外の好気的
処理の可能な装置であってもよい。また、嫌気性生物処
理に用いられる装置としては、槽内の液を循環すること
により攪拌する方法、生成ガスを循環曝気することによ
り攪拌する方法、攪拌翼などの攪拌機を設置する方法、
活性微生物固定手段を有する方法など、活性微生物と処
理対象廃水とを効率的に接触させる手段を具備したもの
であれば使用可能である。
ば、孔径0.1〜2.5μm、好ましくは0.3〜0.
5μmを有する膜を使用するのが好ましく、そして、1
以上の膜モジュール構造から形成されているのが好適で
ある。好ましい膜分離装置としては、(株)ユアサコー
ポレーション社製のT型フィルターエレメントを具備し
た浸漬型膜分離装置が挙げられる。上記膜分離装置に
は、好ましくは、水圧、空気圧等による加圧や、擦掃、
振動あるいは薬品注入等による洗浄手段が内蔵または併
設され、膜を通過しない物質が膜表面へ接着することを
できる限り回避する構造とするのが好ましい。
ス・ステアロサーモフィラス等の菌体を添加してもよ
い)によって汚泥の分解が行われるが、オゾン分解、電
気分解、熱アルカリ分解、酵素分解(例えば、プロテア
ーゼ、リパーゼ、グリコシターゼなどを単独または組み
合わせて添加)など、従来より知られた種々の方法と組
み合わせて実施してもよい。
が行われると共に、微生物から汚泥可溶化酵素が生成及
び分泌され且つ該酵素によって可溶化が促進される条
件」とは、具体的には下記のごとくである。
〜70℃ 汚泥濃度:1000mg/リットル以上、好ましく
は5000mg/リットル以上、さらに好ましくは、1
0000mg/リットル以上(=含水率99%以下) pH:7〜9好ましくは7.5〜8.5 環境:好気または微好気条件 時間:処理対象汚泥の可溶化槽内でのHRTに基づ
いて決定されるもの 連続式で汚泥の可溶化を行う場合、流入液量と反応槽の
有効容量に基づいてHRTが求められる。すなわち、H
RT(水力学的滞留時間)=V/Q(V:反応槽容量、
Q:流入液量)の式に基づいて、HRTを算出すること
ができる。
て、HRTが短縮されるほど反応槽の容積を縮小するこ
とが可能となることは言うまでもない。従って、本発明
の目的である設備の縮小に鑑み、HRTに基づいて可溶
化時間を決定することで、冗長な可溶化処理が回避され
る。
泌量をモニターし、該生成および分泌量が最大となるH
RTに基づいて選択することが好ましい。このようにH
RTを設定すれば、生成および分泌された汚泥可溶化酵
素による反応を効率的に利用できる。通常、HRTは3
〜24時間に設定するのが好ましい。
方法を実施するに好適である有機性廃水の処理装置の一
実施例の概略構成図である。図1に示すように、有機性
廃水貯留槽1に貯留された原廃水Aが経路2を経て生物
処理槽3に導入され、生物処理槽3にて有機性廃水であ
る原廃水が好気性生物処理される。なお、好気性生物処
理とは、生物酸化によって有機物が二酸化炭素もしくは
水などの無機物に分解されることをいい、用いられる好
気性微生物としては、下水浄化のための活性汚泥法にお
いて用いられるグラム陰性またはグラム陽性桿菌、例え
ば、シュードモナス属およびバチルス属であり、これら
の接種菌体は、通常の下水浄化処理プラントから得られ
るものである。この場合、生物処理槽3の温度は、10
〜50℃、通常は、20〜30℃の温度範囲となるよう
に操作するが、より効率よく処理するには、高温の方が
好ましく、例えば、下水余剰汚泥から分離した中温菌を
用いる場合には、35〜45℃の範囲で操作するように
する。いずれにしても、微生物による酸化分解反応が効
率よく十分に生じうるように、上記温度範囲の中から最
適な温度条件を選択して操作するようにする。なお、こ
の場合、生物処理槽としては、バッチ式または連続式の
いずれでも使用可能である。
れた処理水Bは、経路4を経て固液分離装置としての沈
殿槽5に導入されて固液分離され、固液分離された上澄
液Cは放流先の排出基準に従い、必要であれば、硝化脱
窒もしくはオゾン処理などの三次処理を施し、河川放流
または修景用水などとして利用されるようになってい
る。
は、経路6を経て経路2に合流して原廃水Aとともに生
物処理槽3に導入されるようになっている。なお、経路
6を経て送られる汚泥量は生物処理槽3での微生物の保
持量により決定される。
Eは、経路7を経て濃縮槽8に導入される。場合によっ
ては、沈殿槽5で分離された残りの汚泥Eの一部を系外
に引き抜くことも可能である。濃縮槽8では重力沈降に
より汚泥は濃縮される。濃縮法としては、浮上濃縮、蒸
発濃縮、膜濃縮、凝集剤添加または遠心力を利用した濃
縮法を採用することもできる。汚泥の濃縮率としては、
上記したように、含水率99%以下(汚泥濃度1%以
上)まで濃縮するのが好ましい。濃縮後の液は経路9を
経て可溶化槽10に導入される。可溶化槽10では、高
温条件で嫌気的もしくは好気的に有機性汚泥の可溶化が
行われる。この場合、高温条件において用いられる嫌気
性もしくは好気性微生物の接種菌体(好熱菌)は、例え
ば、従来の嫌気性もしくは好気性消化槽から微生物を培
養することによって得られるものである。また、可溶化
槽10の最適温度は、好ましくは、50〜90℃の温度
範囲となるような条件で操作するが、その高温処理対象
