JP5853293B2 - Negative electrode for lithium secondary battery - Google Patents
Negative electrode for lithium secondary battery Download PDFInfo
- Publication number
- JP5853293B2 JP5853293B2 JP2015035158A JP2015035158A JP5853293B2 JP 5853293 B2 JP5853293 B2 JP 5853293B2 JP 2015035158 A JP2015035158 A JP 2015035158A JP 2015035158 A JP2015035158 A JP 2015035158A JP 5853293 B2 JP5853293 B2 JP 5853293B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite particles
- graphite
- secondary battery
- lithium secondary
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 52
- 229910052744 lithium Inorganic materials 0.000 title claims description 52
- 239000002245 particle Substances 0.000 claims description 169
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 144
- 229910002804 graphite Inorganic materials 0.000 claims description 135
- 239000010439 graphite Substances 0.000 claims description 135
- 239000011148 porous material Substances 0.000 claims description 49
- 239000011230 binding agent Substances 0.000 claims description 20
- 239000013078 crystal Substances 0.000 description 13
- 238000005087 graphitization Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- -1 boron carbides Chemical class 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 7
- 229910052753 mercury Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000002459 porosimetry Methods 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000002427 irreversible effect Effects 0.000 description 6
- 239000011295 pitch Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000004438 BET method Methods 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000011280 coal tar Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000011269 tar Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウム二次電池負極用の新規な黒鉛粒子に関する。さらに詳しくは、ポータブル機器、電気自動車、電力貯蔵等に用いるのに好適な、急速充放電特性、サイクル特性等に優れたリチウム二次電池の負極用に適した黒鉛粒子に関する。 The present invention relates to a novel graphite particle for a lithium secondary battery negative electrode. More particularly, the present invention relates to a graphite particle suitable for use in a negative electrode of a lithium secondary battery excellent in rapid charge / discharge characteristics, cycle characteristics and the like, which is suitable for use in portable equipment, electric vehicles, power storage and the like.
従来の黒鉛粒子としては、例えば天然黒鉛粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高分子材料、ピッチ等を黒鉛化した人造黒鉛粒子、これらを粉砕した黒鉛粒子などがある。これらの黒鉛粒子は、有機系結着剤及び有機溶剤と混合して黒鉛ペーストとし、この黒鉛ペーストを銅箔の表面に塗布し、溶剤を乾燥させてリチウム二次電池用負極として使用されている。例えば、特公昭62−23433号公報に示されるように、負極に黒鉛を使用することでリチウムのデンドライトによる内部短絡の問題を解消し、サイクル特性の改良を図っている。 Examples of conventional graphite particles include natural graphite particles, artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by pulverizing these. These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste. The graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium secondary battery. . For example, as disclosed in Japanese Examined Patent Publication No. 62-23433, the use of graphite for the negative electrode eliminates the problem of internal short circuit due to lithium dendrite and improves the cycle characteristics.
しかしながら、黒鉛結晶が発達している天然黒鉛粒子及びコークスを黒鉛化した人造黒鉛粒子は、c軸方向の結晶の層間の結合力が、結晶の面方向の結合に比べて弱いため、粉砕により黒鉛層間の結合が切れ、アスペクト比が大きい、いわゆる鱗状の黒鉛粒子となる。この鱗状の黒鉛粒子は、アスペクト比が大きいために、バインダと混練して集電体に塗布して電極を作製したときに、鱗状の黒鉛粒子が集電体の面方向に配向し、その結果、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによって発生するc軸方向の歪みにより電極内部の破壊が生じ、サイクル特性が低下する問題がある。そこで、リチウム二次電池のサイクル特性が向上できる黒鉛粒子が要求されている。 However, natural graphite particles in which graphite crystals are developed and artificial graphite particles graphitized from coke have a weaker bonding force between crystals in the c-axis direction than in the crystal plane direction. It becomes so-called scaly graphite particles having a large aspect ratio, with the bond between layers being broken. Since the scaly graphite particles have a large aspect ratio, when the electrodes are produced by kneading with a binder and applying to the current collector, the scaly graphite particles are oriented in the surface direction of the current collector, and as a result Further, there is a problem that the internal characteristics of the electrode are broken by the strain in the c-axis direction generated by repeated insertion and extraction of lithium into and from the graphite crystal, and the cycle characteristics are deteriorated. Therefore, there is a demand for graphite particles that can improve the cycle characteristics of lithium secondary batteries.
本発明は、サイクル特性に優れたリチウム二次電池に好適な黒鉛粒子を提供するものである。 The present invention provides graphite particles suitable for a lithium secondary battery having excellent cycle characteristics.
本発明は、急速充放電特性及びサイクル特性に優れたリチウム二次電池に好適な黒鉛粒子を提供するものである。
本発明は、急速充放電特性及びサイクル特性に優れ、かつ第一サイクル目の不可逆容量が小さく、リチウム二次電池に好適な黒鉛粒子を提供するものである。
The present invention provides graphite particles suitable for a lithium secondary battery excellent in rapid charge / discharge characteristics and cycle characteristics.
The present invention provides graphite particles that are excellent in rapid charge / discharge characteristics and cycle characteristics, have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries.
本発明は、102〜106Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.4〜2.0cc/gである黒鉛粒子に関する。
また本発明は、1×102〜2×104Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.08〜0.4cc/gである黒鉛粒子に間する。
また本発明は、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させてなる前記黒鉛粒子に関する。
また本発明は、前記黒鉛粒子のアスペクト比が5以下である黒鉛粒子に関する。
また本発明は、比表面積が8m2/g以下である前記黒鉛粒子に関する。
The present invention relates to graphite particles in which the pore volume of pores having a size in the range of 10 2 to 10 6 Å is 0.4 to 2.0 cc / g per graphite particle weight.
In the present invention, the pore volume of pores having a size in the range of 1 × 10 2 to 2 × 10 4 Å is applied to graphite particles having a pore volume of 0.08 to 0.4 cc / g per graphite particle weight.
In addition, the present invention relates to the graphite particles obtained by collecting or combining a plurality of flat particles so that the orientation planes are non-parallel.
The present invention also relates to a graphite particle having an aspect ratio of 5 or less.
Moreover, this invention relates to the said graphite particle whose specific surface area is 8 m < 2 > / g or less.
