[go: up one dir, main page]

JPH11219700A - Lithium secondary battery, its negative electrode and its manufacture - Google Patents

Lithium secondary battery, its negative electrode and its manufacture

Info

Publication number
JPH11219700A
JPH11219700A JP10019996A JP1999698A JPH11219700A JP H11219700 A JPH11219700 A JP H11219700A JP 10019996 A JP10019996 A JP 10019996A JP 1999698 A JP1999698 A JP 1999698A JP H11219700 A JPH11219700 A JP H11219700A
Authority
JP
Japan
Prior art keywords
particles
negative electrode
graphite
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10019996A
Other languages
Japanese (ja)
Other versions
JP3651225B2 (en
Inventor
Koichi Takei
康一 武井
Tatsuya Nishida
達也 西田
Yoshito Ishii
義人 石井
Atsushi Fujita
藤田  淳
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP01999698A priority Critical patent/JP3651225B2/en
Publication of JPH11219700A publication Critical patent/JPH11219700A/en
Application granted granted Critical
Publication of JP3651225B2 publication Critical patent/JP3651225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a good cycle characteristic, a high charging/discharging capacity and a quick charging/discharging characteristic by containing a mixture of two or more kinds of graphitic grains having different fine hole volumes based on fine holes with the hole diameter in a specific range in a battery negative electrode. SOLUTION: This negative electrode contains a mixture of two or more kinds of graphitic grains having different fine hole volumes based on fine holes with the hole diameter in the range of 0.01-100 μm, more precisely it contains graphitic grains having the fine hole volume of 0.4 cc/g or above in the range of 0.01-100 μm and graphitic grains having the fine hole volume of 0.08-0.4 cc/g in the range of 0.01-100. Two or more kinds of graphitic grains having different fine hole volumes have the individually measured discharging capacity of 300 mA/g or above respectively, and the difference of the discharging capacity between the graphitic grains is within 10% of the value of the discharging capacity of the graphitic grains having the largest discharging capacity. At least one kind of graphitic grains have a structure collected or coupled with multiple flat grains so that orientation faces are made nonparallel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電
池、その負極及びその製造法に関し、特に充放電容量、
急速充放電特性、サイクル特性に優れたリチウム二次電
池、その負極及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, a negative electrode thereof, and a method of manufacturing the same, and particularly relates to a charge / discharge capacity,
The present invention relates to a lithium secondary battery having excellent charge / discharge characteristics and cycle characteristics, a negative electrode thereof, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、ポータブル機器、電気自動車、電
力貯蔵用として小型、軽量で高エネルギー密度を有する
二次電池に対する要望が高まっている。このような要望
に対し、非水系電解液二次電池、特にリチウム二次電池
はとりわけ高電圧、高エネルギー密度を有する電池とし
て注目を集めている。
2. Description of the Related Art In recent years, there has been an increasing demand for small, lightweight, and high energy density secondary batteries for portable equipment, electric vehicles, and power storage. In response to such demands, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, have attracted attention as batteries having high voltage and high energy density.

【0003】リチウム二次電池の負極材料としては、金
属リチウム、低黒鉛化炭素粒子、高黒鉛化炭素粒子が使
用されている。金属リチウムは高い充放電容量を実現可
能であるが、その高い反応性のため充放電サイクルの経
過と共に電解液中の溶媒と反応し容量が低下する、また
樹枝状の金属リチウムが生成しやすく、正・負極間に設
けられるセパレータを貫通し短絡を引き起こしやすいと
いう問題点を有している。低黒鉛化炭素質材料は、電解
液との反応性が低い、樹枝状金属リチウムが生成しずら
いという特徴を有するが、充放電容量が一般に低く、ま
た真密度が低いため体積当たりの充放電容量が低いとい
う難点を有し、高エネルギー密度の二次電池を実現する
ことは達成されていない。一方、高黒鉛化炭素粒子は、
低黒鉛化炭素粒子と比較して高い充放電容量を有し、金
属リチウムと比較して電解液との反応性、樹枝状金属リ
チウムが生成しずらいという特徴を有することから、近
年、負極用材料として盛んに検討がなされるようになっ
てきている。
As a negative electrode material for a lithium secondary battery, lithium metal, low graphitized carbon particles, and highly graphitized carbon particles are used. Metal lithium can achieve high charge / discharge capacity, but due to its high reactivity, it reacts with the solvent in the electrolytic solution with the progress of the charge / discharge cycle, the capacity decreases, and dendritic metal lithium is easily generated, There is a problem that a short circuit is likely to occur through the separator provided between the positive electrode and the negative electrode. Low graphitized carbonaceous materials have the characteristics of low reactivity with the electrolytic solution and the difficulty of forming dendritic lithium.However, the charge / discharge capacity is generally low, and the true density is low. It has the drawback of low capacity and has not achieved a secondary battery with high energy density. On the other hand, highly graphitized carbon particles
Recently, it has a higher charge / discharge capacity than low graphitized carbon particles, has a higher reactivity with electrolyte than lithium metal, and has a characteristic that lithium dendritic metal is less likely to be generated. Investigations have been actively made as materials.

【0004】高黒鉛化炭素粒子としては、高純度化され
た天然黒鉛粒子、コークスやピッチ或いは合成有機高分
子材料を炭化・黒鉛化して製造される人造黒鉛粒子が使
用されている。これらの高黒鉛化炭素粒子では、黒鉛結
晶が高度に発達しているため、形状はアスペクト比の大
きな鱗片状をしている。このため、バインダと混練して
集電体に塗布して電極を作製した場合、鱗片状の黒鉛粒
子が集電体の面方向に高密度に配向し、その結果、負極
層内への電解液の浸透性が悪化し充放電容量が低下、高
速充放電特性が低下する、黒鉛粒子へのリチウムの吸蔵
・放出の繰り返しによって発生する厚さ方向の歪みによ
り粒子が剥離しやすいためサイクル特性が悪いなどの問
題が発生する。一方、上記のような問題を回避するた
め、電極中の黒鉛質粒子の密度を低下すると体積当たり
の充放電容量が低下するという問題が発生する。
As highly graphitized carbon particles, highly purified natural graphite particles and artificial graphite particles produced by carbonizing and graphitizing coke, pitch or a synthetic organic polymer material are used. In these highly graphitized carbon particles, the graphite crystal is highly developed, and thus the shape is a scale-like shape having a large aspect ratio. For this reason, when an electrode is produced by kneading with a binder and applying the mixture to a current collector, the flaky graphite particles are oriented at high density in the surface direction of the current collector, and as a result, the electrolyte solution into the negative electrode layer The charge / discharge capacity decreases, the high-speed charge / discharge characteristics decrease, and the thickness characteristics of the graphite particles caused by repeated occlusion and release of lithium into graphite particles cause the particles to peel easily, resulting in poor cycle characteristics. And other problems occur. On the other hand, in order to avoid the above-mentioned problem, when the density of the graphitic particles in the electrode is reduced, there arises a problem that the charge / discharge capacity per volume is reduced.

【0005】このような問題を解決する手法として、高
黒鉛化粒子の特性の改善が試みられている。特許第26
37305号では、メソフェーズピッチから抽出された
メソフェーズ小球体を黒鉛化して得られた球状で微細組
織の配向が放射状或いはブルックスーテーラー型の黒鉛
化粒子を用いること、及び微細組織の配向がラメラ型又
はブルックスーテーラー型の炭素繊維を用いることを提
案しているが、前者は充放電容量が280〜300mA/g
と比較的低く、またメソフェーズピッチからの抽出、分
離という工程が必要なため高コストであり、後者は電極
の高密度化が困難、また長繊維が混在するとセパレータ
を貫通し短絡が起こりやすいという問題がある。
As a method for solving such a problem, attempts have been made to improve the characteristics of highly graphitized particles. Patent No. 26
No. 37305, the use of graphitized particles of a spherical or micro-textured microstructure obtained by graphitizing mesophase microspheres extracted from a mesophase pitch, and using a lamellar or micro-textured microstructure orientation. It has been proposed to use Brooks Taylor type carbon fiber, but the former has a charge / discharge capacity of 280 to 300 mA / g.
The cost is high because the process of extraction and separation from the mesophase pitch is required, and the latter is difficult to increase the density of the electrodes. There is.

【0006】特開平7−335216号公報は、骨材及
び結合材を出発原料として作製された高密度黒鉛成形体
を粉砕して製造される黒鉛結晶子がランダムに配向した
粒子を提案しているが、冷間静水圧成形法を用いる成形
体の製造方法は生産性に乏しい。黒鉛化された成形体を
粉砕して黒鉛粒子を得る方法としては、この他にWO9
5/28011号及び特開平9−231974号公報が
挙げられる。これらの黒鉛化成形体を粉砕して得られる
黒鉛粉末はいずれも嵩密度が高く高強度であり、黒鉛結
晶が粒子内でランダムに配向しているため、集電体上で
の黒鉛結晶の配向が抑制され、また電解液が浸透できる
粒子間の空隙が確保されるという点で有効な手段であ
る。しかしながら、粒子が高かさ密度、すなわち緻密質
であるということが、今度は粒子内への電解液の浸透を
抑制し、急速充放電特性の向上に限界を生じさせる原因
となっている。
Japanese Patent Application Laid-Open No. 7-335216 proposes particles in which graphite crystallites are randomly oriented and produced by pulverizing a high-density graphite molded body produced using an aggregate and a binder as starting materials. However, the production method of a molded article using the cold isostatic pressing method has poor productivity. As a method for pulverizing the graphitized molded body to obtain graphite particles, besides WO9
5/28011 and JP-A-9-231974. The graphite powder obtained by pulverizing these graphitized compacts has a high bulk density and a high strength, and the graphite crystals are randomly oriented within the particles. This is an effective means in that it is suppressed and a space between particles through which the electrolyte can penetrate is secured. However, the fact that the particles have a high bulk density, that is, a dense property, suppresses the permeation of the electrolyte solution into the particles, and causes a limitation in improving the rapid charge / discharge characteristics.

【0007】また、高黒鉛化炭素粒子と他の材料を混合
して使用する技術も提案されている。特開平4−237
971号公報では、球状の黒鉛質炭素粒子と炭素繊維と
を組み合わせることによって、充放電の繰り返しによる
粒子の剥離を防止することが提案されているが、これは
充放電容量の比較的低い球状粒子を用いている。特開平
6−36760号公報では、高黒鉛化炭素粒子と低黒鉛
化炭素粒子の混合物を用いることによって放電末期の急
速な電圧降下を防止し電池容量の終点判定を用意とする
ことが提案されているが、高黒鉛化粒子の集電体面方向
へ配向する問題があり、また低黒鉛化炭素粒子の添加量
が多い場合は放電電圧が低下する。
[0007] Further, there has been proposed a technique in which highly graphitized carbon particles and other materials are mixed and used. JP-A-4-237
No. 971 proposes to prevent the particles from being separated due to repetition of charge / discharge by combining spherical graphitic carbon particles and carbon fibers, but this is because spherical particles having a relatively low charge / discharge capacity are proposed. Is used. JP-A-6-36760 proposes that a mixture of highly graphitized carbon particles and low graphitized carbon particles is used to prevent a rapid voltage drop at the end of discharge and prepare for determination of the end point of the battery capacity. However, there is a problem that the highly graphitized particles are oriented in the direction of the current collector surface, and when the amount of the low graphitized carbon particles is large, the discharge voltage decreases.

【0008】特開平6−111818号公報では球状黒
鉛化炭素粒子と黒鉛化炭素短繊維を組み合わせることを
提案しており、電極強度を増加させ充放電サイクルに伴
う電極層の破壊の抑制、短繊維による電極層内の導電性
向上による急速充放電特性の改善が図れるとしている
が、充放電容量の比較的低い球状黒鉛化炭素粒子を用い
ているにすぎない。また黒鉛化炭素短繊維の添加量が多
い場合には電極密度が低下し、体積当たりの充放電容量
が低下するという問題がある。特開平6−302315
号公報では球状黒鉛粒子と化学的、電気化学的に不活性
な金属被覆ウィスカーを組み合わせることにより電極を
高強度化し粒子の剥離を防止することが提案されている
が、球状以外の黒鉛粒子についての言及はなく、また添
加するウイスカーは充放電には寄与しないため添加量が
多い場合には充放電容量の低下が発生する。
Japanese Patent Application Laid-Open No. 6-111818 proposes a combination of spherical graphitized carbon particles and graphitized carbon short fibers, thereby increasing the electrode strength, suppressing the destruction of the electrode layer accompanying the charge / discharge cycle, and reducing the short fibers. , The rapid charge / discharge characteristics can be improved by improving the conductivity in the electrode layer, but only spherical graphitized carbon particles having a relatively low charge / discharge capacity are used. Further, when the amount of the graphitized carbon short fibers is large, there is a problem that the electrode density is reduced and the charge / discharge capacity per volume is reduced. JP-A-6-302315
In Japanese Patent Application Publication No. 2002-214, it has been proposed to combine a spherical graphite particle with a chemically and electrochemically inactive metal-coated whisker to increase the strength of the electrode and prevent exfoliation of the particle. No mention is made, and the added whiskers do not contribute to charging and discharging, so that when the added amount is large, the charging and discharging capacity is reduced.