である汚泥Eに含まれる有機性固形物を分解する好熱菌
の種類によって異なるものであり、例えば、下水余剰汚
泥から分離した好熱菌の場合には、微生物(好熱菌)に
よる可溶化反応と熱による物理化学的な熱分解の両作用
が同時に効率よく十分に生じうるように、高温条件にお
ける温度を55〜75℃の範囲、好ましくは約65℃で
操作するようにする。いずれにしても、微生物(好熱
菌)による可溶化反応と熱による物理化学的な熱分解の
両作用が同時に効率よく十分に生じうるように、微生物
の種類に応じて、50〜90℃の温度範囲となるように
設定すればよい。
をするための装置として、従来の散気管を具備してなる
もの、嫌気性で微生物分解をするための装置としては、
槽内の液を循環することにより攪拌する方法、生成ガス
を循環曝気することにより攪拌する方法、攪拌翼などの
攪拌機を設置する方法、活性微生物固定手段を有する方
法など、活性微生物と処理対象汚泥とを効率的に接触さ
せる手段を具備したものであれば使用可能である。な
お、この場合、可溶化槽としては、バッチ式または連続
式のいずれでも使用可能である。
理液Fは、経路11を経て経路2に合流して原廃水Aと
ともに生物処理槽3に導入されて好気性生物処理が行わ
れる。以降、上記した処理サイクルが繰り返される。
性廃水の処理方法を実施するに好適である有機性廃水の
処理装置の別の実施例の概略構成図である。図1の装置
と相違するところは、経路6がなく、沈殿槽5で分離さ
れた汚泥はすべて濃縮槽8に導入され、濃縮槽8で含水
率99%以下(汚泥濃度1%以上)まで濃縮された汚泥
の一部は経路12を経て経路2に合流し、残りの汚泥は
可溶化槽10に導入されて好熱菌により可溶化され、可
溶化された処理液は経路11を経て経路2に合流し、こ
れらの汚泥や処理液は原廃水Aとともに生物処理槽3に
導入されて好気性生物処理が行われる。以降、上記した
処理サイクルが繰り返される。なお、濃縮槽8で濃縮さ
れた汚泥の一部を系外に引き抜くことも可能である。
物処理槽としては断面積800cm2 で高さ60cmの
有効容積40リットルの透明塩化ビニル樹脂製の角槽を
使用し、この生物処理層に0.3vvm通気し、沈殿槽
としては断面積400cm2で高さ40cmの有効容積
10リットルの透明塩化ビニル樹脂製の下部角錐型角槽
を使用し、濃縮槽としては内径10cmで高さ40cm
の有効容積2リットルの透明塩化ビニル樹脂製の下部円
錐型円筒槽を使用し、可溶化槽としては内径13cmで
高さ25cmの有効容積2リットルのガラス円筒を使用
し、この可溶化槽に0.5vvm通気し、有機性廃水
(原廃水)の性状としてはペプトン:グルコース:イー
ストエキス=4:4:1のものを用い、0.4kgBO
D/m3/日 の負荷で、図1に示す装置については、生
物処理槽3の汚泥濃度が約3000mg/リットルにな
るように、経路6に通入する汚泥量を調整して運転を行
った。また、図2に示す装置については、経路12に通
入する汚泥量を図1の経路6に通入する汚泥量と同じに
なるように汚泥量を調整して運転を行った。なお、1v
vmとは、「1リットル空気量/1リットル反応槽容積
/min.」の意である。また、上記実施例において、
固液分離のために沈殿槽を用いたが、例えば、膜分離装
置等の通常固液分離に用いられる装置を使用できること
は言うまでもない。
3に示すように、図1に示すものから濃縮槽8を取り除
いた有機性廃水処理装置について、同上有機性廃水を用
いて同上通気量および同上BOD負荷で、生物処理槽3
の汚泥濃度が約3000mg/リットルになるように経
路6に通入する汚泥量を調整して運転を行った。
られた。
化槽に導入されるので、可溶化槽で処理すべき汚泥量を
比較例に比して減少することができる。そこで、可溶化
槽の小型化が可能となる。
た汚泥はすべて濃縮槽に導入されるので、実施例1と同
様に、可溶化槽の小型化が可能であるという効果に加え
て、生物処理槽の汚泥濃度が上昇するので、すなわち、
生物処理槽内の微生物量が増加するので、処理水質を改
善することができる。
理すべき汚泥量は多く、しかも、処理水質は最も悪い。
素生成の推移 ガラス製の反応槽に、イースト−ペプトン培地(DIF
CO社製の(イーストエキス4g、ペプトン8g及び水
1リットル、pH6.8に調整)を入れ、前培養してお
いた、下水処理場余剰汚泥由来のバチルス・ステアロサ
ーモフィラス(Bacillus stearothermophilus)SPT2
−1[FERM P-15395) を植菌して、65℃にて振とう培
養した。HRTは、培養液を連続的に供給しつつ、まず
36時間に設定し、さらに、投入する有機物量を一定に
維持しながら所定の時間にまでHRTを短縮するため
に、希釈水を適宜の量追加して培養を行った。各滞留時
間において上澄液をサンプリングし、各々のプロテアー
ゼ活性を以下の通りに測定した。すなわち、非特異的な
プロテアーゼアッセイ用の基質であるアゾコール(商品
名、Sigma社製)をpH7.0のリン酸緩衝液に懸
濁した液(5mg/ミリリットル)0.7ミリリットル
に等量の試料を加え、70℃にて30分間インキュベー
トした。反応終了後、520nmにおける吸光度を測定
した。この測定法でトリプシン(約400BAEE U
/mg、和光純薬(株)製)のリン酸緩衝液(pH7.