また本発明は、イオンを吸蔵・放出するリチウム二次電池負極を構成する黒鉛粒子であって、イオンの吸蔵・放出にともなう電極の膨張・収縮を吸収する細孔を粒子内部に有するリチウム二次電池負極用黒鉛粒子に関する。
また本発明は、黒鉛粒子のアスペクト比が5以下である前記リチウム二次電池負極用黒鉛粒子に関する。
さらに本発明は、比表面積が8m2/g以下である前記リチウム二次電池負極用黒鉛粒子に関する。
さらに本発明は、充電・放電にともなう電極の膨張・収縮を吸収する細孔を有する前記リチウム二次電池負極用黒鉛粒子に関する。
The present invention also relates to a graphite particle constituting a negative electrode for a lithium secondary battery that occludes / releases ions, the lithium secondary battery having pores inside the particle that absorb expansion / contraction of the electrode accompanying occlusion / release of ions. The present invention relates to graphite particles for battery negative electrodes.
The present invention also relates to the graphite particle for a negative electrode of a lithium secondary battery, wherein the graphite particles have an aspect ratio of 5 or less.
Furthermore, this invention relates to the said graphite particle for lithium secondary battery negative electrodes whose specific surface area is 8 m < 2 > / g or less.
Furthermore, the present invention relates to the graphite particle for a negative electrode of a lithium secondary battery having pores that absorb expansion / contraction of the electrode accompanying charging / discharging.
本発明の黒鉛粒子は、2つの観点からその細孔体に特徴を有するものである。
第1には、102〜106Åの範囲の細孔の細孔体積が、黒鉛粒子重量当たり、0.4〜2.0cc/gであることを特徴とする。該黒鉛粒子を負極に使用すると、充電・放電にともなう電極の膨張・収縮を黒鉛粒子の細孔が吸収するため、電極内部の破壊が抑えられ、その結果得られるリチウム二次電池のサイクル特性を向上させることができる。102〜106Åの範囲の細孔の細孔体積は、0.4〜1.5cc/gの範囲であることがより好ましく、0.6〜1.2cc/gの範囲であることがさらに好ましい。全細孔体積が、0.4cc/g未満ではサイクル特性が低下し、2.0cc/gを超えると黒鉛粒子と集電体とを一体化する際に使用する結着剤を多く必要となり、作成するリチウム二次電池の容量が低下する問題がある。前記細孔体積は、水銀圧入法による細孔径分布測定により求めることができる。細孔の大きさもまた水銀圧入法による細孔径分布測定により知ることができる。
The graphite particles of the present invention are characterized by their pores from two viewpoints.
First, the pore volume of pores in the range of 10 2 to 10 6 Å is 0.4 to 2.0 cc / g per graphite particle weight. When the graphite particles are used for the negative electrode, the pores of the graphite particles absorb the expansion and contraction of the electrode that accompanies charging and discharging, so that the destruction inside the electrode is suppressed, and the cycle characteristics of the resulting lithium secondary battery are improved. Can be improved. The pore volume of pores in the range of 10 2 to 10 6よ り is more preferably in the range of 0.4 to 1.5 cc / g, and in the range of 0.6 to 1.2 cc / g. Further preferred. If the total pore volume is less than 0.4 cc / g, the cycle characteristics deteriorate, and if it exceeds 2.0 cc / g, a large amount of binder used when integrating the graphite particles and the current collector is required, There is a problem that the capacity of the lithium secondary battery to be produced decreases. The pore volume can be determined by measuring the pore size distribution by mercury porosimetry. The pore size can also be determined by measuring the pore size distribution by mercury porosimetry.
第2には、1×102〜2×104Åの範囲の細孔の細孔体積が、黒鉛粒子重量当たり0.08〜0.4cc/gであることを特徴とする。該黒鉛粒子を負極に使用すると、充電・放電にともなう電極の膨張・収縮を黒鉛粒子の細孔が吸収するため、電極内部の破壊が抑えられ、その結果得られるリチウム二次電池のサイクル特性を向上させることができる。1×102〜2×104Åの範囲の細孔体積は、0.1〜0.3cc/gであることがより好ましい。この大きさの範囲の細孔体積が、0.08cc/g未満ではサイクル特性が低下0.4cc/gを超えると黒鉛粒子と集電体とを一体化する際に使用する結着剤を多く必要となり、作成するリチウム二次電池の容量が低下する問題がある。この範囲の細孔体積もまた水銀圧入法による細孔径分布測定により求めることができる。 Second, the pore volume of pores in the range of 1 × 10 2 to 2 × 10 4 Å is 0.08 to 0.4 cc / g per graphite particle weight. When the graphite particles are used for the negative electrode, the pores of the graphite particles absorb the expansion and contraction of the electrode that accompanies charging and discharging, so that the destruction inside the electrode is suppressed, and the cycle characteristics of the resulting lithium secondary battery are improved. Can be improved. The pore volume in the range of 1 × 10 2 to 2 × 10 4 Å is more preferably 0.1 to 0.3 cc / g. If the pore volume in this size range is less than 0.08 cc / g, the cycle characteristics decrease. If it exceeds 0.4 cc / g, many binders are used when integrating graphite particles and the current collector. There is a problem that the capacity of the lithium secondary battery to be produced is reduced. The pore volume in this range can also be determined by measuring the pore size distribution by mercury porosimetry.
また、本発明の黒鉛粒子は、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させたものが好ましい。
本発明において、扁平状の粒子とは、長軸と短軸を有する形状の粒子のことであり、完全な球状でないものをいう。例えば鱗状、鱗片状、一部の塊状等の形状のものがこれに含まれる。
黒鉛粒子において、複数の扁平状の粒子の配向面が非平行とは、それぞれの粒子の形状において有する扁平した面、換言すれば最も平らに近い面を配向面として、複数の扁平状の粒子がそれぞれの配向面を一定の方向にそろうことなく集合している状態をいう。
Moreover, the graphite particles of the present invention are preferably those in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel.
In the present invention, flat particles are particles having a major axis and a minor axis, and are not completely spherical. For example, those having a shape such as a scale shape, a scale shape, or a part of a lump shape are included.
In graphite particles, the orientation planes of a plurality of flat particles are non-parallel. The flat surfaces in the shape of each particle, in other words, the plane that is closest to the plane is the orientation plane, and the plurality of flat particles are A state in which the orientation planes are gathered together in a certain direction.