【0009】特開平8−180864号公報では球状黒
鉛粒子とこの球状粒子の平均粒径に対して1.3〜4.
0の比の平均粒径を有する非球状黒鉛粒子及び炭素繊維
粉砕物を添加することにより、電極内の電子伝導性が向
上し充放電サイクル特性が改善されるとしている。この
中で、非球状粒子(人造黒鉛、天然黒鉛)が球状黒鉛粒
子の間に様々な方向を向いて存在するということが言及
されており、上記の鱗片状黒鉛粒子の集電体面方向への
配向を抑制するということに対して球状黒鉛粒子の存在
が効果を有することが示されているが、球状粒子と非球
状粒子の粒子径を精密に制御する必要があり、生産性と
いう点で問題がある。特開平8−83608号公報及び
特開平8−83609号公報ではブロック状、フレーク
状及び粒状の人造黒鉛又は天然黒鉛粒子に黒鉛化した炭
素繊維粉末を添加することにより、高密度で黒鉛結晶が
集電体面方向に配向しずらく、充放電サイクル経過に伴
う集電体からの粒子の剥離が抑制されるとしている。し
かし、この効果が得られるのは黒鉛化炭素繊維粉末添加
量が20重量%までであり、これ以上では電極性能が低
下することが言及されている。
Japanese Patent Application Laid-Open No. 8-180864 discloses a spherical graphite particle and an average particle diameter of 1.3 to 4.
By adding non-spherical graphite particles having an average particle diameter of 0 and ground carbon fiber, the electron conductivity in the electrode is improved and the charge / discharge cycle characteristics are improved. Among them, it is mentioned that non-spherical particles (artificial graphite, natural graphite) exist in various directions between the spherical graphite particles, and the above-mentioned scale-like graphite particles are directed toward the current collector surface. Although the existence of spherical graphite particles has been shown to have an effect on suppressing orientation, it is necessary to precisely control the particle diameter of spherical particles and non-spherical particles, which is a problem in terms of productivity. There is. In JP-A-8-83608 and JP-A-8-83609, graphite crystals are collected at a high density by adding graphitized carbon fiber powder to artificial graphite or natural graphite particles in the form of blocks, flakes and granules. It is described that the particles are hardly oriented in the direction of the current collector surface, and that the separation of particles from the current collector with the progress of the charge / discharge cycle is suppressed. However, it is mentioned that this effect can be obtained when the amount of graphitized carbon fiber powder added is up to 20% by weight, and when the amount exceeds this, the electrode performance is reduced.

【0010】以上に示したこれまでの高黒鉛化炭素質粒
子と他の材料の混合系では、それぞれ問題を有してお
り、また特に黒鉛化炭素繊維と組み合わせる場合、粒子
形状が大きく異なるため均一に混合することが困難であ
り、このため安定した性能を示すリチウム二次電池の製
造が困難であるという共通の問題がある。また、メソフ
ェーズ小球体を黒鉛化して得られた球状黒鉛粒子を含む
系については、前述のようにこの球状黒鉛粒子の充放電
容量が比較的低くかつ高コストであるという問題点を有
している。
[0010] The above-mentioned mixed systems of highly graphitized carbonaceous particles and other materials each have their own problems, and especially when combined with graphitized carbon fibers, the particle shape is greatly different because of the large difference in particle shape. And there is a common problem that it is difficult to manufacture a lithium secondary battery exhibiting stable performance. Further, a system containing spherical graphite particles obtained by graphitizing mesophase small spheres has a problem that the charge and discharge capacity of the spherical graphite particles is relatively low and the cost is high as described above. .

【0011】[0011]

【発明が解決しようとする課題】請求項1〜5記載の発
明は、電極作製条件の変動による粒子の過剰な変形、黒
鉛質粒子の配向を抑制し、特に高い充放電電流で充放電
を行った場合のリチウムの吸蔵・放出量が多くて充放電
容量が大きく、かつ充放電サイクルによる充放電容量の
低下が少ないもの、すなわち、良好なサイクル特性を有
し、かつ高い充放電容量及び急速充放電特性を有するリ
チウム二次電池用負極を提供するものである。請求項6
記載の発明は、電極作製条件の変動による粒子の過剰な
変形、黒鉛質粒子の配向を抑制し、特に高い充放電電流
で充放電を行った場合のリチウムの吸蔵・放出量が多く
て充放電容量が大きく、かつ充放電サイクルによる充放
電容量の低下が少ないもの、すなわち、良好なサイクル
特性を有し、かつ高い充放電容量及び急速充放電特性を
有するリチウム二次電池用負極の製造法を提供するもの
である。請求項7記載の発明は、電極作製条件の変動に
よる粒子の過剰な変形、黒鉛質粒子の配向を抑制し、特
に高い充放電電流で充放電を行った場合のリチウムの吸
蔵・放出量が多くて充放電容量が大きく、かつ充放電サ
イクルによる充放電容量の低下が少ないもの、すなわ
ち、良好なサイクル特性を有し、かつ高い充放電容量及
び急速充放電特性を有するリチウム二次電池を提供する
ものである。
SUMMARY OF THE INVENTION According to the first to fifth aspects of the present invention, excessive deformation of particles and orientation of graphitic particles due to fluctuations in electrode manufacturing conditions are suppressed, and charge / discharge is performed with a particularly high charge / discharge current. With a large charge / discharge capacity and a small decrease in charge / discharge capacity due to charge / discharge cycles, that is, with good cycle characteristics, high charge / discharge capacity and rapid charge / discharge. An object of the present invention is to provide a negative electrode for a lithium secondary battery having discharge characteristics. Claim 6
The described invention suppresses excessive deformation of particles due to fluctuations in electrode manufacturing conditions and suppresses the orientation of graphitic particles, and particularly when charging / discharging is performed at a high charging / discharging current, the amount of occlusion / release of lithium is large. A method for producing a negative electrode for a lithium secondary battery having a large capacity and a small decrease in charge / discharge capacity due to charge / discharge cycles, that is, having good cycle characteristics, and having high charge / discharge capacity and rapid charge / discharge characteristics. To provide. The invention according to claim 7 suppresses excessive deformation of particles and orientation of graphitic particles due to fluctuations in electrode manufacturing conditions, and particularly, a large amount of lithium occlusion / release when charging / discharging is performed at a high charging / discharging current. A lithium secondary battery having a large charge / discharge capacity and a small decrease in the charge / discharge capacity due to charge / discharge cycles, that is, a lithium secondary battery having good cycle characteristics, high charge / discharge capacity, and rapid charge / discharge characteristics. Things.

【0012】[0012]

【課題を解決するための手段】本発明は、孔径が0.0
1〜100μmの範囲の細孔に基づく細孔容積が異な
る、2種以上の黒鉛質粒子の混合物を含有してなるリチ
ウム二次電池用負極に関する。また本発明は、前記細孔
容積が異なる2種以上の黒鉛質粒子の混合物が、0.0
1〜100μmの範囲の細孔容積が0.4cc/g以上の黒
鉛質粒子と、0.01〜100μmの範囲の細孔容積が
0.08cc/g以上0.4cc/g未満の黒鉛質粒子を含むも
のであるリチウム二次電池用負極に関する。また本発明
は、前記細孔容積が異なる2種以上の黒鉛質粒子のそれ
ぞれが、単独で測定された放電容量が300mA/g以上で
あり、かつそれらの黒鉛質粒子の放電容量の差が、最も
放電容量の大きな黒鉛質粒子の放電容量の値を基準とし
て10%以内である黒鉛質粒子であるリチウム二次電池
用負極に関する。また本発明は、前記黒鉛質粒子の少な
くとも1種は、扁平状の粒子が複数、配向面が非平行と
なるように集合又は結合した構造を有するものであるリ
チウム二次電池用負極に関する。
According to the present invention, a pore size of 0.0
The present invention relates to a negative electrode for a lithium secondary battery comprising a mixture of two or more types of graphitic particles having different pore volumes based on pores in a range of 1 to 100 μm. The present invention also provides a mixture of two or more types of graphite particles having different pore volumes,
Graphite particles having a pore volume in the range of 1 to 100 μm and 0.4 cc / g or more, and graphite particles having a pore volume in the range of 0.01 to 100 μm and 0.08 cc / g or more and less than 0.4 cc / g. And a negative electrode for a lithium secondary battery. Further, according to the present invention, each of the two or more types of graphitic particles having different pore volumes has a discharge capacity of 300 mA / g or more measured independently, and the difference in the discharge capacities of those graphitic particles is The present invention relates to a negative electrode for a lithium secondary battery, which is a graphite particle having a discharge capacity of 10% or less based on a discharge capacity value of the graphite particle having the largest discharge capacity. The present invention also relates to a negative electrode for a lithium secondary battery, wherein at least one of the graphite particles has a structure in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel.

【0013】また本発明は、前記細孔容積が異なる2種
以上の黒鉛質粒子がそれぞれ、扁平状の粒子が複数、配
向面が非平行となるように集合又は結合した構造を有す
るものであるリチウム二次電池用負極に関する。また本
発明は、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバイ
ンダを含む材料に黒鉛化触媒を添加して混合する工程、
焼成・黒鉛化する工程、粉砕する工程の各工程を含む方
法で黒鉛質粒子を製造し、別途、前記と同様の各工程を
含む方法で前記黒鉛質粒子と、孔径が0.01〜100
μmの範囲に基づく細孔の細孔容積が異なる黒鉛質粒子
を製造し、製造された2種以上の黒鉛質粒子を混合し、
これを負極材料とすることを特徴とするリチウム二次電
池用負極の製造法に関する。さらに本発明は、前記のい
ずれかに記載の負極と正極を有してなるリチウム二次電
池に関する。
Further, the present invention has a structure in which two or more types of graphite particles having different pore volumes are gathered or bonded to each other so that a plurality of flat particles are non-parallel in the orientation plane. The present invention relates to a negative electrode for a lithium secondary battery. Further, the present invention is a process of adding a graphitization catalyst to a material containing a graphitizable aggregate or graphite and a graphitizable binder, and mixing.
A step of calcining and graphitizing, producing graphitic particles by a method including each step of a pulverizing step, separately, the graphitic particles and a pore size of 0.01 to 100 by a method including the same steps as described above.
producing graphite particles having different pore volumes based on the range of μm, mixing the produced two or more types of graphite particles,
The present invention relates to a method for producing a negative electrode for a lithium secondary battery, characterized by using this as a negative electrode material. Further, the present invention relates to a lithium secondary battery having the negative electrode and the positive electrode according to any of the above.

【0014】[0014]

【発明の実施の形態】一般に、炭素材料を用いたリチウ
ム二次電池は、リチウムイオンを吸蔵・放出する炭素質
物からなる負極と正極と非水電解液を有するが、本発明
におけるリチウム二次電池用負極は、前記炭素質物が、
孔径が0.01〜100μmの範囲の細孔に基づく細孔
容積が異なる2種以上の黒鉛質粒子の混合物を含むこと
を特徴とする。ここで黒鉛質粒子が1種類では細孔容積
が大きい場合、電極の作製条件によっては粒子が過剰に
変形し黒鉛結晶が集電体の面方向に配向し易く、サイク
ル特性、急速充放電特性が劣化し、充放電容量が低下し
易い。一方細孔容積が小さい場合、粒子内への電解液の
浸透が不十分であり急速充放電特性が低下する。孔径が
前記範囲の細孔に基づく細孔容積は、水銀圧入法による
細孔径分布測定で測定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, a lithium secondary battery using a carbon material has a negative electrode, a positive electrode, and a non-aqueous electrolyte made of a carbonaceous substance that occludes and releases lithium ions. For the negative electrode, the carbonaceous material is
It is characterized by containing a mixture of two or more kinds of graphitic particles having different pore volumes based on pores having a pore diameter in the range of 0.01 to 100 μm. Here, when one kind of graphite particles has a large pore volume, the particles are excessively deformed depending on the electrode production conditions, and the graphite crystals are easily oriented in the plane direction of the current collector, and the cycle characteristics and the rapid charge / discharge characteristics are poor. It deteriorates and the charge / discharge capacity tends to decrease. On the other hand, when the pore volume is small, the permeation of the electrolytic solution into the particles is insufficient, and the rapid charge / discharge characteristics deteriorate. The pore volume based on pores having a pore diameter in the above range is measured by pore diameter distribution measurement by a mercury intrusion method.