0)の溶液30μg/ミリリットルを試料として同様に
測定すると、520nmにおける吸光度は1.0であっ
た。
間において、酵素活性がピークとなり、その後20時間
までに低レベルに減少することが分かり、従って、前記
菌株による酵素生成のために好適なHRTは、およそ1
2時間であることが明らかになった。
剰汚泥による酵素生成の推移 有機性固形物(vss)濃度3重量%の下水処理場由来
の余剰汚泥を、前培養しておいた下水処理場余剰汚泥由
来のバチルス・ステアロサーモフィラスSPT−2−1
[FERMP-15395]を植菌した後、有効容積5リットルの
ガラス製ジャーファメンターに投入し、65℃にて通気
量0.3vvm、攪拌速度300rpmにて処理した。
実施例3と同様に、まずHRTは36時間に設定して、
さらに所定のHRTにするために適宜希釈水を注入し、
そして各HRTにおけるプロテアーゼ活性を測定した。
なお、下水処理場余剰汚泥とは、最終沈殿槽にて沈殿分
離した汚泥をさらに浮上濃縮したものをいう。
20時間において、酵素活性がピークとなり、その後2
5時間までには低レベルに減少することがわかり、従っ
て、酵素生成のために好適なHRTは、およそ20時間
であることが明らかになった。
剰汚泥による可溶化率の推移 実施例4と同様に余剰汚泥を処理し、各HRTにおいて
可溶化試料を採取してその有機性固形物(vss)含量
を測定し、処理前のvss含量に基づいて各時間におけ
る可溶化率(%)を測定した。vssの測定は、JIS
K0102に従って行った。
そ15〜20時間のHRTにおいて可溶化率は最大とな
ることが示され、また3〜9時間のHRTにておそらく
は、加熱によると思われる可溶化率の上昇が認められ
る。
素生成に適した条件下にて下水処理場由来の3重量%の
余剰汚泥の可溶化を行う場合、プロテアーゼ活性をモニ
ターし、これがピークとなるHRT時間に基づき、HR
Tを選択することが好ましいとが示唆された。また、こ
の場合、熱および酵素の作用がピークとなるので、HR
T3〜24時間で効率的に可溶化することが可能である
ことも明らかになった。
よる廃水処理 (7)実施例6 図1からは経路6を取り除き、図1
における濃縮槽8と可溶化槽10と同じものを用い、生
物処理槽3と沈殿槽5に代えて浸漬型膜分離装置
((株)ユアサコーポレーション製、T型フィルターエ
レメント)13を配設した生物処理槽3を使用したもの
を実施例6とする。すなわち、実施例6に係る有機性廃
水の処理装置の概略構成は、図7に示すとおりである。
そして、同上有機性廃水を用いて同上通気量および同上
BOD負荷で、生物処理槽3の汚泥濃度が約12000
mg/リットルになるように経路7への汚泥量を調整し
て運転を行った。
3に示す有機性廃水の処理装置について、同上有機性廃
水を用いて同上通気量および同上BOD負荷で、生物処
理槽3の汚泥濃度が約3000mg/リットルになるよ
うに経路6に通入する汚泥量を調整して運転を行った。
その結果、次の表2に示すような結果が得られた。
された汚泥はすべて濃縮槽に導入されるので、可溶化槽
の小型化が可能であるという効果に加えて、生物処理槽
の汚泥濃度が上昇するので、すなわち、生物処理槽内の
微生物量が増加するので、処理水質を改善することがで
きる。
理すべき汚泥量は多く、しかも、処理水質は悪い。
で、次の効果を奏する。 (1)請求項1記載の発明によれば、濃縮後の汚泥が可
溶化槽に送られるので、可溶化槽は好熱菌の生育に適し
た栄養条件になり、可溶化酵素の生成も行われることに
より高い可溶化率が得られる。また、可溶化槽で処理す
べき汚泥量を減少することができるので、可溶化槽の小
型化が可能である。
可溶化率の確保と可溶化槽の小型化が可能であるという
効果に加えて、固液分離装置で分離された汚泥はすべて
濃縮され、濃縮後の汚泥の一部が生物処理装置に送られ
るので、生物処理装置に送られる微生物量を高濃度に維
持することが可能で、処理水質を改善することができ
る。
可溶化率の確保と可溶化槽の小型化が可能であるという
効果に加えて、有機性廃水の消化分解と膜分離による固
液分離が並行して行われるので、廃水の処理が効率的で
ある。また、重力沈殿槽で認められる汚泥の沈降性悪化
に起因する固液分離障害がないので、生物処理装置内の
生物保持量を高濃度に保持できるので、処理水質を向上
できる。
ば、汚泥の減容化が可能である。
菌の生育にさらに好適な栄養条件になり、可溶化処理が
より効率的に行われ、可溶化槽の一層の小型化が可能と
なる。 (6)請求項8記載の発明によれば、冗長な可溶化反応
を回避することが可能となるため可溶化槽を縮小し、且
つ良好に可溶化反応を行うことができる。
的に汚泥を可溶化できる。
求項1記載の処理方法を実施するに好適である処理装置
を提供することができる。
求項2記載の処理方法を実施するに好適である処理装置
を提供することができる。
請求項3記載の処理方法を実施するに好適である処理装
置を提供することができる。
請求項4記載の処理方法を実施するに好適である処理装
置を提供することができる。
請求項5記載の処理方法を実施するに好適である処理装
置を提供することができる。
請求項6記載の処理方法を実施するに好適である処理装
置を提供することができる。
適である有機性廃水の処理装置の一実施例の概略構成図
である。
適である有機性廃水の処理装置の別の実施例の概略構成
図である。
る。
する、菌によるプロテアーゼ生成の推移を示す図であ
る。
する、余剰汚泥によるプロテアーゼ生成の推移を示す図
である。
する、余剰汚泥の可溶化率の推移を示す図である。
適である有機性廃水の処理装置のさらに別の実施例の概
略構成図である。
である。
構成図である。
Claims (15)
- 【請求項1】 有機性廃水を生物学的に処理する方法で
あって、有機性廃水を生物処理装置にて生物処理をした
後、生物処理装置にて処理された処理液を固液分離装置
にて処理水と汚泥に固液分離し、固液分離装置で分離さ
れた汚泥の一部を生物処理装置に返送し、残りの汚泥の
少なくとも一部を濃縮装置で濃縮した後に可溶化槽にて
好熱菌により可溶化することを特徴とする有機性廃水の
処理方法。 - 【請求項2】 可溶化槽で可溶化された処理液の少なく
とも一部を生物処理装置に返送することを特徴とする請
求項1記載の有機性廃水の処理方法。 - 【請求項3】 有機性廃水を生物学的に処理する方法で
あって、有機性廃水を生物処理装置にて生物処理をした
後、生物処理装置にて処理された処理液を固液分離装置
にて処理水と汚泥に固液分離し、固液分離装置で分離さ
れた汚泥を濃縮装置で濃縮した後、汚泥の一部を生物処
理装置に返送し、残りの汚泥の少なくとも一部を可溶化
槽にて好熱菌により可溶化することを特徴とする有機性
廃水の処理方法。 - 【請求項4】 可溶化槽で可溶化された処理液の少なく
とも一部を生物処理装置に返送することを特徴とする請