この黒鉛粒子において扁平状の粒子は集合又は結合しているが、結合とは互いの粒子が、タール、ピッチ等のバインダーを炭素化した炭素質を介して、化学的に結合している状態をいい、集合とは互いに粒子が化学的に結合してはないが、その形状等に起因して、その集合としての形状を保っている状態をいう。機械的な強度の面から、結合しているものが好ましい。
1つの黒鉛粒子において、扁平状の粒子の集合又は結合する数としては、3個以上であることが好ましい。個々の扁平状の粒子の大きさとしては、粒径で1〜100μmであることが好ましく、これらが集合又は結合した黒鉛粒子の平均粒径の2/3以下であることが好ましい。
In this graphite particle, the flat particles are aggregated or bonded, but the bond is a state in which the particles are chemically bonded through carbonaceous carbonized binder such as tar and pitch. The term “aggregate” refers to a state in which the particles are not chemically bonded to each other, but the shape of the aggregate is maintained due to the shape and the like. From the viewpoint of mechanical strength, those bonded are preferable.
In one graphite particle, the number of flat particles aggregated or bonded is preferably 3 or more. The size of the individual flat particles is preferably 1 to 100 μm in particle size, and preferably 2/3 or less of the average particle size of the aggregated or bonded graphite particles.
該黒鉛粒子を負極に使用すると、集電体上に黒鉛粒子が配向し難く、かつ、電解液との濡れ性が向上し、負極黒鉛にリチウムを吸蔵・放出し易くなるため、得られるリチウム二次電池の急速充放電特性及びサイクル特性を向上させることができる。
なお、図1に上記黒鉛粒子の一例の粒子構造の走査型電子顕微鏡写真を示す。図1において、(a)は本発明になる黒鉛粒子の外表面の走査型電子顕微鏡写真、(b)は黒鉛粒子の断面の走査型電子顕微鏡写真である。(a)においては、細かな鱗片状の黒鉛粒子が数多く、それらの粒子の配向面を非平行にして結合し、黒鉛粒子を形成している様子が観察できる。
When the graphite particles are used for the negative electrode, the graphite particles are less likely to be oriented on the current collector, the wettability with the electrolyte is improved, and lithium is easily occluded / released into the negative electrode graphite. The rapid charge / discharge characteristics and cycle characteristics of the secondary battery can be improved.
FIG. 1 shows a scanning electron micrograph of the particle structure of an example of the graphite particles. In FIG. 1, (a) is a scanning electron micrograph of the outer surface of the graphite particles according to the present invention, and (b) is a scanning electron micrograph of the cross section of the graphite particles. In (a), it can be observed that there are many fine scaly graphite particles that are bonded with the orientation planes of these particles non-parallel to form graphite particles.
またアスペクト比が5以下である黒鉛粒子は、集電体上で粒子が配向し難い傾向があり、上記と同様にリチウムを吸蔵・放出し易くなるので好ましい。
アスペクト比は1.2〜5であることがより好ましい。アスペクト比が1.2未満では、粒子間の接触面積が減ることにより、導電性が低下する傾向にある。
同様の理由で、さらに好ましい範囲の下限は1.3以上である。また、さらに好ましい範囲の上限は、3以下であり、アスペクト比がこれより大きくなると、急速充放電特性が低下し易くなる傾向がある。従って、特に好ましいアスペクト比は1.3〜3である。
Further, graphite particles having an aspect ratio of 5 or less are preferred because the particles tend not to be oriented on the current collector, and lithium can be easily inserted and extracted as described above.
The aspect ratio is more preferably 1.2-5. If the aspect ratio is less than 1.2, the contact area between particles tends to decrease, and the conductivity tends to decrease.
For the same reason, the lower limit of the more preferable range is 1.3 or more. Further, the upper limit of the more preferable range is 3 or less, and when the aspect ratio is larger than this, the rapid charge / discharge characteristics tend to be deteriorated. Therefore, a particularly preferable aspect ratio is 1.3 to 3.
なお、アスペクト比は、黒鉛粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明におけるアスペクト比は、顕微鏡で黒鉛粒子を拡大し、任意に100個の黒鉛粒子を選択し、A/Bを測定し、その平均値をとったものである。
また、アスペクト比が5以下である黒鉛粒子の構造としては、より小さい黒鉛粒子の集合体又は結合体であることが好ましく、前記の、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させた黒鉛粒子を用いることがより好ましい。
The aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. The aspect ratio in the present invention is obtained by enlarging graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
Further, the structure of the graphite particles having an aspect ratio of 5 or less is preferably an aggregate or a combination of smaller graphite particles, and a plurality of the above-mentioned flat particles and the orientation planes are non-parallel. It is more preferable to use graphite particles aggregated or bonded to each other.
また、本発明の黒鉛粒子は、比表面積が8m2/g以下のものが好ましく、より好ましくは5m2/g以下とされる。該黒鉛粒子を負極に使用すると、得られるリチウム二次電池の急速充放電特性及びサイクル特性を向上させることができ、また、第一サイクル目の不可逆容量を小さくすることができる。比表面積が、8m2/gを超えると、得られるリチウム二次電池の第一サイクル目の不可逆容量が大きくなる傾向にあり、エネルギー密度が小さく、さらに負極を作製する際多くの結着剤が必要になる傾向がある。得られるリチウム二次電池の急速充放電特性、サイクル特性等がさらに良好な点から、比表面積は、1.5〜5m2/gであることがさらに好ましく、2〜5m2/gであることが極めて好ましい。比表面積の測定は、BET法(窒素ガス吸着法)などの既知の方法をとることができる。 The graphite particles of the present invention preferably have a specific surface area of 8 m 2 / g or less, more preferably 5 m 2 / g or less. When the graphite particles are used for the negative electrode, the rapid charge / discharge characteristics and cycle characteristics of the obtained lithium secondary battery can be improved, and the irreversible capacity in the first cycle can be reduced. When the specific surface area exceeds 8 m 2 / g, the irreversible capacity of the first cycle of the obtained lithium secondary battery tends to be large, the energy density is small, and many binders are used when producing a negative electrode. Tend to be needed. The specific surface area is more preferably 1.5 to 5 m 2 / g, more preferably 2 to 5 m 2 / g, from the viewpoint that the rapid charge / discharge characteristics, cycle characteristics, and the like of the obtained lithium secondary battery are further improved. Is very preferred. The specific surface area can be measured by a known method such as the BET method (nitrogen gas adsorption method).
さらに、本発明で用いる各黒鉛粒子のX線広角回析における結晶の層間距離d(002)は3.38Å以下が好ましく、3.37〜3.35Åの範囲がより好ましい。結晶の層間距離d(002)が3.38Åを超えると放電容量が小さくなる傾向がある。c軸方向の結晶子の大きさLc(002)は500Å以上が好ましく、1000〜100000Åであることがより好ましい。結晶の層間距離d(002)が小さくなるかc軸方向の結晶子の大きさLc(002)が大きくなると、放電容量が大きくなる傾向がある。 Further, the crystal interlayer distance d (002) in the X-ray wide-angle diffraction of each graphite particle used in the present invention is preferably 3.38 mm or less, and more preferably in the range of 3.37 to 3.35 mm. When the crystal interlayer distance d (002) exceeds 3.38 mm, the discharge capacity tends to be small. The crystallite size Lc (002) in the c-axis direction is preferably 500 Å or more, and more preferably 1000 to 100,000 Å. When the crystal interlayer distance d (002) decreases or the crystallite size Lc (002) in the c-axis direction increases, the discharge capacity tends to increase.