【0015】前記2種以上の黒鉛質粒子としては、孔径
が0.01〜100μmの範囲の細孔容積が0.4cc/g
以上の黒鉛質粒子と、孔径が0.01〜100μmの範
囲の細孔容積が0.08cc/g以上0.4cc/g未満の黒鉛
質粒子を含むことが好ましい。ここで、前者の黒鉛質粒
子、即ち細孔容積の大きい黒鉛質粒子の細孔容積の上限
については特に制限はないが、細孔容積が過剰に多いと
電極密度の低下が生じ体積当たりの充放電容量が低下す
るので2.0cc/g以下とすることが好ましい。また、急
速充放電特性がより優れる点で0.4〜0.9cc/gの範
囲であることがより好ましい。
The two or more types of graphite particles have a pore volume of 0.4 cc / g in a pore size range of 0.01 to 100 μm.
It is preferable to include the above graphitic particles and the graphitic particles having a pore diameter of 0.01 to 100 μm and a pore volume of 0.08 cc / g or more and less than 0.4 cc / g. Here, the upper limit of the pore volume of the former graphitic particles, that is, the graphite particles having a large pore volume, is not particularly limited. Since the discharge capacity is reduced, it is preferable to set the discharge capacity to 2.0 cc / g or less. Further, it is more preferably in the range of 0.4 to 0.9 cc / g in that the rapid charge / discharge characteristics are more excellent.

【0016】一方、小さな細孔容積を有する黒鉛質粒子
の、孔径が0.01〜100μmの範囲の細孔容積が
0.08cc/g以上、0.4cc/g未満であることが好まし
いのは、電極作製時の過剰な粒子変形を抑制し、且つ良
好は急速充放電特性が得られるためである。また、より
良好な急速充放電特性を得るために0.15〜0.35
cc/gの範囲であることがより好ましい。
On the other hand, it is preferable that the graphite particles having a small pore volume have a pore volume in the range of 0.01 to 100 μm of 0.08 cc / g or more and less than 0.4 cc / g. This is because excessive particle deformation during electrode production is suppressed, and good charge / discharge characteristics can be obtained. Further, in order to obtain better rapid charge / discharge characteristics, 0.15 to 0.35
More preferably, it is in the range of cc / g.

【0017】上記の2種の細孔容積の黒鉛質粒子の混合
比については特に制限はなく、目的とするリチウム二次
電池の設計に合わせて選択される。その混合比は、電極
作製時の過剰な粒子変形を抑制し、且つ良好な急速充放
電特性が得られる点で細孔容積の大きな黒鉛質粒子/細
孔容積の小さな黒鉛質粒子の重量比で98/2〜20/
80とすることが好ましく、90/10〜50/50と
することがより好ましい。また、3種以上の黒鉛質粒子
を含む場合、孔径が0.01〜100μmの範囲の細孔
容が0.4cc/g以上の黒鉛質粒子と、孔径が0.01〜
100μmの範囲の細孔容積が0.08cc/g以上0.4
cc/g未満の黒鉛質粒子に分類したときに、それぞれの割
合が前記の範囲となることが好ましい。
The mixing ratio of the two types of graphite particles having a fine pore volume is not particularly limited, and is selected according to the intended design of the lithium secondary battery. The mixing ratio is a weight ratio of graphite particles having a large pore volume / graphite particles having a small pore volume in that excessive particle deformation during electrode preparation is suppressed and good rapid charge / discharge characteristics are obtained. 98 / 2-20 /
It is preferably 80, more preferably 90/10 to 50/50. When three or more types of graphitic particles are contained, the volume of pores in the range of 0.01 to 100 μm is 0.4 cc / g or more, and the particle size is 0.01 to 100 μm.
The pore volume in the range of 100 μm is 0.08 cc / g or more and 0.4
When classified into graphitic particles of less than cc / g, it is preferable that each ratio be within the above range.

【0018】また本発明において、2以上の黒鉛質粒子
のいずれも、(002)面の格子面間隔d002、c軸
方向の結晶子サイズLc、真密度がそれぞれ0.338
nm以下、50nm以上、2.21g/cm3以上とすることが
負極全体での充放電容量を高めるという点で好ましい。
また、それぞれの黒鉛質粒子は、単独で測定された放電
容量が300mA/g以上であり、かつそれらの黒鉛質粒子
の放電容量の差が、最も放電容量の大きな黒鉛質粒子の
放電容量の値を基準として10%以内である黒鉛質粒子
であることが好ましい。これにより充放電容量の変化
(低下)を伴わずに2以上の黒鉛質粒子を組み合わせた
効果を得ることができる。ここで、単独で測定された放
電容量とは、各黒鉛質粒子を用いて公知の手法で作製さ
れた負極を用い、対極を金属リチウムとして公知の手法
で測定された一サイクル目の放電容量を意味する。
In the present invention, the lattice spacing d002 of the (002) plane, the crystallite size Lc in the c-axis direction, and the true density of each of the two or more graphite particles are 0.338, respectively.
nm or less, 50 nm or more, and 2.21 g / cm 3 or more are preferable from the viewpoint of increasing the charge / discharge capacity of the entire negative electrode.
Each graphite particle has a discharge capacity of 300 mA / g or more measured independently, and the difference between the discharge capacities of the graphite particles is the value of the discharge capacity of the graphite particle having the largest discharge capacity. It is preferable that the graphite particles are within 10% based on the weight of the graphite particles. Thereby, the effect of combining two or more graphitic particles can be obtained without changing (decreasing) the charge / discharge capacity. Here, the discharge capacity measured alone is a discharge capacity of the first cycle measured by a known method using a negative electrode manufactured by a known method using each of the graphite particles and using a negative electrode as metallic lithium. means.

【0019】本発明において、この放電容量の測定は、
具体的には下記の方法で行うことができる。黒鉛質粒子
90重量%に、N−メチル−2−ピロリドンに溶解した
ポリ弗化ビニリデン(PVDF)を固形分で10重量%
加えて混練して黒鉛ペーストを作製し、この黒鉛ペース
トを厚さ10μmの圧延銅箔に塗布し、さらに乾燥し負
極とする。作製した試料電極を3端子法による定電流充
放電を行い、リチウム二次電池用負極としての評価を行
う。図2はこの測定に用いたリチウム二次電池の概略図
である。図2に示すようにガラスセル9に、電解液10
としてLiPF4をエチレンカーボネート(EC)及び
ジメチルカーボネート(DMC)(ECとDMCは体積
比で1:1)の混合溶媒に1モル/リットルの濃度にな
るように溶解した溶液を入れ、試料電極(負極)11、
セパレータ12及び対極(正極)13を積層して配置
し、さらに参照電極14を上部から吊るしてリチウム二
次電池を作製して行う。対極13及び参照電極14には
金属リチウムを使用し、セパレータ12にはポリエチレ
ン微孔膜を使用する。0.5mA/cm2の定電流で、5mV
(V vsLi/Li+)まで充電し、1V(V vs
Li/Li+)まで放電する試験により放電容量を測
定する。
In the present invention, the measurement of the discharge capacity is as follows.
Specifically, it can be performed by the following method. 10% by weight of solid content of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone
In addition, the mixture is kneaded to produce a graphite paste, the graphite paste is applied to a rolled copper foil having a thickness of 10 μm, and further dried to obtain a negative electrode. The prepared sample electrode is charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 2 is a schematic diagram of the lithium secondary battery used for this measurement. As shown in FIG.
As a solution, LiPF 4 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC and DMC in a volume ratio of 1: 1) so as to have a concentration of 1 mol / liter, and a sample electrode ( Negative electrode) 11,
The separator 12 and the counter electrode (positive electrode) 13 are stacked and arranged, and the reference electrode 14 is suspended from above to produce a lithium secondary battery. Lithium metal is used for the counter electrode 13 and the reference electrode 14, and a polyethylene microporous membrane is used for the separator 12. 5 mV at a constant current of 0.5 mA / cm 2
(V vs Li / Li + ), and 1V (V vs Li
The discharge capacity is measured by a test for discharging to Li / Li + ).

【0020】この方法で測定された各黒鉛質粒子の放電
容量が300mA/g未満の場合、組み合わせて用いた時の
充放電容量、急速充放電特性、サイクル特性の改善が小
さいか低下する場合がある。
When the discharge capacity of each graphitic particle measured by this method is less than 300 mA / g , the improvement in charge / discharge capacity, rapid charge / discharge characteristics and cycle characteristics when used in combination is small or low. There is.

【0021】また、負極を構成する2以上の細孔容積の
異なる黒鉛質粒子の形状がほぼ等しいことが適当であ
り、具体的には、いずれもアスペクト比が5以下である
ことが好ましく、1〜3であることがより好ましい。こ
れにより、2以上の細孔容積の異なる黒鉛質粒子を混合
して負極を構成した場合、これらの黒鉛質粒子の均一な
分布が容易に実現され、ばらつきの少ない良好な特性の
リチウム二次電池を得ることができる。なお、アスペク
ト比は、黒鉛質粒子の長軸方向の長さをA、短軸方向の
長さをBとしたとき、A/Bで表される。本発明におけ
るアスペクト比は、顕微鏡で黒鉛質粒子を拡大し、任意
に100個の黒鉛質粒子を選択し、A/Bを測定し、そ
の平均値をとったものである。
It is appropriate that the two or more graphitic particles having different pore volumes constituting the negative electrode have substantially the same shape, and more specifically, all have an aspect ratio of 5 or less, preferably 1 or less. It is more preferable that the number is from 3 to 3. Thereby, when a graphite is formed by mixing two or more graphite particles having different pore volumes, a uniform distribution of these graphite particles can be easily realized, and a lithium secondary battery having good characteristics with little variation. Can be obtained. The aspect ratio is represented by A / B, where A is the length of the graphite particles in the major axis direction and B is the length of the graphite particles in the minor axis direction. The aspect ratio in the present invention is obtained by magnifying graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.

【0022】また、負極を構成する2以上の黒鉛質粒子
の比表面積はほぼ等しくすることが適当であり、具体的
にはいずれも0.5〜5.0m2/gの範囲とすることが好
ましく、これによって細孔容積の異なる2以上の黒鉛質
粒子を組み合わせて負極を作製しても不可逆容量の増加
を伴わず、また負極を作製する際に使用する黒鉛質粒子
とバインダーと溶媒の混合物の粘度の変化を最小限とす
ることができる。
The specific surface area of the two or more graphitic particles constituting the negative electrode is suitably approximately equal, and specifically, the specific surface area is preferably in the range of 0.5 to 5.0 m 2 / g. Preferably, even if a negative electrode is produced by combining two or more graphitic particles having different pore volumes, a irreversible capacity is not increased, and a mixture of the graphitic particles, a binder, and a solvent used in producing the negative electrode Can be minimized.

【0023】また、負極を構成する2以上の黒鉛質粒子
の構造としては、2種以上の黒鉛質粒子の少なくとも1
種、より好ましくは2種以上が扁平状の粒子を複数、配
向面が非平行となるように集合又は結合させた構造であ
ることが好ましい。ここで、扁平状の粒子とは、長軸と
短軸を有する形状の粒子のことであり、完全な球状でな
いものをいう。例えば鱗状、鱗片状、一部の塊状等の形
状のものがこれに含まれる。複数の扁平状の粒子におい
て、配向面が非平行とは、それぞれの粒子の形状におい
て有する扁平した面、換言すれば最も平らに近い面を配
向面として、複数の粒子がそれぞれの配向面を一定の方
向にそろうことなく集合している状態をいう。個々の扁
平状の粒子は、材質的には、黒鉛化可能な骨材または黒
鉛であることが好ましい。
The structure of the two or more graphite particles constituting the negative electrode may be at least one of the two or more graphite particles.
It is preferable that the particles have a structure in which a plurality of kinds, more preferably two or more kinds, of flat particles are aggregated or bonded so that the orientation planes are non-parallel. Here, the flat particles refer to particles having a major axis and a minor axis and are not perfectly spherical. For example, a shape such as a scaly shape, a scaly shape, or a partial lump shape is included in this. In the plurality of flat particles, the orientation plane is non-parallel, and the flat surface having the shape of each particle, in other words, the plane closest to the flat surface is the orientation plane, and the plurality of particles have each orientation plane constant. Refers to a state in which they are gathered in the same direction. Each of the flat particles is preferably made of a graphitizable aggregate or graphite.