求項3記載の有機性廃水の処理方法。 - 【請求項5】 有機性廃水を生物学的に処理する方法で
あって、有機性廃水を、膜分離装置が槽内に配設された
生物処理装置にて生物処理を行うと共に生物処理装置内
の汚泥の少なくとも一部を濃縮装置で濃縮した後に可溶
化槽にて好熱菌により可溶化することを特徴とする有機
性廃水の処理方法。 - 【請求項6】 可溶化槽で可溶化された処理液の少なく
とも一部を生物処理装置に返送することを特徴とする請
求項5記載の有機性廃水の処理方法。 - 【請求項7】 濃縮装置で含水率99%以下まで濃縮す
ることを特徴とする請求項1、2、3、4、5または6
記載の有機性廃水の処理方法。 - 【請求項8】 可溶化処理が、熱による可溶化が行われ
ると共に、微生物から汚泥可溶化酵素が生成および分泌
され且つ該酵素によって可溶化が促進される条件下で行
われ、該可溶化処理時間が、可溶化処理装置での被処理
水の水力学的滞留時間に基づいて決定されることを特徴
とする請求項1、2、3、4、5または6記載の有機性
廃水の処理方法。 - 【請求項9】 水力学的滞留時間が3〜24時間である
ことを特徴とする請求項8記載の有機性廃水の処理方
法。 - 【請求項10】 有機性廃水を生物学的に処理する装置
であって、有機性廃水の生物処理をするための生物処理
装置と、この生物処理装置で処理された処理液を処理水
と汚泥に固液分離するための固液分離装置と、この固液
分離装置で分離された汚泥の一部を生物処理装置に返送
するための経路と、残りの汚泥の少なくとも一部を濃縮
するための濃縮装置と、この濃縮装置で濃縮された汚泥
を好熱菌により可溶化するための可溶化槽とを有するこ
とを特徴とする有機性廃水の処理装置。 - 【請求項11】 可溶化槽で可溶化された処理液の少な
くとも一部を生物処理装置に返送するための経路を有す
ることを特徴とする請求項10記載の有機性廃水の処理
装置。 - 【請求項12】 有機性廃水を生物学的に処理する装置
であって、有機性廃水の生物処理をするための生物処理
装置と、この生物処理装置で処理された処理液を処理水
と汚泥に固液分離するための固液分離装置と、この固液
分離装置で分離された汚泥を濃縮するための濃縮装置
と、この濃縮装置で濃縮された汚泥の一部を生物処理装
置に返送するための経路と、残りの汚泥の少なくとも一
部を好熱菌により可溶化するための可溶化槽とを有する
ことを特徴とする有機性廃水の処理装置。 - 【請求項13】 可溶化槽で可溶化された処理液の少な
くとも一部を生物処理装置に返送するための経路を有す
ることを特徴とする請求項12記載の有機性廃水の処理
装置。 - 【請求項14】 有機性廃水を生物学的に処理する装置
であって、膜分離装置が槽内に配設された生物処理装置
と、この生物処理装置で分離された汚泥の少なくとも一
部を濃縮するための濃縮装置と、この濃縮装置で濃縮さ
れた汚泥を好熱菌により可溶化するための可溶化槽とを
有することを特徴とする有機性廃水の処理装置。 - 【請求項15】 可溶化槽で可溶化された処理液の少な
くとも一部を生物処理装置に返送するための経路を有す
ることを特徴とする請求項14記載の有機性廃水の処理
装置。
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23523898A JP3267935B2 (ja) | 1997-12-19 | 1998-08-21 | 有機性廃水の処理方法及びその処理装置 |
MYPI0203613 MY138611A (en) | 1997-12-19 | 1998-10-02 | Method for treating organic waste water |
MYPI0203612 MY138610A (en) | 1997-12-19 | 1998-10-02 | Apparatus for treating organic waste water |
MYPI98004530A MY116289A (en) | 1997-12-19 | 1998-10-02 | Method and apparatus for treating organic waste water |
US09/173,224 US6224769B1 (en) | 1997-06-05 | 1998-10-15 | Method and apparatus for treating organic waste water |
DE1998634147 DE69834147T2 (de) | 1997-12-19 | 1998-11-09 | Verfahren für die Reduzierung von Klärschlamm aus den Abwasserkläranlagen |
DE1998634439 DE69834439T2 (de) | 1997-12-19 | 1998-11-09 | Verfahren und Vorrichtung zur Behandlung von organischem Abwasser |
EP19980309163 EP0924168B1 (en) | 1997-12-19 | 1998-11-09 | Method for sludge reduction in an aerobic waste water treatment system |
DK98309163T DK0924168T3 (da) | 1997-12-19 | 1998-11-09 | Fremgangsmåde til reduktion af slam i et aerobt spildevandsrensningsanlæg |
DK04012785T DK1464625T3 (da) | 1997-12-19 | 1998-11-09 | Fremgangsmåde til reduktion af slam i et spildevandsrensningsanlæg |
DK03000623T DK1302446T3 (da) | 1997-12-19 | 1998-11-09 | Fremgangsmåde til reduktion af slam i et spildevandsrensningsanlæg |
EP20040012785 EP1464625B1 (en) | 1997-12-19 | 1998-11-09 | Method for sludge reduction in a waste water treatment system |
DE1998614317 DE69814317T2 (de) | 1997-12-19 | 1998-11-09 | Verfahren für die Reduzierung von Klärschlamm aus den aeroben Abwasserkläranlagen |