本発明の黒鉛粒子の製造法に特に制限はないが、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダに黒鉛化触媒を1〜50重量%添加して混合し、燃焼した後粉砕することによりまず黒鉛粒子を得ることが好ましい。
ついで、該黒鉛粒子に有機系結着剤及び溶剤を添加して混合し、粘度を調製した後、該混合物を集電体に塗布し、乾燥して溶剤を除去した後、加圧して一体化してリチウム二次電池用負極とすることができる。
The method for producing graphite particles of the present invention is not particularly limited, but 1 to 50% by weight of a graphitization catalyst is added to a graphitizable aggregate or graphite and a graphitizable binder, mixed, burned and then pulverized. It is preferable to obtain graphite particles first.
Next, an organic binder and a solvent are added to the graphite particles and mixed to adjust the viscosity. Then, the mixture is applied to a current collector, dried to remove the solvent, and then pressurized to be integrated. Thus, a negative electrode for a lithium secondary battery can be obtained.
黒鉛化可能な骨材としては、例えば、コークス粉末、樹脂の炭化物等が使用できるが、黒鉛化できる粉末材料であれば特に制限はない。中でも、ニードルコークス等の黒鉛化しやすいコークス粉末が好ましい。
また黒鉛としては、例えば天然黒鉛粉末、人造黒鉛粉末等が使用できるが粉末状であれば特に制限はない。黒鉛化可能な骨材又は黒鉛の粒径は、本発明で作製する黒鉛粒子の粒径より小さいことが好ましい。
Examples of the aggregate that can be graphitized include coke powder and resin carbide, but there is no particular limitation as long as it is a powder material that can be graphitized. Among these, coke powder that is easily graphitized such as needle coke is preferable.
Moreover, as graphite, natural graphite powder, artificial graphite powder, etc. can be used, for example, but there is no particular limitation as long as it is powdery. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite particles produced in the present invention.
さらに黒鉛化触媒としては、例えば鉄、ニッケル、チタン、ケイ素、硼素等の金属、これらの炭化物、酸化物などの黒鉛化触媒が使用できる。これらの中で、ケイ素または硼素の炭化物または酸化物が好ましい。
これらの黒鉛化触媒の添加量は、得られる黒鉛粒子に対して好ましくは1〜50重量%、より好ましくは5〜40重量%の範囲、さらに好ましくは5〜30重量%の範囲とされ、1重量%未満であること黒鉛粒子のアスペクト比及び比表面積が大きくなり黒鉛結晶の発達が悪くなる傾向にあり、一方50重量%を超えると均一に混合することが困難で作業性が悪くなる傾向にある。
Further, as the graphitization catalyst, for example, a graphitization catalyst such as a metal such as iron, nickel, titanium, silicon, or boron, or a carbide or oxide thereof can be used. Of these, silicon or boron carbides or oxides are preferred.
The addition amount of these graphitization catalysts is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, and further preferably 5 to 30% by weight with respect to the obtained graphite particles. If the amount is less than wt%, the aspect ratio and specific surface area of the graphite particles tend to increase and the development of graphite crystals tends to deteriorate. On the other hand, if it exceeds 50 wt%, it is difficult to mix uniformly and workability tends to deteriorate. is there.
バインダとしては、例えば、タール、ピッチの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が好ましい。バインダの配合量は、扁平状の黒鉛化可能な骨材又は黒鉛に対し、5〜80重量%添加することが好ましく、10〜80重量%添加することがより好ましく、15〜80重量%添加することがさらに好ましい。バインダの量が多すぎたり少なすぎたりすると、作製する黒鉛粒子のアスペクト比及び比表面積が大きくなり易いという傾向がある。
黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に制限はなく、ニーダー等を用いて行われるが、バインダの軟化点以上の温度で混合することが好ましい。具体的にはバインダがピッチ、タール等の際には、50〜300℃が好ましく、熱硬化性樹脂の場合には、20〜100℃が好ましい。
As the binder, for example, an organic material such as a thermosetting resin and a thermoplastic resin is preferable in addition to tar and pitch. The blending amount of the binder is preferably 5 to 80% by weight, more preferably 10 to 80% by weight, and more preferably 15 to 80% by weight based on the flat graphitizable aggregate or graphite. More preferably. If the amount of the binder is too large or too small, the aspect ratio and specific surface area of the produced graphite particles tend to be large.
The method for mixing the graphitizable aggregate or graphite and the binder is not particularly limited and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, 50 to 300 ° C is preferable, and when the binder is a thermosetting resin, 20 to 100 ° C is preferable.
次に上記の混合物を焼成し、黒鉛化処理を行う。なお、この処理の前に上記混合物を所定形状に成形しても良い。さらに、成形後、黒鉛化前に粉砕し、粒径を調整した後、黒鉛化を行っても良い。焼成は前記混合物が酸化し難い条件で焼成することが好ましく、例えば窒素雰囲気中、アルゴンガス雰囲気中、真空中で焼成する方法が挙げられる。黒鉛化の温度は、2000℃以上が好ましく、2500℃以上であることがより好ましく、2800℃〜3200℃であることがさらに好ましい。
黒鉛化の温度が低いと、黒鉛の結晶の発達が悪く、放電容量が低くなる傾向があると共に添加した黒鉛化触媒が作製する黒鉛粒子に残存し易くなる傾向がある。黒鉛化触媒が、作製する黒鉛粒子中に残存すると、放電容量が低下する。黒鉛化の温度が高すぎると、黒鉛が昇華することがある。
Next, the above mixture is fired and graphitized. In addition, you may shape | mold the said mixture in a predetermined shape before this process. Furthermore, after forming and pulverizing before graphitization to adjust the particle size, graphitization may be performed. Firing is preferably performed under conditions where the mixture is not easily oxidized, and examples thereof include a method of baking in a nitrogen atmosphere, an argon gas atmosphere, and in a vacuum. The graphitization temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. to 3200 ° C.