【0024】この黒鉛質粒子において扁平状の粒子は集
合又は結合しているが、結合とは互いの粒子がバインダ
ー等を介して接着されている状態をいい、集合とは互い
の粒子がバインダー等で接着されてはないが、その形状
等に起因して、その集合体としての形状を保っている状
態をいう。機械的な強度の面から、結合しているものが
好ましい。該構造の黒鉛質粒子を負極に使用すると、集
電体上に黒鉛結晶が配向し難く、負極黒鉛にリチウムを
吸蔵・放出し易くなるため、得られるリチウム二次電池
の急速充放電特性及びサイクル特性を向上させることが
できる。
In the graphitic particles, the flat particles are aggregated or bonded. The term “bond” refers to a state in which the particles are bonded to each other via a binder or the like. Is a state in which the shape of the aggregate is maintained due to its shape and the like, although not bonded. From the standpoint of mechanical strength, it is preferable to combine them. When the graphite particles having such a structure are used for the negative electrode, the graphite crystals are less likely to be oriented on the current collector, and lithium is easily absorbed and released into the negative electrode graphite. The characteristics can be improved.

【0025】本発明に用いられる黒鉛質粒子の製造方法
に特に制限はないが、前述の各特性、形状、構造の黒鉛
質粒子が比較的容易に得られることから、少なくとも1
種、より好ましくはすべてが、黒鉛化可能な骨材又は黒
鉛と黒鉛化可能なバインダを含む材料に黒鉛化触媒を添
加して混合する工程、焼成・黒鉛化する工程、粉砕する
工程の各工程を含む方法で製造されたものであることが
好ましい。この方法において、より具体的にいくつかの
方法を挙げることができる。第1の方法は、黒鉛化可能
な骨材又は黒鉛と、黒鉛化可能なバインダとしてタール
又はピッチを用い、これに黒鉛化触媒を添加して混合
し、ついで焼成・黒鉛化した後、粉砕する方法である。
There is no particular limitation on the method for producing the graphite particles used in the present invention. However, since the graphite particles having the above-mentioned properties, shapes and structures can be obtained relatively easily, at least one of them can be obtained.
The steps of adding and mixing a graphitization catalyst to a graphitizable aggregate or a material containing graphite and a graphitizable binder, firing, graphitizing, and pulverizing the seeds, more preferably all of them. It is preferable that it is manufactured by a method including: In this method, several methods can be mentioned more specifically. The first method is to use graphitizable aggregate or graphite, tar or pitch as a graphitizable binder, add a graphitization catalyst to the mixture, mix, and then calcine and graphitize and then pulverize. Is the way.

【0026】黒鉛化可能な骨材としては、フルードコー
クス、ニードルコークス等の各種コークス類が好まし
い。また、骨材として天然黒鉛や人造黒鉛などの既に黒
鉛化されているものを使用することもできる。黒鉛化可
能なバインダとしては、石炭系、石油系、人造等の各種
ピッチ、タールが使用される。バインダの配合量は、特
に制限されないが、黒鉛化可能な骨材又は黒鉛に対し、
5〜80重量%添加することが好ましく、10〜80重
量%添加することがより好ましく、15〜80重量%添
加することがさらに好ましい。バインダの量が多すぎた
り少なすぎると、作製する黒鉛質粒子のアスペクト比及
び比表面積が大きくなるという傾向がある。
As the graphitizable aggregate, various cokes such as fluid coke and needle coke are preferable. In addition, those already graphitized such as natural graphite and artificial graphite can be used as the aggregate. As the binder that can be graphitized, various pitches and tars such as coal-based, petroleum-based, and man-made are used. The amount of the binder is not particularly limited, but for the aggregate or graphite that can be graphitized,
It is preferably added in an amount of 5 to 80% by weight, more preferably 10 to 80% by weight, and even more preferably 15 to 80% by weight. If the amount of the binder is too large or too small, the graphite particles to be produced tend to have an increased aspect ratio and specific surface area.

【0027】黒鉛化可能な骨材又は黒鉛とバインダの混
合方法は、特に制限はなく、ニーダー等を用いて行われ
るが、バインダの軟化点以上の温度で混合することが好
ましい。具体的にはバインダがピッチ、タール等の際に
は、50〜300℃が好ましい。黒鉛化触媒としては、
鉄、ニッケル、チタン、ホウ素、珪素等、これらの酸化
物、炭化物、窒化物等が使用可能である。黒鉛化触媒
は、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダ
に1〜50重量%添加することが好ましい。その添加量
が1重量%未満であると黒鉛質粒子の結晶の発達が悪く
なり、充放電容量が低下する傾向にある。一方、50重
量%を越えると、均一に混合することが困難となり、作
業性の悪化及び得られる黒鉛質粒子の特製のばらつきが
大きくなる傾向にある。
The method of mixing the graphitizable aggregate or graphite and the binder is not particularly limited, and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, the temperature is preferably 50 to 300 ° C. As a graphitization catalyst,
Oxides, carbides, nitrides, and the like of iron, nickel, titanium, boron, silicon, and the like can be used. The graphitization catalyst is preferably added to the graphitizable aggregate or the graphite and the graphitizable binder in an amount of 1 to 50% by weight. If the addition amount is less than 1% by weight, the development of the crystals of the graphitic particles becomes worse, and the charge / discharge capacity tends to decrease. On the other hand, if the content exceeds 50% by weight, it becomes difficult to mix uniformly, and the workability tends to deteriorate and the characteristic variation of the obtained graphite particles tends to increase.

【0028】黒鉛化可能な骨材又は黒鉛とバインダに黒
鉛化触媒を添加して混合し、焼成・黒鉛化を行う。焼成
の前に、必要に応じて前記混合物を適当な形に成形して
も良い。焼成は前記混合物が酸化しがたい雰囲気で行う
ことが好ましく、例えば窒素雰囲気中、アルゴンガス
中、真空中で焼成する方法等が挙げられる。黒鉛化の温
度は2000℃以上が好ましく、2500℃以上である
ことが好ましく、2800〜3200℃であることがさ
らに好ましい。黒鉛化温度が低いと、黒鉛の結晶の発達
が悪くなると共に、黒鉛化触媒が作製した黒鉛質粒子に
残存し易くなり、いずれの場合も充放電容量が低下する
傾向にある。一方、黒鉛化の温度が高すぎると、黒鉛が
昇華することがある。
A graphitizing catalyst is added to a graphitizable aggregate or graphite and a binder, mixed, fired and graphitized. Before firing, the mixture may be shaped into a suitable shape, if necessary. The firing is preferably performed in an atmosphere in which the mixture is hardly oxidized, and examples thereof include a method of firing in a nitrogen atmosphere, an argon gas, and a vacuum. The graphitization temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 to 3200 ° C. If the graphitization temperature is low, the development of graphite crystals becomes worse, and the graphitization catalyst tends to remain in the prepared graphitic particles, and in any case, the charge / discharge capacity tends to decrease. On the other hand, if the graphitization temperature is too high, the graphite may sublime.

【0029】次に、得られた黒鉛化物を粉砕する。黒鉛
化物の粉砕方法については特に制限を設けないが、ジェ
ットミル、振動ミル、ピンミル、ハンマーミル等の既知
の方法及びこれらの複数を組み合わせて用いることがで
きる。粉砕後の平均粒子径は1〜100μmが好まし
く、10〜50μmがより好ましい。平均粒子径は大き
すぎる場合、作製した電極表面に凸凹ができやすくな
る。
Next, the obtained graphitized product is pulverized. There is no particular limitation on the method of pulverizing the graphitized material, but known methods such as a jet mill, a vibration mill, a pin mill, a hammer mill and the like and a combination of a plurality of these methods can be used. The average particle size after pulverization is preferably from 1 to 100 μm, more preferably from 10 to 50 μm. If the average particle size is too large, the formed electrode surface is likely to be uneven.

【0030】得られた黒鉛質粒子はそのまま使用するこ
とも可能であるが、さらに非酸化性雰囲気中で400℃
以上の温度で加熱処理してもよい。この処理により比表
面積を低下させることができ、リチウム二次電池の安全
性及び不可逆容量を改善することができる。非酸化性雰
囲気としては、例えば窒素雰囲気、アルゴン雰囲気、真
空等が挙げられる。
The obtained graphitic particles can be used as they are, but are further subjected to 400 ° C. in a non-oxidizing atmosphere.
Heat treatment may be performed at the above temperature. By this treatment, the specific surface area can be reduced, and the safety and irreversible capacity of the lithium secondary battery can be improved. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a vacuum.

【0031】第2の方法としては、黒鉛化可能な骨材又
は黒鉛と黒鉛化可能なバインダに黒鉛化触媒を1〜50
重量%添加して混合し、粉砕し、ついで、不融化処理
し、その後、焼成・黒鉛化して製造する方法がある。こ
の方法の第1の方法との違いは、材料の混合物を粉砕
し、次いで不融化処理を行う点である。粉砕に際して
は、最終的に得られる黒鉛質粒子の平均粒子径が100
μm以下、好ましくは50μm以下となるように混合物
の粒子径を選択することが好ましい。粉砕方法としては
特に限定しないが、ハンマーミル、ピンミル、振動ミ
ル、ジュエットミル等の粉砕装置及びこれらを複数組み
合わせて使用することが出来る。また、必要であれば粉
砕して得られた粒子を分級することができる。分級の方
法としては特に限定しないが、機械式分級機、風力式分
級機等から適時、最適な機種が選択される。
As a second method, a graphitizing catalyst is added to a graphitizable aggregate or a graphite and a graphitizable binder by 1 to 50 times.
% By mixing, pulverizing, infusibilizing, calcining and graphitizing. The difference between this method and the first method is that the mixture of the materials is pulverized and then subjected to the infusibilizing treatment. In the pulverization, the average particle diameter of the graphite particles finally obtained is 100
It is preferable to select the particle size of the mixture so as to be not more than μm, preferably not more than 50 μm. The pulverizing method is not particularly limited, but a pulverizing apparatus such as a hammer mill, a pin mill, a vibration mill, a Jett mill and a plurality of these can be used in combination. If necessary, the particles obtained by pulverization can be classified. The classification method is not particularly limited, but an optimal model is selected from a mechanical classifier, a wind classifier, and the like in a timely manner.

【0032】不融化処理方法としては、混合物粉末が焼
成工程で互いに融着することを防止できる方法であれば
特に限定されず、各種ピッチ類の不融化に一般的に用い
られている酸化剤(空気、酸素、NO2、塩素、臭素
等)と接触させ、さらに必要に応じて適当な温度に加熱
する乾式法、硝酸水溶液、塩素水溶液、硫酸水溶液、過
酸化水素水溶液等を用いた湿式法、並びにこれらを組み
合わせた方法によって達成することができる。また、熱
硬化性樹脂を混合物粉体の表面に被覆することによって
も目的とする焼成工程での粒子の融着を防止することが
可能である。被覆する熱硬化性樹脂については特に限定
しないが、用いるバインダの融解温度以下で硬化する樹
脂であれば使用可能であり、フェノール樹脂、フルフリ
ルアルコール樹脂、ポリイミド樹脂、セルロース樹脂、
ポリ塩化ビニリデン樹脂等が好ましい。不融化処理の
後、必要であれば再度粉砕、分級処理を行っても良い。
不融化処理を施した混合物粉体は、前記第1の方法に従
って、焼成、黒鉛化することができる。
The infusibilizing treatment method is not particularly limited as long as the mixture powder can be prevented from fusing together in the firing step. An oxidizing agent generally used for infusibilizing various pitches ( Air, oxygen, NO 2 , chlorine, bromine, etc.) and a wet method using a nitric acid aqueous solution, a chlorine aqueous solution, a sulfuric acid aqueous solution, a hydrogen peroxide aqueous solution, etc. It can be achieved by a method combining these. Also, by coating the surface of the mixture powder with a thermosetting resin, it is possible to prevent the particles from fusing in the intended firing step. Although there is no particular limitation on the thermosetting resin to be coated, any resin can be used as long as it cures at or below the melting temperature of the binder to be used, and a phenol resin, a furfuryl alcohol resin, a polyimide resin, a cellulose resin,
Polyvinylidene chloride resin is preferred. After the infusibilization treatment, if necessary, pulverization and classification may be performed again.
The infusible mixture powder can be fired and graphitized according to the first method.