EP20030000623 EP1302446B1 (en) | 1997-12-19 | 1998-11-09 | Method for sludge reduction in a waste water treatment system |
US09/725,780 US6383387B2 (en) | 1997-12-19 | 2000-11-29 | Method for treating organic waste water |
US09/725,785 US6383378B2 (en) | 1997-12-19 | 2000-11-29 | Apparatus for treating organic waste water |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35121797 | 1997-12-19 | ||
JP9-351217 | 1997-12-19 | ||
JP23523898A JP3267935B2 (ja) | 1997-12-19 | 1998-08-21 | 有機性廃水の処理方法及びその処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11235598A true JPH11235598A (ja) | 1999-08-31 |
JP3267935B2 JP3267935B2 (ja) | 2002-03-25 |
Family
ID=26532020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23523898A Expired - Lifetime JP3267935B2 (ja) | 1997-06-05 | 1998-08-21 | 有機性廃水の処理方法及びその処理装置 |
Country Status (6)
Country | Link |
---|---|
US (2) | US6383387B2 (ja) |
EP (3) | EP1302446B1 (ja) |
JP (1) | JP3267935B2 (ja) |
DE (3) | DE69834147T2 (ja) |
DK (3) | DK0924168T3 (ja) |
MY (3) | MY138610A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001179285A (ja) * | 1999-12-24 | 2001-07-03 | Mitsubishi Heavy Ind Ltd | 排水処理システム |
JP2002166289A (ja) * | 2000-09-22 | 2002-06-11 | Shinko Pantec Co Ltd | 有機性廃水の処理方法及びその処理装置 |
JP2002177979A (ja) * | 2000-12-11 | 2002-06-25 | Mitsubishi Kakoki Kaisha Ltd | 排水処理装置 |
JP2002316130A (ja) * | 2001-04-23 | 2002-10-29 | Shinko Pantec Co Ltd | 有機性固形廃棄物の処理方法及び装置 |
KR100440811B1 (ko) * | 2000-09-22 | 2004-07-21 | 가부시키가이샤 신꼬간꾜우솔루션 | 유기성 폐수의 처리방법 및 그 처리장치 |
WO2006134915A1 (ja) | 2005-06-14 | 2006-12-21 | Asahi Kasei Chemicals Corporation | 水処理装置及び水処理方法 |
JP2016120470A (ja) * | 2014-12-25 | 2016-07-07 | アサヒ飲料株式会社 | 活性汚泥廃水処理方法及び活性汚泥廃水処理設備 |
JP2017213492A (ja) * | 2016-05-30 | 2017-12-07 | アクアテクノEsco事業株式会社 | 汚泥処理装置 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19942184A1 (de) * | 1999-09-03 | 2001-03-15 | Messer Griesheim Gmbh | Verfahren zur Behandlung von Abwasser in einer biologischen Kläranlage und dafür geeignete Vorrichtung |
EP1156015A1 (de) * | 2000-05-15 | 2001-11-21 | VA TECH WABAG ESMIL GmbH | Verfahren und Anlage zur Filtraterzeugung aus dem Rücklaufschlammstrom |
US6814868B2 (en) * | 2001-06-28 | 2004-11-09 | Zenon Environmental Inc. | Process for reducing concentrations of hair, trash, or fibrous materials, in a waste water treatment system |
KR20030074966A (ko) * | 2002-03-15 | 2003-09-22 | 주식회사 태영 | 슬러지 전처리 및 고농도 막분리 생물반응조를 이용한슬러지 처리방법 |
FR2838428B1 (fr) * | 2002-04-12 | 2005-01-28 | Rhodia Chimie Sa | Procede de reduction de production de boues dans un procede par fermentation biologique aerobie d'epuration d'effluents aqueux |
FR2843106B1 (fr) * | 2002-08-05 | 2004-10-08 | Omnium Traitement Valorisa | Procede et installation de traitement des boues provenant des installations d'epuration biologique des eaux |
EP1550638B1 (en) * | 2002-09-02 | 2012-10-17 | Koga, Takeshi | Method of reducing volume of sludge and apparatus therefor |
JP2004216207A (ja) * | 2003-01-09 | 2004-08-05 | Kuraray Co Ltd | 排水処理方法 |