When the graphitization temperature is low, the development of graphite crystals tends to be poor, the discharge capacity tends to be low, and the added graphitization catalyst tends to remain in the graphite particles produced. When the graphitization catalyst remains in the graphite particles to be produced, the discharge capacity decreases. If the graphitization temperature is too high, the graphite may sublime.
次に、得られた黒鉛化物を粉砕することが好ましい。黒鉛化物の粉砕方法は、特に制限はないが、例えばジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法をとることができる。粉砕後の粒径は、平均粒径が1〜100μmが好ましく、10〜50μmであることがより好ましい。平均粒径が大きくなりすぎる場合は作製する電極の表面に凹凸ができ易くなる傾向がある。なお、本発明において平均粒径は、レーザー回折粒度分布計により測定することができる。 Next, it is preferable to grind the obtained graphitized material. The method for pulverizing the graphitized material is not particularly limited, and known methods such as a jet mill, a vibration mill, a pin mill, a hammer mill and the like can be used. As for the particle size after pulverization, the average particle size is preferably 1 to 100 μm, and more preferably 10 to 50 μm. If the average particle size becomes too large, the surface of the electrode to be produced tends to be uneven. In the present invention, the average particle diameter can be measured with a laser diffraction particle size distribution meter.
以上に示す工程を経ることにより、本発明の黒鉛粒子を得ることができる。
得られた前記黒鉛粒子は、有機系結着材及び溶剤を含む材料を混合して、シート状、ペレット状等の形状に成形される。
有機系結着剤としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン伝導率の大きな高分子化合物等が使用できる。
本発明においてイオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル等が使用できる。
これらの中では、イオン伝導率の大きな高分子化合物が好ましく、ポリフッ化ビニリデンが特に好ましい。
By passing through the process shown above, the graphite particle of this invention can be obtained.
The obtained graphite particles are formed into a sheet shape, a pellet shape or the like by mixing an organic binder and a material containing a solvent.
As the organic binder, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, a high molecular compound having high ionic conductivity, and the like can be used.
In the present invention, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used as the polymer compound having a high ionic conductivity.
Among these, a polymer compound having a high ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.
有機系結着剤の含有量は、黒鉛粉末と有機系結着剤との混合物に対して、3〜20重量%用いることが好ましい。
溶剤としては特に制限はなく、N−メチル2−ピロリドン、ジメチルホルムアミド、イソプロパノール等が用いられる。
溶剤の量に特に制限はなく、所望の粘度に調整できればよいが、混合物に対して、30〜70重量%用いられることが好ましい。
The content of the organic binder is preferably 3 to 20% by weight based on the mixture of the graphite powder and the organic binder.
There is no restriction | limiting in particular as a solvent, N-methyl 2-pyrrolidone, a dimethylformamide, isopropanol etc. are used.
There is no restriction | limiting in particular in the quantity of a solvent, Although it should just be able to adjust to a desired viscosity, It is preferable to use 30 to 70 weight% with respect to a mixture.
集電体としては、例えばニッケル、銅等の箔、メッシュなどの金属集電体が使用できる。
なお一体化は、例えばロール、プレス等の成形法で行うことができ、またこれらを組み合わせて一体化してもよい。
このようにして得られた負極はリチウムイオン二次電池やリチウムポリマ二次電池等のリチウム二次電池の負極として用いられる。例えば、リチウムイオン二次電池においては、セパレータを介して正極を対向して配置し、かつ電解液を注入する。本発明によれば、従来の炭素材料を負極に使用したリチウム二次電池に比較して、急速充放電特性及びサイクル特性に優れ、かつ不可逆容量が小さいリチウム二次電池を作製することができる。
As the current collector, for example, a metal current collector such as a foil or mesh of nickel, copper or the like can be used.
The integration can be performed by a molding method such as a roll or a press, or these may be combined and integrated.
The negative electrode thus obtained is used as a negative electrode for lithium secondary batteries such as lithium ion secondary batteries and lithium polymer secondary batteries. For example, in a lithium ion secondary battery, a positive electrode is disposed opposite to a separator, and an electrolytic solution is injected. According to the present invention, it is possible to produce a lithium secondary battery that is excellent in rapid charge / discharge characteristics and cycle characteristics and has a small irreversible capacity as compared with a lithium secondary battery that uses a conventional carbon material as a negative electrode.
本発明におけるリチウム二次電池の正極に用いられる材料については特に制限はなく、LiNiO2、LiCoO2、LiMn2O4等を単独又は混合して使用することができる。
電解液としては、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3等のリチウム塩を例えばエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、テトラヒドロフラン、プロピレンカーボネート等の非水系溶剤に、ポリフッ化ビニリデン等の高分子固体電解質に溶解又は含有させたいわゆる有機電解液を使用することができる。
There is no particular limitation on the material used for a cathode of a lithium secondary battery of the present invention may be used alone or as a mixture of LiNiO 2, LiCoO 2, LiMn 2 O 4 or the like.
As the electrolyte, lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 are used in non-aqueous solvents such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, propylene carbonate, A so-called organic electrolytic solution dissolved or contained in a polymer solid electrolyte such as polyvinylidene fluoride can be used.
液体の電解液を使用する場合に用いられるセパレータとしては、例えばポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はこれらを組み合わせたものを使用することができる。
なお、図2に円筒型リチウム二次電池の一例の一部断面正面図を示す。図2に示す円筒型リチウム二次電池は、薄板状に加工された正極1と、同様に加工された負極2が、ポリエチレン製微孔膜等のセパレータ3を介して重ね合わせたものを捲回し、これを金属製等の電池缶7に挿入し、密閉化されている。正極1は正極タブ4を介して正極蓋6に接合され、負極2は負極タブ5を介して電池底部へ接合されている。正極蓋6はガスケット8にて電池缶7へ固定されている。
As a separator used when using a liquid electrolytic solution, for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof, which is mainly composed of a polyolefin such as polyethylene or polypropylene, can be used.