【0033】第3の方法としては、黒鉛化可能な骨材又
は黒鉛と、黒鉛化可能なバインダとして熱硬化性樹脂を
用い、これらに黒鉛化触媒を添加して混合し、粉砕し、
次いで焼成・黒鉛化して製造する方法である。この方法
は、バインダとして熱硬化性樹脂を用い、混合物を粉砕
することが第1の方法との違いである。熱硬化性樹脂と
しては、フェノール樹脂、フルフリルアルコール樹脂、
ポリイミド樹脂、セルロース樹脂、ポリ塩化ビニリデン
樹脂、塩素化ポリ塩化ビニル樹脂などが使用できる。黒
鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に
制限はなく、ニーダー等を用いて行われるが、その温度
は熱硬化性樹脂の場合には、20〜100℃が好まし
い。
As a third method, a graphitizable aggregate or graphite and a thermosetting resin as a graphitizable binder are used, a graphitization catalyst is added thereto, mixed, and pulverized.
Then, it is a method of producing by firing and graphitizing. This method is different from the first method in that a thermosetting resin is used as a binder and the mixture is pulverized. As thermosetting resins, phenolic resins, furfuryl alcohol resins,
Polyimide resin, cellulose resin, polyvinylidene chloride resin, chlorinated polyvinyl chloride resin and the like can be used. The method of mixing the graphitizable aggregate or graphite with the binder is not particularly limited, and is performed using a kneader or the like. The temperature is preferably 20 to 100 ° C. in the case of a thermosetting resin.

【0034】黒鉛化可能な骨材又は黒鉛、バインダとし
ての熱硬化性樹脂との配合比については特に制限しない
が、粉砕物の焼成過程で粒子の融着が起こらない程度に
熱硬化性樹脂の配合量を設定することが必要であり、一
方、過剰に熱硬化性樹脂の割合を増やすと得られる黒鉛
質粒子の黒鉛化度が低下し、充放電容量が低下するので
好ましくない。これらの点から熱硬化性樹脂の配合量
は、黒鉛化可能な骨材又は黒鉛に対し、5〜80重量%
添加することが好ましい。混合物の粉砕条件は前記第2
の方法に従うことができる。また、焼成・黒鉛化の条件
は前記第1の方法に従うことができる。
The compounding ratio of the graphitizable aggregate or graphite and the thermosetting resin as a binder is not particularly limited, but the thermosetting resin is used to such an extent that particles do not fuse during the firing of the pulverized material. It is necessary to set the compounding amount. On the other hand, when the proportion of the thermosetting resin is excessively increased, the degree of graphitization of the obtained graphitic particles decreases, and the charge / discharge capacity decreases, which is not preferable. From these points, the compounding amount of the thermosetting resin is 5 to 80% by weight based on the graphitizable aggregate or graphite.
It is preferred to add. The grinding conditions for the mixture are the second
Method can be followed. The firing and graphitizing conditions can be in accordance with the first method.

【0035】本発明においては、少なくとも2種の黒鉛
質粒子は、いずれも、前記第1、第2及び第3の方法か
ら選択される少なくとも1種の方法でそれぞれ製造され
た粒子であることが高い充放電容量、良好な急速充放電
特性、少ない不可逆容量、良好なサイクル特性を実現す
る上で好ましい。
In the present invention, the at least two kinds of graphitic particles may be particles produced by at least one method selected from the first, second and third methods, respectively. It is preferable to realize high charge / discharge capacity, good rapid charge / discharge characteristics, small irreversible capacity, and good cycle characteristics.

【0036】上記により得られる孔径が0.01〜10
0μmの範囲の細孔容積が異なる2以上の黒鉛質粒子
は、黒鉛質粒子同士を結着するための有機系結着剤と均
一に混合した後、加圧成形するか、または有機溶媒等を
用いてペースト化して集電体上に塗布乾燥後プレスする
など、公知の方法でリチウム二次電池用負極とすること
ができる。有機系結着剤としては、例えばポリエチレ
ン、ポリプロピレン、エチレンプロピレンポリマー、ブ
タジエンゴム、スチレンブタジエンゴム、イオン導電性
の大きな高分子化合物が使用できる。イオン導電性高分
子化合物としては、ポリフッ化ビニリデン、ポリエチレ
ンオキサイド、ポリエピクロルヒドリン、ポリフォファ
ゼン、ポリアクリロニトリル等が使用できる。有機系結
着剤の含有量は、黒鉛質粒子と有機系結着剤との混合物
に対して3〜20重量%とする事が好ましい。集電体と
しては、例えばニッケル、銅等の箔、メッシュなどが使
用できる。
The pore size obtained as described above is 0.01 to 10
Two or more graphitic particles having different pore volumes in the range of 0 μm are uniformly mixed with an organic binder for binding the graphitic particles, and then subjected to pressure molding or an organic solvent or the like. A negative electrode for a lithium secondary battery can be formed by a known method, such as forming a paste by using the paste, applying the mixture on a current collector, drying and pressing. As the organic binder, for example, polyethylene, polypropylene, ethylene propylene polymer, butadiene rubber, styrene-butadiene rubber, and a polymer compound having high ionic conductivity can be used. As the ion conductive polymer compound, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used. The content of the organic binder is preferably 3 to 20% by weight based on the mixture of the graphite particles and the organic binder. As the current collector, for example, a foil or mesh of nickel, copper, or the like can be used.

【0037】上記により得られるリチウム二次電池用負
極は、充放電可能なリチウムを含有する活物質から構成
した正極と組み合わせてリチウム二次電池を構成する。
ここで使用される正極活物質としては、Lixy
z(ここでM=V、Mn,Fe、Co、Niから選ばれ
る少なくとも一種を主体、x=0.05〜1.2、y=
1或いは2、z=1.5〜5)で表されるリチウムを含
有する遷移金属酸化物が挙げられる。またこれらに、リ
チウム以外のアルカリ金属、アルカリ土類金属、上記M
以外の遷移金属、あるいは周期律表13〜15族元素
(Al、Ga、In、Si、Ge、Sn、Pb、Sb、
Bi、P、B)などを含ませてもよい。正極にはさらに
活物質としてMnO2、MoO3、V25、TiO2、T
iS2、FeS、活性炭などの無機化合物やポリアニリ
ンなどの高分子化合物等を選ぶこともできる。この場合
には、予め、負極に所定量のリチウムを吸蔵させるか、
又は所定量のリチウムを圧着させて使用することもでき
る。
The negative electrode for a lithium secondary battery obtained as described above constitutes a lithium secondary battery in combination with a positive electrode composed of a chargeable / dischargeable lithium-containing active material.
As the positive electrode active material as used herein, Li x M y O
z (where M = V, at least one selected from Mn, Fe, Co, Ni, x = 0.05 to 1.2, y =
1 or 2, z = 1.5 to 5), and a transition metal oxide containing lithium. These include alkali metals other than lithium, alkaline earth metals, and M
Other transition metals, or elements of groups 13 to 15 of the periodic table (Al, Ga, In, Si, Ge, Sn, Pb, Sb,
Bi, P, B) may be included. On the positive electrode, MnO 2 , MoO 3 , V 2 O 5 , TiO 2 , T
Inorganic compounds such as iS 2 , FeS and activated carbon, and high molecular compounds such as polyaniline can also be selected. In this case, a predetermined amount of lithium is previously stored in the negative electrode,
Alternatively, a predetermined amount of lithium can be pressed and used.

【0038】リチウム二次電池にはさらに非水系電解液
が含まれる。非水系電解液としては、リチウム塩を高誘
電率の有機溶媒に溶解させた溶液が好ましい。リチウム
塩については特に制限はなく、LiClO4、LiP
6、LiBF4、LiCF3SO3等を使用することが出
来る。また、有機溶媒は、リチウム塩を溶解して電気化
学的に安定性を与え、かつ構成する負極・正極材に対し
て電気化学的に安定性を有するものであればよい。例え
ばエチレンカーボネート、プロピレンカーボネート、ジ
メチルカーボネート、ジエチルカーボネート、1、2ー
ジメトキシエタン、テトラヒドロフラン、アセトニトリ
ル、スルホラン、γーブチロラクトン、これらの混合物
等が用いられる。また、電解質としてポリフッ化ビニリ
デン等の高分子固体電解質に含ませた有機電解液を使用
することもできる。
The lithium secondary battery further contains a non-aqueous electrolyte. As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent having a high dielectric constant is preferable. There is no particular limitation on the lithium salt, and LiClO 4 , LiP
F 6 , LiBF 4 , LiCF 3 SO 3 and the like can be used. Further, the organic solvent may be any as long as it dissolves the lithium salt to provide electrochemical stability and has electrochemical stability to the constituent negative and positive electrode materials. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2 dimethoxyethane, tetrahydrofuran, acetonitrile, sulfolane, γ-butyrolactone, a mixture thereof and the like are used. In addition, an organic electrolyte contained in a solid polymer electrolyte such as polyvinylidene fluoride can be used as the electrolyte.

【0039】本発明のリチウム二次電池においては、液
体の電解液を用いる場合は、正極と負極と非水系電解液
の他に、両極の接触を防止し、かつ電解液を保持し、リ
チウムイオンを通過できる機能を有するセパレータと、
電極材を保持して集電する機能を有する集電体とを組み
合わせて用いることが好ましい。セパレータとしては、
例えばポリエチレン、ポリプロピレン又はポリテトラフ
ルオロエチレン等の多孔質フィルムや不織布、織布等が
挙げられる。セパレータの厚さは20〜200μm程度
が好ましい。
In the lithium secondary battery of the present invention, when a liquid electrolyte is used, in addition to the positive electrode, the negative electrode, and the non-aqueous electrolyte, contact between the two electrodes is prevented, and the electrolyte is retained. A separator having a function of passing through
It is preferable to use in combination with a current collector having a function of holding an electrode material and collecting current. As a separator,
For example, a porous film of polyethylene, polypropylene, polytetrafluoroethylene, or the like, a nonwoven fabric, a woven fabric, and the like can be given. The thickness of the separator is preferably about 20 to 200 μm.

【0040】また、集電体としては、正極・負極の活物
質に対して電気化学的に安定性を有する導体を使用する
ことが出来る。例えば、ニッケル、チタン、ステンレ
ス、銅、アルミニウムが挙げられる。また、本発明の水
銀圧入法で測定される0.01〜100μmの範囲の細
孔の細孔容積が異なる2以上の黒鉛質粒子を含有してな
る負極を備えたリチウム二次電池は、円筒型、箱型、コ
イン型、ボタン型、ペーパー型、カード型など、様々な
形状とすることが出来る。
As the current collector, a conductor which is electrochemically stable with respect to the positive and negative electrode active materials can be used. For example, nickel, titanium, stainless steel, copper, and aluminum are mentioned. Further, a lithium secondary battery provided with a negative electrode containing two or more graphitic particles having different pore volumes of pores in the range of 0.01 to 100 μm measured by the mercury intrusion method of the present invention is cylindrical. Various shapes such as a mold, a box, a coin, a button, a paper, and a card can be used.

【0041】こうして得られるリチウム二次電池におい
て、仮に負極に含まれる粒子が1種の黒鉛質粒子、例え
ば、孔径が0.01〜100μmの範囲に0.4cc/g以
上の細孔容積を有する黒鉛質粒子だけでは、粒子の過剰
な変形が無い状態では、優れた急速充放電特性及びサイ
クル特性を有するが、負極作製条件等に起因して粒子の
過剰な変形は生じた場合、偏平な粒子は集電体面に平行
に配向し易く、また粒子内及び粒子間の空隙も減少する
ため、リチウムイオンのドープ、脱ドープが起こりづら
くなり、急速充放電特性及びサイクル特性が低下してし
まう。そこで、上記黒鉛質粒子に孔径が0.01〜10
0μmの範囲に細孔容積を有し、且つ上記黒鉛質粒子よ
りも少ない細孔容積を有する黒鉛質粒子を添加すると、
該黒鉛質粒子は比較的緻密質であるため、上記黒鉛質粒
子の過剰な変形を抑制し、その結果として急速充放電特
性及びサイクル特性が改善される。また、該黒鉛質粒子
は、それ自身が高い充放電容量を有し、また孔径が0.
01〜100μmの範囲に細孔を有しているため急速充
放電特性が比較的良好であり、さらに形状、真密度など
の特性についても上記黒鉛質粒子と類似しているため、
均一な混合が容易に実現できるため、高い充放電容量の
リチウム二次電池を安定して作製することが可能であ
る。
In the lithium secondary battery thus obtained, if the particles contained in the negative electrode are one kind of graphitic particles, for example, have a pore volume of 0.4 cc / g or more in a pore size range of 0.01 to 100 μm. Graphitic particles alone have excellent rapid charge / discharge characteristics and cycle characteristics when there is no excessive deformation of the particles.However, when excessive deformation of the particles occurs due to negative electrode production conditions, etc., flat particles Are easily oriented parallel to the current collector surface, and the voids in the particles and between the particles are reduced, so that doping and undoping of lithium ions are less likely to occur, and rapid charge / discharge characteristics and cycle characteristics are deteriorated. Therefore, the graphite particles have a pore size of 0.01 to 10%.
Addition of graphite particles having a pore volume in the range of 0 μm, and having a pore volume smaller than the graphite particles,
Since the graphite particles are relatively dense, excessive deformation of the graphite particles is suppressed, and as a result, rapid charge / discharge characteristics and cycle characteristics are improved. Further, the graphite particles themselves have a high charge / discharge capacity and a pore size of 0.1.
Since it has pores in the range of 01 to 100 μm, rapid charge / discharge characteristics are relatively good, and further, the shape, characteristics such as true density are similar to those of the graphitic particles,
Since uniform mixing can be easily realized, a lithium secondary battery having a high charge / discharge capacity can be stably manufactured.