US20050125036A1 (en) | 2003-08-14 | 2005-06-09 | Mark Roby | Heterogeneous yarns for surgical articles |
WO2006002529A1 (en) * | 2004-07-01 | 2006-01-12 | Zenon Technology Partnership | Screening apparatus for water treatment with membranes |
US7344643B2 (en) * | 2005-06-30 | 2008-03-18 | Siemens Water Technologies Holding Corp. | Process to enhance phosphorus removal for activated sludge wastewater treatment systems |
NZ566051A (en) * | 2005-09-02 | 2011-03-31 | Siemens Water Tech Corp | Screening of inert solids from a low-yield wastewater treatment process |
ES2331157T3 (es) * | 2005-12-09 | 2009-12-22 | Aquafin N.V. | Procedimiento e instalacion para tratar aguas residuales. |
US7993522B2 (en) * | 2006-01-25 | 2011-08-09 | Siemens Industry, Inc. | Conditioning system for activated sludge wastewater treatment processes |
US7473364B2 (en) * | 2006-03-07 | 2009-01-06 | Siemens Water Technologies Corp. | Multivalent metal ion management for low sludge processes |
CN100368324C (zh) * | 2006-03-09 | 2008-02-13 | 绵阳市勤生技术开发有限公司 | 一种高浓度有机污水的处理方法 |
NL1031936C2 (nl) * | 2006-06-01 | 2007-12-04 | Dhv B V | Werkwijze voor het reinigen van een membraan, toepassing van een reinigingsmiddel en membraanbioreactor. |
DE102006034157A1 (de) * | 2006-07-24 | 2008-01-31 | Siemens Ag | Abwasserreinigungseinrichtung |
US7569148B2 (en) * | 2006-08-23 | 2009-08-04 | Siemens Water Technologies Corp. | Continuous membrane filtration and solids reduction |
RU2426697C2 (ru) | 2006-09-21 | 2011-08-20 | Асахи Касеи Кемикалз Корпорейшн | Способ обработки сточных вод |
WO2009028481A1 (ja) * | 2007-08-28 | 2009-03-05 | Diamond Engineering Co., Ltd. | 活性汚泥資材、生物反応槽内の余剰汚泥の減量方法、及び生物反応槽の維持管理方法 |
US8894856B2 (en) | 2008-03-28 | 2014-11-25 | Evoqua Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
US8623213B2 (en) | 2008-03-28 | 2014-01-07 | Siemens Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
MY168200A (en) * | 2009-12-01 | 2018-10-15 | Jinmin Li | Method and apparatus for sluge treatment and use thereof in sewage biotreatment |
US8685247B2 (en) | 2009-12-03 | 2014-04-01 | Evoqua Water Technologies Llc | Systems and methods for nutrient removal in biological treatment systems |
EP2560922A4 (en) | 2010-04-21 | 2015-10-07 | Evoqua Water Technologies Pte Ltd | METHOD AND SYSTEMS FOR WASTEWATER PROCESSING |
EP2606008A4 (en) | 2010-08-18 | 2014-07-23 | Evoqua Water Technologies Llc | HYBRID SYSTEM FOR STABILIZATION THROUGH CONTACT AND PRIMARY FLOTATION |
US9359236B2 (en) | 2010-08-18 | 2016-06-07 | Evoqua Water Technologies Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
US9133047B2 (en) * | 2011-04-05 | 2015-09-15 | Brian E. Butters | Decontamination system with insoluble additives |
FR2993878B1 (fr) | 2012-07-26 | 2014-11-14 | Degremont | Procede de reduction de la production de boues de stations d'epuration d'eaux usees urbaines ou industrielles, et installation pour sa mise en oeuvre. |
DE102013103704B4 (de) | 2013-04-12 | 2015-10-29 | Peter Ott | Verfahren zur Optimierung der biologischen Nährstoffeliminierung aus Abwasser |