FIG. 2 shows a partial cross-sectional front view of an example of a cylindrical lithium secondary battery. The cylindrical lithium secondary battery shown in FIG. 2 is formed by winding a thin plate-like
実施例1
平均粒径が5μmのコークス粉末40重量部、タールピッチ25重量部、平均粒径が48μmの炭化ケイ素5重量部及びコールタール20重量部を混合し、200℃で1時間撹拌した。次いで、窒素雰囲気中で2800℃で焼成した後粉砕し、平均粒径が30μmの黒鉛粒子を作製した。得られた黒鉛粒子を水銀圧入法による細孔径分布測定(島津ポアサイザー9320形使用)を行った結果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、0.6cc/gであった。また、1×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当たり0.20cc/gであった。また得られた黒鉛粒子を100個任意に選び出し、アクペクト比の平均値を測定した結果、1.5あたり、黒鉛粒子のBET法による比表面積は、1.5m2/gであり、黒鉛粒子のX線広角回析による結晶の層間距離d(002)は3.362Å及び結晶子の大きさLc(002)は1000Å以上であった。さらに、得られた黒鉛粒子の走査型電子顕微鏡(SEM写真)によれば、この黒鉛粒子は、扁平状の粒子が複数配向面が非平行となるように集合又は結合した構造をしていた。
Example 1
40 parts by weight of coke powder having an average particle diameter of 5 μm, 25 parts by weight of tar pitch, 5 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 20 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Subsequently, it was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to produce graphite particles having an average particle size of 30 μm. The obtained graphite particles were measured for pore size distribution by mercury porosimetry (using Shimadzu pore sizer 9320 type). As a result, the pores were in the range of 10 2 to 10 6 、, and the total pore volume per graphite particle weight Was 0.6 cc / g. The pore volume in the range of 1 × 10 2 to 2 × 10 4 10 was 0.20 cc / g per graphite particle weight. In addition, 100 graphite particles obtained were arbitrarily selected and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles by the BET method per 1.5 was 1.5 m 2 / g. The inter-layer distance d (002) of the crystal by X-ray wide-angle diffraction was 3.362 mm, and the crystallite size Lc (002) was 1000 mm or more. Furthermore, according to the scanning electron microscope (SEM photograph) of the obtained graphite particles, the graphite particles had a structure in which flat particles were assembled or bonded so that a plurality of orientation planes were non-parallel.
次いで得られた黒鉛粒子90重量%に、N−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で10重量%を加えて混練して黒鉛ペーストを作製した。この黒鉛ペーストを厚さが10μmの圧延銅箔に塗布し、さらに乾燥して、面圧490MPa(0.5トン/cm2)の圧力で圧縮成形し、試料電極とした。黒鉛粒子層の厚さは90μm及び密度は1.6g/cm3とした。
作製した試料電極を3端子法による定電流充放電を行い、リチウム二次電池用負極としての評価を行った。図3はリチウム二次電池の概略図であり、試料電極の評価は図3に示すようにガラスセル9に、電解液10としてLiPF6をエチレンカーボネート(EC)及びジメチルカーボネート(DMC)(ECとDMCは体積比で1:1)の混合溶媒に1モル/リットルの濃度になるように溶解した溶液を入れ、試料電極11、セパレータ12及び対極13を積層して配置し、さらに参照極14を上部から吊るしてリチウム二次電池を作製して行った。なお、対極13及び参照極14には金属リチウムを使用し、セパレータ4にはポリエチレン微孔を使用した。得られたリチウム二次電池を用いて試料電極11と対極13の間に、試料電極の面積に対して、0.5mA/cm2の定電流で5mV(Vvs.Li/Li+)まで充電し、1V(Vvs.Li/Li+)まで放電する試験を繰り返した。表1にサイクル目の黒鉛粒子の単位重量当たりの充電容量、放電容量及び30サイクル目の黒鉛粒子の単位重量当たりの放電容量を示す。
Next, 10% by weight of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 90% by weight of the obtained graphite particles in a solid content and kneaded to prepare a graphite paste. This graphite paste was applied to a rolled copper foil having a thickness of 10 μm, further dried, and compression molded at a surface pressure of 490 MPa (0.5 ton / cm 2 ) to obtain a sample electrode. The thickness of the graphite particle layer was 90 μm and the density was 1.6 g / cm 3 .
The prepared sample electrode was subjected to constant current charge / discharge by the three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 3 is a schematic diagram of a lithium secondary battery. Evaluation of the sample electrode was performed in a glass cell 9 as shown in FIG. 3, LiPF 6 as an electrolytic solution 10 with ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC and DMC is put in a mixed solvent of 1: 1) in a volume ratio so that a solution dissolved to a concentration of 1 mol / liter is placed, the sample electrode 11, the separator 12 and the counter electrode 13 are laminated and arranged, and the reference electrode 14 is further arranged. A lithium secondary battery was produced by hanging from the top. Note that metallic lithium was used for the counter electrode 13 and the reference electrode 14, and polyethylene micropores were used for the separator 4. Using the obtained lithium secondary battery, the sample electrode 11 and the counter electrode 13 were charged to 5 mV (Vvs. Li / Li + ) with a constant current of 0.5 mA / cm 2 with respect to the area of the sample electrode. The test of discharging to 1 V (Vvs. Li / Li + ) was repeated. Table 1 shows the charge capacity per unit weight of the graphite particles at the cycle, the discharge capacity, and the discharge capacity per unit weight of the graphite particles at the 30th cycle.
実施例2
平均粒径が20μmのコークス粉末50重量部、ピッチ20重量部、平均粒径が48μmの炭化ケイ素7重量部及びコールタール10重量部を混合し、200℃で1時間撹拌した。次いで、窒素雰囲気中で2800℃で焼成した後粉砕し、平均粒径が30μmの黒鉛粒子を得た。得られた黒鉛粒子を水銀圧入法による細孔径分布測定(島津ポアサイザー9320形使用)を行った結果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、1.5cc/gであった。また、1×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当たり0.13cc/gであった。また得られた黒鉛粒子を100個任意に選び出し、アスペクト比の平均値を測定した結果、2.3であり、黒鉛粒子のBET法による比表面積は、3.6m2/gであり、黒鉛粒子のX線広角回折による結晶の層間距離d(002)は3.361Å及び結晶子の大きさLc(002)は1000Å及び結晶子の大きさLc(002)は1000Å以上であった。さらに得られた黒鉛粒子は、扁平状の粒子が複数配向面が非平行となるように集合又は結合した構造をしていた。
以下実施例1と同様の工程を経てリチウム二次電池を作製し、実施例1と同様の試験を行った。表1に1サイクル目の黒鉛粒子の単位重量当たり充電容量、放電容量及び30サイクル目の黒鉛粒子の単位重量当たり放電容量を示す。
Example 2
50 parts by weight of coke powder having an average particle diameter of 20 μm, 20 parts by weight of pitch, 7 parts by weight of silicon carbide having an average particle diameter of 48 μm and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Subsequently, it was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to obtain graphite particles having an average particle size of 30 μm. The obtained graphite particles were measured for pore size distribution by mercury porosimetry (using Shimadzu pore sizer 9320 type). As a result, the pores were in the range of 10 2 to 10 6 、, and the total pore volume per graphite particle weight Was 1.5 cc / g. The pore volume in the range of 1 × 10 2 to 2 × 10 4 10 was 0.13 cc / g per graphite particle weight. Further, 100 graphite particles obtained were arbitrarily selected and the average value of the aspect ratio was measured. As a result, it was 2.3. The specific surface area of the graphite particles by the BET method was 3.6 m 2 / g. The crystal interlayer distance d (002) by X-ray wide angle diffraction was 3.36136, the crystallite size Lc (002) was 1000Å, and the crystallite size Lc (002) was 1000Å or more. Further, the obtained graphite particles had a structure in which flat particles were assembled or bonded so that the plurality of orientation planes were non-parallel.
A lithium secondary battery was produced through the same steps as in Example 1 and the same test as in Example 1 was performed. Table 1 shows the charge capacity per unit weight of the graphite particles in the first cycle, the discharge capacity, and the discharge capacity per unit weight of the graphite particles in the 30th cycle.
比較例1
メソカーボンマイクロビーズ(川崎製鉄(株)製、商品名KMFC)を窒素雰囲気中で2800℃で焼成し、平均粒径が25μmの黒鉛粒子を得た。得られた黒鉛粒子を水銀圧入法による細孔径分布測定(島津ポアサイザー9320形使用)を行った結果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、0.35cc/gであった。また、1×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当たり0.06cc/gであった。また得られた黒鉛粒子を100個任意に選び出し、アスペクト比の平均値を測定した結果、1であり、黒鉛粒子のBET法による比表面積は、1.4m2/gであり、黒鉛粒子のX線広角回折による結晶の層間距離d(002)は3.37Å及び結晶子の大きさLc(002)は500Åであった。
以下実施例1と同様の工程を経て、リチウム二次電池を作製し、実施例1と同様の試験を行った。表1に1サイクル目の黒鉛粒子の単位重量当たりの充電容量、放電容量及び30サイクル目の黒鉛粒子の単位重量当たりの放電容量を示す。
Comparative Example 1
Mesocarbon microbeads (manufactured by Kawasaki Steel Corporation, trade name KMFC) were fired at 2800 ° C. in a nitrogen atmosphere to obtain graphite particles having an average particle diameter of 25 μm. The obtained graphite particles were measured for pore size distribution by mercury porosimetry (using Shimadzu pore sizer 9320 type). As a result, the pores were in the range of 10 2 to 10 6 、, and the total pore volume per graphite particle weight Was 0.35 cc / g. The pore volume in the range of 1 × 10 2 to 2 × 10 4 10 was 0.06 cc / g per graphite particle weight. Further, 100 graphite particles obtained were arbitrarily selected and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles according to the BET method was 1.4 m 2 / g. The crystal interlayer distance d (002) by line wide angle diffraction was 3.37 cm, and the crystallite size Lc (002) was 500 mm.
Thereafter, a lithium secondary battery was manufactured through the same process as in Example 1, and the same test as in Example 1 was performed. Table 1 shows the charge capacity per unit weight of the first cycle graphite particles, the discharge capacity, and the discharge capacity per unit weight of the 30th cycle graphite particles.
比較例2
平均粒径が5μmのコークス粉末50重量部、ピッチ10重量部、平均粒径が65μmの酸化鉄30重量部及びコールタール20重量部を混合し、200℃で1時間撹拌した。次いで、窒素雰囲気中で2800℃で焼成した後粉砕し、平均粒径が15μmの黒鉛粒子を得た。得られた黒鉛粒子を水銀圧入法による細孔径分布測定(島津ポアサイザー9320形使用)を行った結果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、2.1cc/gであった。また、1×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当たり0.42cc/gであった。また得られた黒鉛粒子を100個任意に選び出し、アスペクト比の平均値を測定した結果、2.8であり、黒鉛粒子のBET法による比表面積は、8.3m2/gであり、黒鉛粒子のX線広角回折による結晶の層間距離d(002)は3.365Å及び結晶子の大きさLc(002)は1000Å以上であった。
以下、実施例1と同様の工程を経て、リチウム二次電池を作製し、実施例1と同様の試験を行った。表1に1サイクル目の黒鉛粒子の単位重量当たりの充電容量、放電容量及び30サイクル目の黒鉛粒子の単位重量当たりの放電容量を示す。
Comparative Example 2
50 parts by weight of coke powder having an average particle diameter of 5 μm, 10 parts by weight of pitch, 30 parts by weight of iron oxide having an average particle diameter of 65 μm and 20 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Subsequently, it was fired in a nitrogen atmosphere at 2800 ° C. and then pulverized to obtain graphite particles having an average particle diameter of 15 μm. The obtained graphite particles were measured for pore size distribution by mercury porosimetry (using Shimadzu pore sizer 9320 type). As a result, the pores were in the range of 10 2 to 10 6 、, and the total pore volume per graphite particle weight Was 2.1 cc / g. The pore volume in the range of 1 × 10 2 to 2 × 10 4 10 was 0.42 cc / g per graphite particle weight. Further, 100 graphite particles obtained were arbitrarily selected and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles by the BET method was 8.3 m 2 / g. The X-ray wide angle diffraction revealed that the crystal interlayer distance d (002) was 3.365Å and the crystallite size Lc (002) was 1000Å or more.
Thereafter, through the same steps as in Example 1, a lithium secondary battery was produced, and the same test as in Example 1 was performed. Table 1 shows the charge capacity per unit weight of the first cycle graphite particles, the discharge capacity, and the discharge capacity per unit weight of the 30th cycle graphite particles.
表1に示されるように、本発明はの黒鉛粒子を用いて得られたリチウム二次電池は、高容量でサイクル特性に優れることが明らかである。 As shown in Table 1, it is clear that the lithium secondary battery obtained using the graphite particles of the present invention has a high capacity and excellent cycle characteristics.
請求項1及び4に記載の黒鉛粒子は、サイクル特性に優れたリチウム二次電池に好適なものである。
The graphite particles according to
請求項2に記載の黒鉛粒子は、急速充放電特性及びサイクル特性に優れたリチウム二次電池に好適なものである。
請求項3に記載の黒鉛粒子は、急速充放電特性及びサイクル特性に優れ、かつ第一サイクル目の不可逆容量が小さく、リチウム二次電池に好適なものである。
The graphite particles according to claim 2 are suitable for a lithium secondary battery excellent in rapid charge / discharge characteristics and cycle characteristics.
The graphite particles according to
1 正極
2 負極
3 セパレータ
4 正極タブ
5 負極タブ
6 正極蓋
7 電池缶
8 ガスケット
9 ガラスセル
10 電解液
11 試料電極(負極)
12 セパレータ
13 対極(正極)
14 参照極
DESCRIPTION OF
12 Separator 13 Counter electrode (positive electrode)
14 Reference pole
Claims (4)
該黒鉛粒子の10 2 〜10 6 Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.4〜2.0cc/gであり、
該黒鉛粒子の1×10 2 〜2×10 4 Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.08〜0.4cc/gであり、
該黒鉛粒子のc軸方向の結晶子の大きさLc(002)が1000〜100000Åであり、
該黒鉛粒子が、その内部に鱗片状の粒子を数多く有する黒鉛粒子であり、
該黒鉛粒子内部の鱗片状の粒子が一定方向にそろうことなく配列している、
上記リチウム二次電池用負極。 A negative electrode for a lithium secondary battery comprising graphite particles and an organic binder ,
The pore volume of pores having a size in the range of 10 2 to 10 6 の of the graphite particles is 0.4 to 2.0 cc / g per graphite particle weight,
The pore volume of the pores having a size in the range of 1 × 10 2 to 2 × 10 4 の of the graphite particles is 0.08 to 0.4 cc / g per graphite particle weight,
The crystallite size Lc (002) in the c-axis direction of the graphite particles is 1,000 to 100,000.
The graphite particles are graphite particles having many scaly particles therein,
The scale-like particles inside the graphite particles are arranged without being aligned in a certain direction.
The negative electrode for a lithium secondary battery .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015035158A JP5853293B2 (en) | 1996-12-26 | 2015-02-25 | Negative electrode for lithium secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1996348406 | 1996-12-26 | ||
JP34840696 | 1996-12-26 | ||
JP2015035158A JP5853293B2 (en) | 1996-12-26 | 2015-02-25 | Negative electrode for lithium secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011130895A Division JP2011175983A (en) | 1996-12-26 | 2011-06-13 | Negative electrode for lithium secondary battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015197421A Division JP2016001626A (en) | 1996-12-26 | 2015-10-05 | Negative electrode for lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015128073A JP2015128073A (en) | 2015-07-09 |
JP5853293B2 true JP5853293B2 (en) | 2016-02-09 |
Family
ID=44688629
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011130895A Pending JP2011175983A (en) | 1996-12-26 | 2011-06-13 | Negative electrode for lithium secondary battery |
JP2015035158A Expired - Lifetime JP5853293B2 (en) | 1996-12-26 | 2015-02-25 | Negative electrode for lithium secondary battery |
JP2015197421A Pending JP2016001626A (en) | 1996-12-26 | 2015-10-05 | Negative electrode for lithium secondary battery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011130895A Pending JP2011175983A (en) | 1996-12-26 | 2011-06-13 | Negative electrode for lithium secondary battery |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015197421A Pending JP2016001626A (en) | 1996-12-26 | 2015-10-05 | Negative electrode for lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP2011175983A (en) |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3167767B2 (en) * | 1991-12-27 | 2001-05-21 | シャープ株式会社 | Negative electrode for lithium secondary battery and method for producing the same |
JP3475530B2 (en) * | 1994-11-29 | 2003-12-08 | ソニー株式会社 | Non-aqueous electrolyte secondary battery |
JPH08287950A (en) * | 1995-04-18 | 1996-11-01 | Sumitomo Chem Co Ltd | Non-aqueous electrolyte and lithium secondary battery using the same |
US5660948A (en) * | 1995-09-26 | 1997-08-26 | Valence Technology, Inc. | Lithium ion electrochemical cell |
CA2254076A1 (en) * | 1996-05-07 | 1997-11-13 | Toyo Tanso Co., Ltd. | Anode material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery using the same |
JP3285520B2 (en) * | 1996-08-08 | 2002-05-27 | 日立化成工業株式会社 | Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery |
US5681357A (en) * | 1996-09-23 | 1997-10-28 | Motorola, Inc. | Gel electrolyte bonded rechargeable electrochemical cell and method of making same |
US5665265A (en) * | 1996-09-23 | 1997-09-09 | Motorola, Inc., | Non woven gel electrolyte for electrochemical cells |
JP3305995B2 (en) * | 1996-12-26 | 2002-07-24 | 日立化成工業株式会社 | Graphite particles for lithium secondary battery negative electrode |
JP4828118B2 (en) * | 1996-12-26 | 2011-11-30 | 日立化成工業株式会社 | Negative electrode for lithium secondary battery |
JP3321782B2 (en) * | 1996-12-26 | 2002-09-09 | 日立化成工業株式会社 | Graphite particles for lithium secondary battery negative electrode |
JP4483560B2 (en) * | 1996-12-26 | 2010-06-16 | 日立化成工業株式会社 | Negative electrode for lithium secondary battery |
-
2011
- 2011-06-13 JP JP2011130895A patent/JP2011175983A/en active Pending
-
2015
- 2015-02-25 JP JP2015035158A patent/JP5853293B2/en not_active Expired - Lifetime
- 2015-10-05 JP JP2015197421A patent/JP2016001626A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2015128073A (en) | 2015-07-09 |
JP2016001626A (en) | 2016-01-07 |
JP2011175983A (en) | 2011-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10651458B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
KR100446828B1 (en) | Graphite particles and lithium secondary battery using them as negative electrode | |
JP3285520B2 (en) | Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP3305995B2 (en) | Graphite particles for lithium secondary battery negative electrode | |
JP3361510B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP3213575B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP2001089118A (en) | Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery | |
JP3321782B2 (en) | Graphite particles for lithium secondary battery negative electrode | |
JP3732654B2 (en) | Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery | |
JPH11217266A (en) | Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery | |
JP3951219B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP4811699B2 (en) | Negative electrode for lithium secondary battery | |
JP4483560B2 (en) | Negative electrode for lithium secondary battery | |
JP3892957B2 (en) | Method for producing graphite particles | |
JP4828118B2 (en) | Negative electrode for lithium secondary battery | |
JP2002343341A (en) | Negative electrode for lithium secondary battery | |
JP5853293B2 (en) | Negative electrode for lithium secondary battery | |
JP4135162B2 (en) | Negative electrode for lithium secondary battery | |
JP4066699B2 (en) | Negative electrode for lithium secondary battery | |
JP3325021B2 (en) | Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery | |
JP5704473B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP4687661B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP2017033945A (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP2005289803A (en) | Graphite grain, graphite paste using graphite grain, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP2017157575A (en) | Negative electrode for lithium secondary battery and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151112 |
|
EXPY | Cancellation because of completion of term |