【0042】[0042]

【実施例】以下、本発明の実施例及び比較例を示して、
その効果を具体的に説明する。 実施例1 (リチウム二次電池の作製)図1に円筒型リチウムイオ
ン二次電池の一例の一部断面正面図を示す。図1におい
て、1は正極、2は負極、3はセパレータ、4は正極タ
ブ、5は負極タブ、6は正極蓋、7は電池缶及び8はガ
スケットである。図1に示すリチウム二次電池は以下の
ようにして作製した。
EXAMPLES Examples and comparative examples of the present invention will be described below.
The effect will be described specifically. Example 1 (Production of Lithium Secondary Battery) FIG. 1 shows a partial cross-sectional front view of an example of a cylindrical lithium ion secondary battery. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a positive electrode tab, 5 is a negative electrode tab, 6 is a positive electrode cover, 7 is a battery can, and 8 is a gasket. The lithium secondary battery shown in FIG. 1 was manufactured as follows.

【0043】(正極の作製)正極活物質としてのLiC
oO 288重量部に、導電剤として平均粒子径が1μ
mの鱗片状天然黒鉛7重量部と、結着剤としてのポリ弗
化ビニリデン5重量部を添加し、これにN−メチル−2
−ピロリドンを加え混合して正極合剤のスラリーを調製
した。次いで、この正極合剤を正極集電体としてのアル
ミニウム箔(厚さ25μm)にドクターブレード法によ
り両面に塗付、乾燥、次いでローラープレスによって電
極を加圧成形した。これを幅40mmで長さが285mmの
大きさに切り出して正極10を作製した。但し、正極1
0の両端の長さ10mmの部分は正極合剤が塗布されてお
らずアルミニウム箔が露出しており、この一方に正極タ
ブ13を超音波接合によって圧着した。
(Preparation of positive electrode) LiC as positive electrode active material
An average particle size of 1 μm as a conductive agent was added to 288 parts by weight of oO.
m-scale natural graphite (7 parts by weight) and polyvinylidene fluoride (5 parts by weight) as a binder were added thereto.
-A slurry of the positive electrode mixture was prepared by adding and mixing pyrrolidone. Next, this positive electrode mixture was applied to both surfaces of an aluminum foil (thickness: 25 μm) as a positive electrode current collector by a doctor blade method, dried, and then pressure-formed by roller press. This was cut out into a size having a width of 40 mm and a length of 285 mm to produce a positive electrode 10. However, positive electrode 1
The positive electrode mixture was not applied to the 10 mm long portions of both ends of 0 and the aluminum foil was exposed, and the positive electrode tab 13 was pressure-bonded to one of the portions by ultrasonic bonding.

【0044】(黒鉛質粒子Aの作製)平均粒子径が5μ
mのコークス粉末50重量部、タールピッチ20重量
部、平均粒子径が48μmの炭化珪素7重量部及びコー
ルタール10重量部を混合し、200℃で1時間混合し
た。得られた混合物を粉砕し、ペレット状に加圧成形
し、次いで窒素雰囲気中、900℃まで加熱、次いで同
じく窒素雰囲気中で3000℃まで昇温し黒鉛化を行っ
た。得られた黒鉛化物をハンマーミルを用いて粉砕し、
平均粒径が20μmの黒鉛質粒子を作製した。この黒鉛
質粒子のBET法による比表面積は3.6m2/gであっ
た。得られた黒鉛質粒子について水銀圧入法による細孔
径分布測定を行った結果、0.01〜100μmの範囲
に細孔を有し、この細孔体積は0.9cc/gであった。ま
た、得られた黒鉛質粒子を100個任意に選び出し、ア
スペクト比を測定した結果、2.0であり、黒鉛質粒子
のX線広角回折による結晶の層間距離d(002)は
0.336nm及び結晶子の大きさLc(002)は10
0nm以上であった。さらに、得られた黒鉛質粒子の走査
型電子顕微鏡(SEM)写真によれば、この黒鉛質粒子
は、偏平状の粒子が複数、配向面が非平行となるように
集合又は結合した構造をしていた。以上のようにして作
製した黒鉛質粒子を以下A試料を称する。
(Preparation of Graphite Particle A) The average particle diameter is 5 μm.
m coke powder, 50 parts by weight of tar pitch, 7 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized and formed into a pellet under pressure, then heated to 900 ° C. in a nitrogen atmosphere, and then heated to 3000 ° C. in the same nitrogen atmosphere to perform graphitization. The obtained graphitized material is pulverized using a hammer mill,
Graphitic particles having an average particle size of 20 μm were prepared. The specific surface area of the graphite particles measured by the BET method was 3.6 m 2 / g. The obtained graphite particles were subjected to a pore size distribution measurement by a mercury intrusion method. As a result, the particles had pores in the range of 0.01 to 100 μm, and the pore volume was 0.9 cc / g. As a result of arbitrarily selecting 100 obtained graphite particles and measuring the aspect ratio, it was 2.0. The interlayer distance d (002) of the graphite particles by X-ray wide-angle diffraction was 0.336 nm, and The crystallite size Lc (002) is 10
It was 0 nm or more. Further, according to a scanning electron microscope (SEM) photograph of the obtained graphitic particles, the graphitic particles have a structure in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel. I was The graphite particles produced as described above are hereinafter referred to as sample A.

【0045】(黒鉛質粒子Bの作製)平均粒径が5μm
のコークス粉末50重量部、タールピッチ30重量部、
平均粒子径が48μmの炭化珪素3重量部及びコールタ
ール10重量部を混合し、200℃で1時間混合した。
得られた混合物を粉砕し、ペレット状に加圧成形し、次
いで窒素雰囲気中、900℃まで加熱、次いで同じく窒
素雰囲気中で3000℃まで昇温し黒鉛化を行った。得
られた黒鉛化物をハンマーミルを用いて粉砕し、平均粒
径が20μmの黒鉛質粒子を作製した。この黒鉛質粒子
のBET法による比表面積は3.3m2/gであった。得ら
れた黒鉛質粒子について水銀圧入法による細孔径分布測
定を行った結果、0.01〜100μmの範囲に細孔を
有し、この細孔体積は0.30cc/gであった。また、得
られた黒鉛質粒子を100個任意に選び出し、アスペク
ト比を測定した結果、1.8であり、黒鉛質粒子のX線
広角回折による結晶の層間距離d(002)は0.33
6nm及び結晶子の大きさLc(002)は100nm以上
であった。さらに、得られた黒鉛質粒子の走査型電子顕
微鏡(SEM)写真によれば、この黒鉛質粒子は、偏平
状の粒子が複数、配向面が非平行となるように集合又は
結合した構造をしていた。以上のようにして作製した黒
鉛質粒子を以下B試料を称する。
(Preparation of Graphite Particle B) The average particle size is 5 μm.
50 parts by weight of coke powder, 30 parts by weight of tar pitch,
3 parts by weight of silicon carbide having an average particle diameter of 48 μm and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour.
The obtained mixture was pulverized and formed into a pellet under pressure, then heated to 900 ° C. in a nitrogen atmosphere, and then heated to 3000 ° C. in the same nitrogen atmosphere to perform graphitization. The obtained graphitized product was pulverized using a hammer mill to prepare graphitic particles having an average particle size of 20 μm. The specific surface area of the graphite particles measured by the BET method was 3.3 m 2 / g. The obtained graphite particles were subjected to a pore size distribution measurement by a mercury intrusion method. As a result, the particles had pores in the range of 0.01 to 100 μm, and the pore volume was 0.30 cc / g. Further, 100 obtained graphite particles were arbitrarily selected, and the aspect ratio was measured. The result was 1.8. The interlayer distance d (002) of the graphite particles by X-ray wide-angle diffraction was 0.33.
6 nm and the crystallite size Lc (002) were 100 nm or more. Further, according to a scanning electron microscope (SEM) photograph of the obtained graphitic particles, the graphitic particles have a structure in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel. I was The graphite particles produced as described above are hereinafter referred to as a B sample.

【0046】(黒鉛質粒子Cの作製)平均粒径が5μm
のコークス粉末50重量部、タールピッチ20重量部、
平均粒子径が48μmの炭化珪素7重量部及びコールタ
ール10重量部を混合し、200℃で1時間混合した。
得られた混合物を粉砕した。次いで混合物を空気中、2
50℃で30分加熱処理し、タールピッチを不融化し
た。不融化した該混合物を窒素雰囲気中、900℃まで
加熱、次いで同じく窒素雰囲気中で3000℃まで昇温
し黒鉛化を行った。得られた黒鉛質粒子の平均粒径は2
3μmであった。この黒鉛質粒子のBET法による比表
面積は2.5m2/gであった。得られた黒鉛質粒子につい
て水銀圧入法による細孔径分布測定を行った結果、0.
01〜100μmの範囲に細孔を有し、この細孔体積は
0.8cc/gであった。また、得られた黒鉛質粒子を10
0個任意に選び出し、アスペクト比を測定した結果、
1.7であり、黒鉛質粒子の、黒鉛質粒子のX線広角回
折による結晶の層間距離d(002)は0.336nm及
び結晶子の大きさLc(002)は100nm以上であっ
た。さらに、得られた黒鉛質粒子の走査型電子顕微鏡
(SEM)写真によれば、この黒鉛質粒子は、偏平状の
粒子が複数、配向面が非平行となるように集合又は結合
した構造をしていた。以上のようにして作製した黒鉛質
粒子を以下C試料を称する。
(Preparation of Graphite Particle C) The average particle size is 5 μm.
50 parts by weight of coke powder, 20 parts by weight of tar pitch,
7 parts by weight of silicon carbide having an average particle diameter of 48 μm and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour.
The resulting mixture was ground. The mixture is then placed in air for 2 hours.
Heat treatment was performed at 50 ° C. for 30 minutes to make the tar pitch infusible. The infusibilized mixture was heated to 900 ° C. in a nitrogen atmosphere and then heated to 3000 ° C. in a nitrogen atmosphere to graphitize. The average particle size of the obtained graphitic particles is 2
It was 3 μm. The specific surface area of the graphite particles measured by the BET method was 2.5 m 2 / g. The pore diameter distribution of the obtained graphite particles was measured by a mercury intrusion method.
It had pores in the range of 01 to 100 μm, and the pore volume was 0.8 cc / g. Further, the obtained graphitic particles were
As a result of measuring zero aspect ratio and measuring aspect ratio,
1.7, and the interlayer distance d (002) of the graphite particles by X-ray wide-angle diffraction of the graphite particles was 0.336 nm, and the crystallite size Lc (002) was 100 nm or more. Further, according to a scanning electron microscope (SEM) photograph of the obtained graphitic particles, the graphitic particles have a structure in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel. I was The graphitic particles produced as described above are hereinafter referred to as a C sample.

【0047】(黒鉛質粒子Dの作製)平均粒径が5μm
のコークス粉末50重量部、タールピッチ20重量部、
ノボラック型フェノール樹脂(商品名 レジトップPG
A−2504、群栄化学(株)製)10重量部、平均粒子
径が48μmの炭化珪素7重量部及びコールタール10
重量部を混合し、200℃で1時間混合した。得られた
混合物を粉砕し、窒素雰囲気中、900℃まで加熱、次
いで同じく窒素雰囲気中で3000℃まで昇温し黒鉛化
を行った。得られた黒鉛質粒子の平均粒径は21μmの
黒鉛質粒子を作製した。この黒鉛質粒子のBET法によ
る比表面積は2.6m2/gであった。得られた黒鉛質粒子
について水銀圧入法による細孔径分布測定を行った結
果、0.01〜100μmの範囲に細孔を有し、この細
孔体積は0.70cc/gであった。また、得られた黒鉛質
粒子を100個任意に選び出し、アスペクト比を測定し
た結果、1.7であり、黒鉛質粒子の、黒鉛質粒子のX
線広角回折による結晶の層間距離d(002)は0.3
36nm及び結晶子の大きさLc(002)は100nm以
上であった。さらに、得られた黒鉛質粒子の走査型電子
顕微鏡(SEM)写真によれば、この黒鉛質粒子は、偏
平状の粒子が複数、配向面が非平行となるように集合又
は結合した構造をしていた。以上のようにして作製した
黒鉛質粒子を以下D試料を称する。
(Preparation of Graphite Particle D) The average particle diameter is 5 μm.
50 parts by weight of coke powder, 20 parts by weight of tar pitch,
Novolak type phenolic resin (trade name REGISTOP PG
A-2504, manufactured by Gunei Chemical Co., Ltd.) 10 parts by weight, 7 parts by weight of silicon carbide having an average particle diameter of 48 μm, and coal tar 10
Parts by weight were mixed and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized, heated to 900 ° C. in a nitrogen atmosphere, and then heated to 3000 ° C. in a nitrogen atmosphere to perform graphitization. Graphite particles having an average particle size of 21 μm were obtained. The specific surface area of the graphite particles measured by the BET method was 2.6 m 2 / g. The obtained graphite particles were subjected to a pore size distribution measurement by a mercury intrusion method, and as a result, they had pores in the range of 0.01 to 100 μm, and the pore volume was 0.70 cc / g. In addition, 100 obtained graphite particles were arbitrarily selected, and the aspect ratio was measured. As a result, it was 1.7.
The interlayer distance d (002) of the crystal by line wide angle diffraction is 0.3
36 nm and the crystallite size Lc (002) were 100 nm or more. Further, according to a scanning electron microscope (SEM) photograph of the obtained graphitic particles, the graphitic particles have a structure in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel. I was The graphitic particles produced as described above are hereinafter referred to as a D sample.

【0048】(黒鉛質粒子の放電容量の測定)黒鉛質粒
子90重量%に、N−メチル−2−ピロリドンに溶解し
たポリ弗化ビニリデン(PVDF)を固形分で10重量
%加えて混練して黒鉛ペーストを作製した。この黒鉛ペ
ーストを厚さ10μmの圧延銅箔に塗布し、さらに乾燥
し負極とした。作製した試料電極を3端子法による定電
流充放電を行い、リチウム二次電池用負極としての評価
を行った。図2は実験に用いたリチウム二次電池の概略
図である。図2に示すようにガラスセル9に、電解液1
0としてLiPF4をエチレンカーボネート(EC)及
びジメチルカーボネート(DMC)(ECとDMCは体
積比で1:1)の混合溶媒に1モル/リットルの濃度に
なるように溶解した溶液を入れ、試料電極(負極)1
1、セパレータ12及び対極(正極)13を積層して配
置し、さらに参照電極14を上部から吊るしてリチウム
二次電池を作製して行った。対極13及び参照電極14
には金属リチウムを使用し、セパレータ12にはポリエ
チレン微孔膜を使用した。0.5mA/cm2の定電流で、5
mV(V vs Li/Li+)まで充電し、1V(V
vs Li/Li+)まで放電する試験を繰り返した。
得られた結果を表1に示す。
(Measurement of Discharge Capacity of Graphite Particles) Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 90% by weight of graphite particles at a solid content of 10% by weight and kneaded. A graphite paste was prepared. This graphite paste was applied to a rolled copper foil having a thickness of 10 μm and dried to obtain a negative electrode. The prepared sample electrode was charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 2 is a schematic diagram of a lithium secondary battery used in the experiment. As shown in FIG.
A sample electrode was prepared by dissolving LiPF 4 in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC and DMC in a volume ratio of 1: 1) so as to have a concentration of 1 mol / liter. (Negative electrode) 1
1, a separator 12 and a counter electrode (positive electrode) 13 were stacked and arranged, and a reference electrode 14 was suspended from above to produce a lithium secondary battery. Counter electrode 13 and reference electrode 14
, Metal lithium was used, and the separator 12 was a polyethylene microporous membrane. At a constant current of 0.5 mA / cm 2 , 5
mV (V vs. Li / Li + ) and charge 1V (V
vs Li / Li + ).
Table 1 shows the obtained results.

【0049】[0049]

【表1】 [Table 1]

【0050】(負極の作製)A試料90重量部とB試料
10重量部とを均一に混合し、次いでこの混合黒鉛と結
着剤としてのPVDFとを、重量比90:10の比率で
混合し、これを溶剤(N―メチル−2−ピロリドン)に
分散させてスラリーととした後、負極集電体としての銅
箔(厚さ10μm)の両面にドクターブレード法により
塗付し、乾燥、次いでローラープレスによって電極を加
圧成形して負極とした。これを幅40mmで長さが290
mmの大きさに切り出して負極を作製した。この負極を正
極と同様に、両端の長さ10mmの負極合剤が塗布されて
いない部分の一方に負極タブを超音波接合によって圧着
した。
(Preparation of Negative Electrode) 90 parts by weight of Sample A and 10 parts by weight of Sample B were uniformly mixed, and then the mixed graphite and PVDF as a binder were mixed at a weight ratio of 90:10. This was dispersed in a solvent (N-methyl-2-pyrrolidone) to form a slurry, which was then applied to both surfaces of a copper foil (thickness: 10 μm) as a negative electrode current collector by a doctor blade method, dried, and then dried. The electrode was pressure-formed by a roller press to obtain a negative electrode. This is 40 mm wide and 290 long.
A negative electrode was prepared by cutting out to a size of mm. In the same manner as the positive electrode, the negative electrode was pressure-bonded by ultrasonic bonding to one of the portions where the negative electrode mixture having a length of 10 mm was not applied, on one side.

【0051】(電解液の調製)エチレンカーボネートと
ジメチルカーボネートとの等体積混合溶媒に、LiPF
6を1モル/リットル溶解し、電解液を調製した。 (電池の作製)前記正極、ポリエチレン製多孔質フィル
ム(厚さ25μm、幅44mm)からなるセパレータ及び
前記負極をそれぞれこの順序で積層した後、前記負極が
外側に位置するように渦巻き状に捲回して電極群を作製
した。この電極群をステンレス製の電池缶にそれぞれ収
納し、負極タブを缶底溶接し、正極蓋をかしめるための
絞り部を設けた。この後、前記電解液を電池缶に注入し
た後、正極タブを正極蓋に溶接し、正極蓋をかしめて円
筒型リチウム二次電池を組み立てた。
(Preparation of electrolyte solution) LiPF was added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
6 was dissolved at 1 mol / liter to prepare an electrolytic solution. (Preparation of Battery) The positive electrode, a separator made of a porous film made of polyethylene (thickness 25 μm, width 44 mm) and the negative electrode were laminated in this order, and then spirally wound so that the negative electrode was positioned outside. To form an electrode group. Each of the electrode groups was housed in a stainless steel battery can, and the negative electrode tab was welded to the bottom of the can to provide a throttle portion for caulking the positive electrode lid. Thereafter, the electrolyte was injected into the battery can, and then the positive electrode tab was welded to the positive electrode cover, and the positive electrode cover was caulked to assemble a cylindrical lithium secondary battery.

【0052】実施例2 負極作製でのA試料及びB試料の配合比をそれぞれ、8
0重量部、20重量部とした以外は実施例1と同様にし
て円筒型リチウム二次電池を組み立てた。
Example 2 The mixing ratio of Sample A and Sample B in the preparation of the negative electrode was 8
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that 0 parts by weight and 20 parts by weight were used.

【0053】実施例3 負極作製でのA試料及びB試料の配合比をそれぞれ、7
0重量部、30重量部とした以外は実施例1と同様にし
て円筒型リチウム二次電池を組み立てた。
Example 3 The mixing ratio of Sample A and Sample B in the preparation of the negative electrode was 7
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that 0 parts by weight and 30 parts by weight were used.

【0054】実施例4 負極作製でのA試料及びB試料の配合比をそれぞれ、6
0重量部、40重量部とした以外は実施例1と同様にし
て円筒型リチウム二次電池を組み立てた。
Example 4 The mixing ratio of the A sample and the B sample in the production of the negative electrode was 6
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that 0 parts by weight and 40 parts by weight were used.

【0055】実施例5 負極作製でのA試料及びB試料の配合比をそれぞれ、5
0重量部、50重量部とした以外は実施例1と同様にし
て円筒型リチウム二次電池を組み立てた。
Example 5 The mixing ratio of the A sample and the B sample in the preparation of the negative electrode was 5
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1, except that 0 parts by weight and 50 parts by weight were used.

【0056】比較例1 負極作製でのA試料及びB試料の配合比をそれぞれ、1
00重量部、0重量部とした以外は実施例1と同様にし
て円筒型リチウム二次電池を組み立てた。
Comparative Example 1 The mixing ratio of Sample A and Sample B in the preparation of the negative electrode was 1
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the amount was 00 parts by weight and 0 parts by weight.

【0057】比較例2 負極作製でのA試料及びB試料の配合比をそれぞれ、0
重量部、100重量部とした以外は実施例1と同様にし
て円筒型リチウム二次電池を組み立てた。
Comparative Example 2 In the preparation of the negative electrode, the mixing ratio of Sample A and Sample B was set to 0
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the weight was changed to 100 parts by weight.

【0058】実施例6 負極作製において、C試料とB試料の配合比をそれぞ
れ、90重量部、10重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 6 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the sample C and the sample B was changed to 90 parts by weight and 10 parts by weight, respectively.

【0059】実施例7 負極作製において、C試料とB試料の配合比をそれぞ
れ、80重量部、20重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 7 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the sample C and the sample B was changed to 80 parts by weight and 20 parts by weight, respectively.

【0060】実施例8 負極作製において、C試料とB試料の配合比をそれぞ
れ、70重量部、30重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 8 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the sample C and the sample B was changed to 70 parts by weight and 30 parts by weight, respectively.

【0061】実施例9 負極作製において、C試料とB試料の配合比をそれぞ
れ、60重量部、40重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 9 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the sample C and the sample B was changed to 60 parts by weight and 40 parts by weight, respectively.

【0062】実施例10 負極作製において、C試料とB試料の配合比をそれぞ
れ、50重量部、50重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 10 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the sample C and the sample B was changed to 50 parts by weight and 50 parts by weight, respectively.

【0063】比較例3 負極作製において、C試料とB試料の配合比をそれぞ
れ、100重量部、0重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Comparative Example 3 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the sample C and the sample B was changed to 100 parts by weight and 0 part by weight, respectively.

【0064】実施例11 負極作製において、D試料とB試料の配合比をそれぞ
れ、90重量部、10重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 11 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the D sample and the B sample was 90 parts by weight and 10 parts by weight, respectively, in the preparation of the negative electrode.

【0065】実施例12 負極作製において、D試料とB試料の配合比をそれぞ
れ、80重量部、20重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 12 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the D sample and the B sample was changed to 80 parts by weight and 20 parts by weight, respectively, in the preparation of the negative electrode.

【0066】実施例13 負極作製において、D試料とB試料の配合比をそれぞ
れ、70重量部、30重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 13 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the D sample and the B sample was 70 parts by weight and 30 parts by weight, respectively, in the preparation of the negative electrode.

【0067】実施例14 負極作製において、D試料とB試料の配合比をそれぞ
れ、60重量部、40重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 14 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of Sample D and Sample B was changed to 60 parts by weight and 40 parts by weight, respectively, in the preparation of the negative electrode.

【0068】実施例15 負極作製において、D試料とB試料の配合比をそれぞ
れ、50重量部、50重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Example 15 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of Sample D and Sample B was changed to 50 parts by weight and 50 parts by weight, respectively, in the preparation of the negative electrode.

【0069】比較例4 負極作製において、C試料とB試料の配合比をそれぞ
れ、100重量部、0重量部とした以外は実施例1と同
様にして円筒型リチウム二次電池を組み立てた。
Comparative Example 4 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1, except that the mixing ratio of the C sample and the B sample was changed to 100 parts by weight and 0 part by weight, respectively.

【0070】得られた実施例1〜15及び比較例1〜4
のリチウム二次電池について、充電終止電圧を4.15
V、放電終止電圧を2.8Vとし、充放電電流を200
mAから800mAの範囲で変化させ、急速充放電時の放電
容量を測定した。その結果を比較例1の充放電電流20
0mAの時の放電容量を100%として表2及び表3に示
す。また、充放電電流200mAとして各電池の充放電サ
イクル特性を測定した。その結果を比較例1のサイクル
数1の時の放電容量を100%として表4及び表5に示
す。
The obtained Examples 1 to 15 and Comparative Examples 1 to 4
The end-of-charge voltage of the lithium secondary battery was 4.15.
V, the discharge end voltage is 2.8 V, and the charge / discharge current is 200
The discharge capacity at the time of rapid charge and discharge was measured by changing the range from mA to 800 mA. The result was compared with the charge / discharge current 20 of Comparative Example 1.
Tables 2 and 3 show the discharge capacity at 0 mA as 100%. The charge / discharge cycle characteristics of each battery were measured at a charge / discharge current of 200 mA. The results are shown in Tables 4 and 5 assuming that the discharge capacity when the number of cycles is 1 in Comparative Example 1 is 100%.

【0071】[0071]

【表2】 [Table 2]

【0072】[0072]

【表3】 [Table 3]

【0073】[0073]

【表4】 [Table 4]

【0074】[0074]

【表5】 [Table 5]

【0075】表2及び表3より明らかなように、実施例
の急速充放電特性は比較例と比較して良好であり、大き
な充放電電流においても放電容量の低下が極めて少ない
ことが分かる。また、表4及び表5より明らかなよう
に、実施例のサイクル特性は、比較例と比較して良好で
あり、高いサイクル数を経ても大きな放電容量を維持で
きることが分かる。
As is clear from Tables 2 and 3, the rapid charging / discharging characteristics of the examples are better than those of the comparative examples, and the reduction in discharge capacity is extremely small even at a large charging / discharging current. Further, as is clear from Tables 4 and 5, the cycle characteristics of the examples are better than those of the comparative examples, and it can be seen that a large discharge capacity can be maintained even after a high number of cycles.

【0076】[0076]

【発明の効果】請求項1〜5記載のリチウム二次電池用
負極は、電極作製条件の変動による粒子の過剰な変形、
黒鉛質粒子の配向を抑制し、特に高い充放電電流で充放
電を行った場合のリチウムの吸蔵・放出量が多くて充放
電容量が大きく、かつ充放電サイクルによる充放電容量
の低下が少ないもの、すなわち、良好なサイクル特性を
有し、かつ高い充放電容量及び急速充放電特性を有する
ものである。請求項6記載のリチウム二次電池用負極の
製造法によれば、電極作製条件の変動による粒子の過剰
な変形、黒鉛質粒子の配向を抑制し、特に高い充放電電
流で充放電を行った場合のリチウムの吸蔵・放出量が多
くて充放電容量が大きく、かつ充放電サイクルによる充
放電容量の低下が少ないもの、すなわち、良好なサイク
ル特性を有し、かつ高い充放電容量及び急速充放電特性
を有する負極が得られる。請求項7記載のリチウム二次
電池は、電極作製条件の変動による粒子の過剰な変形、
黒鉛質粒子の配向を抑制し、特に高い充放電電流で充放
電を行った場合のリチウムの吸蔵・放出量が多くて充放
電容量が大きく、かつ充放電サイクルによる充放電容量
の低下が少ないもの、すなわち、良好なサイクル特性を
有し、かつ高い充放電容量及び急速充放電特性を有する
ものである。
The negative electrode for a lithium secondary battery according to any one of claims 1 to 5 is characterized in that excessive deformation of particles due to fluctuations in electrode manufacturing conditions,
Graphite-like particles whose orientation is suppressed, the charge / discharge capacity is large, the charge / discharge capacity is large, and the decrease in charge / discharge capacity due to the charge / discharge cycle is small especially when charging / discharging is performed with a high charge / discharge current. That is, it has good cycle characteristics and high charge / discharge capacity and rapid charge / discharge characteristics. According to the method for manufacturing a negative electrode for a lithium secondary battery according to claim 6, excessive deformation of particles due to fluctuations in electrode manufacturing conditions and suppression of the orientation of graphite particles were suppressed, and charge and discharge were performed with a particularly high charge and discharge current. In this case, the charge / discharge capacity is large due to the large amount of occlusion / release of lithium, and the decrease in charge / discharge capacity due to charge / discharge cycles is small. A negative electrode having characteristics is obtained. The lithium secondary battery according to claim 7, wherein excessive deformation of the particles due to a change in electrode manufacturing conditions,
Graphite-like particles whose orientation is suppressed, the charge / discharge capacity is large, the charge / discharge capacity is large, and the decrease in charge / discharge capacity due to the charge / discharge cycle is small especially when charging / discharging is performed with a high charge / discharge current. That is, it has good cycle characteristics and high charge / discharge capacity and rapid charge / discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円筒型リチウム二次電池の一部断面正面図であ
る。
FIG. 1 is a partial cross-sectional front view of a cylindrical lithium secondary battery.

【図2】黒鉛質粒子の単独での放電容量の測定に用いた
リチウム二次電池の概略図である。
FIG. 2 is a schematic view of a lithium secondary battery used for measuring the discharge capacity of graphite particles alone.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極タブ 5 負極タブ 6 正極蓋 7 電池缶 8 ガスケット 9 ガラスセル 10 電解液 11 試料電極(負極) 12 セパレータ 13 対極(正極) 14 参照極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket 9 Glass cell 10 Electrolyte 11 Sample electrode (negative electrode) 12 Separator 13 Counter electrode (positive electrode) 14 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 淳 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 (72)発明者 山田 和夫 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Atsushi Fujita 3-3-1 Ayukawacho, Hitachi City, Ibaraki Prefecture Inside the Yamazaki Plant of Hitachi Chemical Co., Ltd. (72) Kazuo Yamada 3-chome Ayukawacho, Hitachi City, Ibaraki Prefecture No. 1 Inside the Yamazaki Plant of Hitachi Chemical Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 孔径が0.01〜100μmの範囲の細
孔に基づく細孔容積が異なる、2種以上の黒鉛質粒子の
混合物を含有してなるリチウム二次電池用負極。
1. A negative electrode for a lithium secondary battery comprising a mixture of two or more types of graphitic particles having different pore volumes based on pores having a pore diameter in the range of 0.01 to 100 μm.
【請求項2】 細孔容積が異なる2種以上の黒鉛質粒子
の混合物が、0.01〜100μmの範囲の細孔容積が
0.4cc/g以上の黒鉛質粒子と、0.01〜100μm
の範囲の細孔容積が0.08cc/g以上0.4cc/g未満の
黒鉛質粒子を含むものである請求項1記載のリチウム二
次電池用負極。
2. A mixture of two or more types of graphitic particles having different pore volumes, comprising a graphitic particle having a pore volume of 0.4 cc / g or more in the range of 0.01 to 100 μm and 0.01 to 100 μm.
2. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode contains graphite particles having a pore volume of 0.08 cc / g or more and less than 0.4 cc / g.
【請求項3】 細孔容積が異なる2種以上の黒鉛質粒子
のそれぞれが、単独で測定された放電容量が300mA/g
以上であり、かつそれらの黒鉛質粒子の放電容量の差
が、最も放電容量の大きな黒鉛質粒子の放電容量の値を
基準として10%以内である黒鉛質粒子である請求項1
又は2記載のリチウム二次電池用負極。
3. Each of two or more types of graphite particles having different pore volumes has a discharge capacity of 300 mA / g measured independently.
The graphitic particles having a discharge capacity of at least 10% based on the discharge capacity of the graphite particle having the largest discharge capacity.
Or the negative electrode for a lithium secondary battery according to 2.
【請求項4】 黒鉛質粒子の少なくとも1種は、扁平状
の粒子が複数、配向面が非平行となるように集合又は結
合した構造を有するものである請求項1、2又は3記載
のリチウム二次電池用負極。
4. The lithium according to claim 1, 2 or 3, wherein at least one of the graphite particles has a structure in which a plurality of flat particles are aggregated or bonded so that their orientation planes are non-parallel. Negative electrode for secondary battery.
【請求項5】 細孔容積が異なる2種以上の黒鉛質粒子
がそれぞれ、扁平状の粒子が複数、配向面が非平行とな
るように集合又は結合した構造を有するものである請求
項1、2、3又は4記載のリチウム二次電池用負極。
5. The method according to claim 1, wherein two or more types of graphite particles having different pore volumes have a structure in which a plurality of flat particles are gathered or bonded so that their orientation planes are non-parallel. 5. The negative electrode for a lithium secondary battery according to 2, 3, or 4.
【請求項6】 黒鉛化可能な骨材又は黒鉛と黒鉛化可能
なバインダを含む材料に黒鉛化触媒を添加して混合する
工程、焼成・黒鉛化する工程、粉砕する工程の各工程を
含む方法で黒鉛質粒子を製造し、別途、前記と同様の各
工程を含む方法で前記黒鉛質粒子と、孔径が0.01〜
100μmの範囲に基づく細孔の細孔容積が異なる黒鉛
質粒子を製造し、製造された2種以上の黒鉛質粒子を混
合し、これを負極材料とすることを特徴とするリチウム
二次電池用負極の製造法。
6. A method comprising the steps of adding a graphitizing catalyst to a graphitizable aggregate or a material containing graphite and a graphitizable binder, mixing, calcining and graphitizing, and pulverizing. To produce graphite particles, separately, the graphite particles by a method including the same steps as described above, the pore size is 0.01 ~
For a lithium secondary battery, producing graphite particles having different pore volumes based on a range of 100 μm, mixing the produced two or more types of graphite particles, and using the mixture as a negative electrode material. Manufacturing method of negative electrode.
【請求項7】 請求項1〜5のいずれかに記載の負極又
は請求項6記載の製造法により得られる負極と正極を有
してなるリチウム二次電池。
7. A lithium secondary battery comprising the negative electrode according to claim 1 or the negative electrode obtained by the method according to claim 6, and a positive electrode.
JP01999698A 1998-01-30 1998-01-30 Lithium secondary battery, negative electrode thereof and method for producing the same Expired - Lifetime JP3651225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01999698A JP3651225B2 (en) 1998-01-30 1998-01-30 Lithium secondary battery, negative electrode thereof and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01999698A JP3651225B2 (en) 1998-01-30 1998-01-30 Lithium secondary battery, negative electrode thereof and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11219700A true JPH11219700A (en) 1999-08-10
JP3651225B2 JP3651225B2 (en) 2005-05-25

Family

ID=12014783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01999698A Expired - Lifetime JP3651225B2 (en) 1998-01-30 1998-01-30 Lithium secondary battery, negative electrode thereof and method for producing the same

Country Status (1)

Country Link
JP (1) JP3651225B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185149A (en) * 1999-12-28 2001-07-06 Hitachi Chem Co Ltd Lithium secondary battery
WO2004027902A1 (en) * 2002-09-19 2004-04-01 Sharp Kabushiki Kaisha Lithium polymer battery and method for manufacturing same
WO2004066419A1 (en) * 2003-01-22 2004-08-05 Hitachi Maxell, Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery using same
JP2005302725A (en) * 2004-04-12 2005-10-27 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery
JP2013155110A (en) * 2011-10-21 2013-08-15 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
JPWO2014119776A1 (en) * 2013-02-04 2017-01-26 昭和電工株式会社 Graphite powder for negative electrode active material of lithium ion secondary battery
US11217783B2 (en) 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185149A (en) * 1999-12-28 2001-07-06 Hitachi Chem Co Ltd Lithium secondary battery
WO2004027902A1 (en) * 2002-09-19 2004-04-01 Sharp Kabushiki Kaisha Lithium polymer battery and method for manufacturing same
WO2004066419A1 (en) * 2003-01-22 2004-08-05 Hitachi Maxell, Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery using same
JP2005302725A (en) * 2004-04-12 2005-10-27 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery
US7781103B2 (en) 2004-04-12 2010-08-24 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same
JP4693470B2 (en) * 2004-04-12 2011-06-01 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery
US8110168B2 (en) 2004-04-12 2012-02-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same
US8440352B2 (en) 2004-04-12 2013-05-14 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same
JP2013155110A (en) * 2011-10-21 2013-08-15 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
US9368796B2 (en) 2011-10-21 2016-06-14 Show A Denko K.K. Graphite material, carbon material for battery electrode, and battery
JPWO2014119776A1 (en) * 2013-02-04 2017-01-26 昭和電工株式会社 Graphite powder for negative electrode active material of lithium ion secondary battery
US11217783B2 (en) 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode

Also Published As

Publication number Publication date
JP3651225B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP6957127B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JP2002050346A (en) Negative electrode for lithium secondary cell, its manufacturing method and lithium secondary cell
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2000053408A (en) Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP2001185149A (en) Lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JPH10236808A (en) Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP2002279973A (en) Negative electrode for lithium secondary battery, method of manufacturing the same, and the lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP5853293B2 (en) Negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term