GB2527989B (en) | 2013-05-06 | 2020-04-22 | Evoqua Water Tech Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
CN104211275B (zh) * | 2013-06-03 | 2016-02-17 | 李进民 | 污水生物处理装置和方法 |
US20160236957A1 (en) * | 2015-02-17 | 2016-08-18 | Symphonic Water Solutions, Inc. | Membrane Enhancement for Wastewater Treatment |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1092730A (en) * | 1975-11-12 | 1980-12-30 | Joseph R. Kaelin | Process for the continuous treatment of wet sludge from a sewage treatment plant |
SE7607763L (sv) | 1976-07-07 | 1978-01-20 | Plm Ab | Forfarande for aerob, termofil nedbrytning i vetskefas av mikrobiellt nedbrytbar substans |
US4915840A (en) | 1988-06-07 | 1990-04-10 | Bioprocess Engineering, Inc. | Process for sludge reduction in an aerobic sludge generating waste treatment system |
GB9118560D0 (en) * | 1991-08-30 | 1991-10-16 | Pirtferm Ltd | Process for degrading organic matter |
JP2973761B2 (ja) | 1993-01-11 | 1999-11-08 | 栗田工業株式会社 | 有機性排液の好気性処理方法 |
JP3048889B2 (ja) * | 1995-06-29 | 2000-06-05 | 神鋼パンテツク株式会社 | 活性汚泥処理方法及びそのための活性汚泥処理装置 |
FR2737202B1 (fr) * | 1995-07-25 | 1997-10-17 | Omnium Traitement Valorisa | Installation pour le traitement biologique des eaux en vue de leur potabilisation |
JPH0999298A (ja) | 1995-10-06 | 1997-04-15 | Shinko Pantec Co Ltd | 汚泥の処理方法 |
JP3251843B2 (ja) * | 1996-03-26 | 2002-01-28 | 神鋼パンテツク株式会社 | 汚泥の生物学的処理における可溶化方法 |
JP3408371B2 (ja) * | 1996-04-16 | 2003-05-19 | 株式会社荏原製作所 | 有機性汚水の処理方法および装置 |
JP4199369B2 (ja) | 1999-04-15 | 2008-12-17 | 三菱化工機株式会社 | 汚泥減容化処理方法 |
-
1998
- 1998-08-21 JP JP23523898A patent/JP3267935B2/ja not_active Expired - Lifetime
- 1998-10-02 MY MYPI0203612 patent/MY138610A/en unknown
- 1998-10-02 MY MYPI98004530A patent/MY116289A/en unknown
- 1998-10-02 MY MYPI0203613 patent/MY138611A/en unknown
- 1998-11-09 EP EP20030000623 patent/EP1302446B1/en not_active Expired - Lifetime
- 1998-11-09 DE DE1998634147 patent/DE69834147T2/de not_active Expired - Fee Related
- 1998-11-09 DK DK98309163T patent/DK0924168T3/da active
- 1998-11-09 DE DE1998634439 patent/DE69834439T2/de not_active Expired - Fee Related
- 1998-11-09 DE DE1998614317 patent/DE69814317T2/de not_active Expired - Fee Related
- 1998-11-09 DK DK03000623T patent/DK1302446T3/da active
- 1998-11-09 EP EP20040012785 patent/EP1464625B1/en not_active Expired - Lifetime
- 1998-11-09 EP EP19980309163 patent/EP0924168B1/en not_active Expired - Lifetime
- 1998-11-09 DK DK04012785T patent/DK1464625T3/da active
-
2000
- 2000-11-29 US US09/725,780 patent/US6383387B2/en not_active Expired - Fee Related
- 2000-11-29 US US09/725,785 patent/US6383378B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001179285A (ja) * | 1999-12-24 | 2001-07-03 | Mitsubishi Heavy Ind Ltd | 排水処理システム |
JP2002166289A (ja) * | 2000-09-22 | 2002-06-11 | Shinko Pantec Co Ltd | 有機性廃水の処理方法及びその処理装置 |
KR100440811B1 (ko) * | 2000-09-22 | 2004-07-21 | 가부시키가이샤 신꼬간꾜우솔루션 | 유기성 폐수의 처리방법 및 그 처리장치 |
JP2002177979A (ja) * | 2000-12-11 | 2002-06-25 | Mitsubishi Kakoki Kaisha Ltd | 排水処理装置 |
JP2002316130A (ja) * | 2001-04-23 | 2002-10-29 | Shinko Pantec Co Ltd | 有機性固形廃棄物の処理方法及び装置 |
WO2006134915A1 (ja) | 2005-06-14 | 2006-12-21 | Asahi Kasei Chemicals Corporation | 水処理装置及び水処理方法 |
US7967984B2 (en) | 2005-06-14 | 2011-06-28 | Asahi Kasei Chemicals Corporation | Apparatus for water treatment and method of treating water |
JP2016120470A (ja) * | 2014-12-25 | 2016-07-07 | アサヒ飲料株式会社 | 活性汚泥廃水処理方法及び活性汚泥廃水処理設備 |
JP2017213492A (ja) * | 2016-05-30 | 2017-12-07 | アクアテクノEsco事業株式会社 | 汚泥処理装置 |
Also Published As
Publication number | Publication date |
---|---|
DE69834439D1 (de) | 2006-06-08 |
US20010000008A1 (en) | 2001-03-15 |
US6383387B2 (en) | 2002-05-07 |
MY116289A (en) | 2003-12-31 |
EP0924168B1 (en) | 2003-05-07 |
EP0924168A1 (en) | 1999-06-23 |
DK0924168T3 (da) | 2003-09-01 |
US20010000007A1 (en) | 2001-03-15 |
EP1302446B1 (en) | 2006-05-03 |
US6383378B2 (en) | 2002-05-07 |
DE69814317T2 (de) | 2004-02-19 |
EP1464625B1 (en) | 2006-04-05 |
EP1302446A1 (en) | 2003-04-16 |
DK1464625T3 (da) | 2006-07-17 |
EP1464625A1 (en) | 2004-10-06 |
MY138611A (en) | 2009-07-31 |
JP3267935B2 (ja) | 2002-03-25 |
MY138610A (en) | 2009-07-31 |
DE69834147D1 (de) | 2006-05-18 |
DE69834147T2 (de) | 2006-08-24 |
DE69814317D1 (de) | 2003-06-12 |
DK1302446T3 (da) | 2006-08-14 |
DE69834439T2 (de) | 2007-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3267935B2 (ja) | 有機性廃水の処理方法及びその処理装置 | |
US4284508A (en) | Methane production by attached film | |
JP4899253B2 (ja) | 排水の好気性処理方法 | |
CN101597131A (zh) | 一种垃圾渗滤液的处理方法及处理装置 | |
US6391202B1 (en) | Process and apparatus for treating wastewater from oil plant processing and cereal processing | |
JP3699570B2 (ja) | 汚水の好気性処理方法 | |
JP3048889B2 (ja) | 活性汚泥処理方法及びそのための活性汚泥処理装置 | |
Tawfik et al. | Sewage treatment in an up-flow anaerobic sponge reactor followed by moving bed biofilm reactor based on polyurethane carrier material | |
JP3176563B2 (ja) | 有機性廃液の処理方法 | |
US6224769B1 (en) | Method and apparatus for treating organic waste water | |
JP2003504185A (ja) | 水を精製する方法、その方法および利用に適した細菌 | |
JP5873736B2 (ja) | 有機性排水の処理方法及び処理装置 | |
WO2020021755A1 (ja) | 有機性排水処理方法及び有機排水処理装置 | |
JP3900796B2 (ja) | 有機性廃水の処理方法及びその処理装置 | |
KR100440811B1 (ko) | 유기성 폐수의 처리방법 및 그 처리장치 | |
JP2000051884A (ja) | 有機性廃水の生物学的処理方法及び装置 | |
JP3708994B2 (ja) | 含油排水の生物学的処理方法 | |
JP3212969B2 (ja) | 有機性廃水の処理方法及びその処理装置 | |
JP2002166289A (ja) | 有機性廃水の処理方法及びその処理装置 | |
JP3730499B2 (ja) | 有機性廃水の処理方法 | |
WO2004028983A1 (fr) | Procede de traitement d'eaux usees organiques | |
JP2003000227A (ja) | 新規微生物、およびこれを用いた有機性廃水処理装置 | |
Nguyen et al. | Secondary treatment | |
JP3290621B2 (ja) | 有機性廃水の処理方法及びその処理装置 | |
JP2570416B2 (ja) | セミ嫌気廃水連続処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011225 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100111 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100111 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100111 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140111 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |