[go: up one dir, main page]

JP3321782B2 - Graphite particles for lithium secondary battery negative electrode - Google Patents

Graphite particles for lithium secondary battery negative electrode

Info

Publication number
JP3321782B2
JP3321782B2 JP2001208318A JP2001208318A JP3321782B2 JP 3321782 B2 JP3321782 B2 JP 3321782B2 JP 2001208318 A JP2001208318 A JP 2001208318A JP 2001208318 A JP2001208318 A JP 2001208318A JP 3321782 B2 JP3321782 B2 JP 3321782B2
Authority
JP
Japan
Prior art keywords
graphite particles
graphite
secondary battery
lithium secondary
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001208318A
Other languages
Japanese (ja)
Other versions
JP2002083587A (en
Inventor
義人 石井
達也 西田
藤田  淳
和夫 山田
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2001208318A priority Critical patent/JP3321782B2/en
Publication of JP2002083587A publication Critical patent/JP2002083587A/en
Application granted granted Critical
Publication of JP3321782B2 publication Critical patent/JP3321782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な黒鉛粒子及
びその製造法、黒鉛粒子を用いた黒鉛ペースト、リチウ
ム二次電池用負極及びその製造法並びにリチウム二次電
池に関する。さらに詳しくは、ポータブル機器、電気自
動車、電力貯蔵等に用いるのに好適な、急速充放電特
性、サイクル特性等に優れたリチウム二次電池とそれを
得るための黒鉛粒子及びその製造法、黒鉛粒子を用いた
黒鉛ペースト、リチウム二次電池用負極並びにリチウム
二次電池に関する。
The present invention relates to a novel graphite particle and a method for producing the same, a graphite paste using the graphite particle, a negative electrode for a lithium secondary battery, a method for producing the same, and a lithium secondary battery. More specifically, a lithium secondary battery excellent in rapid charge / discharge characteristics, cycle characteristics, etc., suitable for use in portable equipment, electric vehicles, power storage, etc., graphite particles for obtaining the same, a method for producing the same, and graphite particles The present invention relates to a graphite paste, a negative electrode for a lithium secondary battery, and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】従来の黒鉛粒子としては、例えば天然黒
鉛粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高
分子材料、ピッチ等を黒鉛化した人造黒鉛粒子、これら
を粉砕した黒鉛粒子などがある。これらの黒鉛粒子は、
有機系結着剤及び有機溶剤と混合して黒鉛ペーストと
し、この黒鉛ペーストを銅箔の表面に塗布し、溶剤を乾
燥させてリチウム二次電池用負極として使用されてい
る。例えば、特公昭62−23433号公報に示される
ように、負極に黒鉛を使用することでリチウムのデンド
ライトによる内部短絡の問題を解消し、サイクル特性の
改良を図っている。
2. Description of the Related Art Conventional graphite particles include, for example, natural graphite particles, artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by grinding these. is there. These graphite particles
It is used as a negative electrode for a lithium secondary battery by mixing an organic binder and an organic solvent to form a graphite paste, applying the graphite paste to the surface of a copper foil, and drying the solvent. For example, as shown in Japanese Patent Publication No. 23433/1987, the use of graphite for the negative electrode solves the problem of internal short circuit due to lithium dendrite, thereby improving cycle characteristics.

【0003】しかしながら、黒鉛結晶が発達している天
然黒鉛粒子及びコークスを黒鉛化した人造黒鉛粒子は、
c軸方向の結晶の層間の結合力が、結晶の面方向の結合
に比べて弱いため、粉砕により黒鉛層間の結合が切れ、
アスペクト比が大きい、いわゆる鱗状の黒鉛粒子とな
る。この鱗状の黒鉛粒子は、アスペクト比が大きいため
に、バインダと混練して集電体に塗布して電極を作製し
たときに、鱗状の黒鉛粒子が集電体の面方向に配向し、
その結果、黒鉛結晶へのリチウムの吸蔵・放出の繰り返
しによって発生するc軸方向の歪みにより電極内部の破
壊が生じ、サイクル特性が低下する問題がある。そこ
で、リチウム二次電池のサイクル特性が向上できる黒鉛
粒子が要求されている。
[0003] However, natural graphite particles in which graphite crystals are developed and artificial graphite particles obtained by graphitizing coke are:
Since the bonding force between the layers of the crystal in the c-axis direction is weaker than the bonding in the plane direction of the crystal, the bonding between the graphite layers is broken by pulverization,
So-called graphite particles having a large aspect ratio are obtained. Since the scale-like graphite particles have a large aspect ratio, when the electrode is produced by kneading with a binder and applying the mixture to the current collector, the scale-like graphite particles are oriented in the plane direction of the current collector,
As a result, there is a problem that the strain in the c-axis direction caused by the repeated insertion and extraction of lithium into and from the graphite crystal causes destruction of the inside of the electrode, and the cycle characteristics are degraded. Therefore, graphite particles capable of improving the cycle characteristics of a lithium secondary battery are required.

【0004】[0004]

【発明が解決しようとする課題】請求項1及び5に記載
の発明は、サイクル特性に優れたリチウム二次電池に好
適な黒鉛粒子を提供するものである。請求項2、3、6
及び7に記載の発明は、急速充放電特性及びサイクル特
性に優れたリチウム二次電池に好適な黒鉛粒子を提供す
るものである。請求項4及び8記載の発明は、急速充放
電特性及びサイクル特性に優れ、かつ第一サイクル目の
不可逆容量が小さく、リチウム二次電池に好適な黒鉛粒
子を提供するものである。
SUMMARY OF THE INVENTION The first and fifth aspects of the present invention provide graphite particles suitable for a lithium secondary battery having excellent cycle characteristics. Claims 2, 3, and 6
The inventions described in (7) and (7) provide graphite particles suitable for a lithium secondary battery having excellent rapid charge / discharge characteristics and cycle characteristics. The inventions according to claims 4 and 8 provide graphite particles which are excellent in rapid charge / discharge characteristics and cycle characteristics, have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries.

【0005】請求項9記載の発明は、急速充放電特性及
びサイクル特性に優れ、かつ第一サイクル目の不可逆容
量が小さく、リチウム二次電池に好適な黒鉛粒子の製造
法を提供するものである。請求項10記載の発明は、急
速充放電特性及びサイクル特性に優れ、かつ第一サイク
ル目の不可逆容量が小さく、リチウム二次電池に好適な
黒鉛ペーストを提供するものである。請求項11記載の
発明は、急速充放電特性及びサイクル特性に優れ、かつ
第一サイクル目の不可逆容量が小さく、リチウム二次電
池に好適なリチウム二次電池用負極を提供するものであ
る。請求項12記載の発明は、急速充放電特性及びサイ
クル特性に優れ、かつ第一サイクル目の不可逆容量が小
さいリチウム二次電池を提供するものである。
The invention of claim 9 provides a method for producing graphite particles which is excellent in rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. . The invention according to claim 10 is to provide a graphite paste which is excellent in rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. The invention according to claim 11 is to provide a negative electrode for a lithium secondary battery which is excellent in rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. The twelfth aspect of the present invention provides a lithium secondary battery having excellent rapid charge / discharge characteristics and cycle characteristics, and having a small irreversible capacity in the first cycle.

【0006】[0006]

【発明を解決するための手段】本発明は、102〜106
Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当
たり0.4〜2.0cc/gである黒鉛粒子に関する。
また本発明は、1×102〜2×104Åの範囲の大きさ
の細孔の細孔体積が、黒鉛粒子重量当たり0.08〜
0.4cc/gである黒鉛粒子に関する。また本発明
は、扁平状の粒子を複数、配向面が非平行となるように
集合又は結合させてなる前記黒鉛粒子に関する。また本
発明は、前記黒鉛粒子のアスペクト比が5以下である黒
鉛粒子に関する。また本発明は、比表面積が8m2/g
以下である前記黒鉛粒子に関する。
SUMMARY OF THE INVENTION The present invention is 10 2 to 10 6
に 関 す る relates to graphite particles having a pore volume of 0.4 to 2.0 cc / g per graphite particle weight.
In the present invention, the pore volume of pores having a size in the range of 1 × 10 2 to 2 × 10 4 Å is 0.08 to 0.08 per weight of graphite particles.
For graphite particles of 0.4 cc / g. Further, the present invention relates to the graphite particles obtained by assembling or bonding a plurality of flat particles so that the orientation planes are non-parallel. The present invention also relates to graphite particles having an aspect ratio of 5 or less. In addition, the present invention has a specific surface area of 8 m 2 / g.
The present invention relates to the following graphite particles.

【0007】また本発明は、黒鉛化可能な骨材又は黒鉛
と黒鉛化可能なバインダに黒鉛化触媒を1〜50重量%
添加して混合し、焼成した後粉砕することを特徴とする
前記黒鉛粒子の製造法に関する。また本発明は、前記黒
鉛粒子若しくは前記の方法で製造された黒鉛粒子のいず
れかに有機系結着剤及び溶剤を添加し、混合してなる黒
鉛ペーストに関する。また本発明は、前記の黒鉛ペース
トを集電体に塗布、一体化してなるリチウム二次電池用
負極に関する。さらに本発明は、前記のリチウム二次電
池用負極と正極とを有してなるリチウム二次電池に関す
る。
Further, the present invention provides a graphitizable aggregate or graphite and a graphitizable catalyst containing 1 to 50% by weight of a graphite and a binder.
The present invention relates to a method for producing the above graphite particles, which comprises adding, mixing, calcining and pulverizing. Further, the present invention relates to a graphite paste obtained by adding an organic binder and a solvent to either the graphite particles or the graphite particles produced by the above-described method and mixing them. The present invention also relates to a negative electrode for a lithium secondary battery obtained by applying the graphite paste to a current collector and integrating the same. Furthermore, the present invention relates to a lithium secondary battery having the above-described negative electrode for a lithium secondary battery and a positive electrode.

【0008】[0008]

【発明の実施の形態】本発明の黒鉛粒子は、2つの観点
からその細孔体積に特徴を有するものである。第1に
は、102〜106Åの範囲の細孔の細孔体積が、黒鉛粒
子重量当たり、0.4〜2.0cc/gであることを特
徴とする。該黒鉛粒子を負極に使用すると、充電・放電
にともなう電極の膨張・収縮を黒鉛粒子の細孔が吸収す
るため、電極内部の破壊が抑えられ、その結果得られる
リチウム二次電池のサイクル特性を向上させることがで
きる。102〜106Åの範囲の細孔の細孔体積は、0.
4〜1.5cc/gの範囲であることがより好ましく、
0.6〜1.2cc/gの範囲であることがさらに好ま
しい。全細孔体積が、0.4cc/g未満ではサイクル
特性が低下し、2.0cc/gを超えると黒鉛粒子と集
電体とを一体化する際に使用する結着剤を多く必要とな
り、作成するリチウム二次電池の容量が低下する問題が
ある。前記細孔体積は、水銀圧入法による細孔径分布測
定により求めることができる。細孔の大きさもまた水銀
圧入法による細孔径分布測定により知ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The graphite particles of the present invention are characterized by their pore volume from two viewpoints. The first feature is that the pore volume of pores in the range of 10 2 to 10 6 is 0.4 to 2.0 cc / g per graphite particle weight. When the graphite particles are used as a negative electrode, the pores of the graphite particles absorb the expansion and contraction of the electrode due to charging and discharging, thereby suppressing the destruction of the inside of the electrode, thereby reducing the cycle characteristics of the resulting lithium secondary battery. Can be improved. The pore volume of the pores in the range of 10 2 to 10 6 is 0.
More preferably, it is in the range of 4 to 1.5 cc / g,
More preferably, it is in the range of 0.6 to 1.2 cc / g. When the total pore volume is less than 0.4 cc / g, the cycle characteristics deteriorate, and when the total pore volume exceeds 2.0 cc / g, a large amount of a binder used when integrating the graphite particles and the current collector becomes necessary, There is a problem that the capacity of the lithium secondary battery to be manufactured is reduced. The pore volume can be determined by measuring the pore size distribution by the mercury intrusion method. The size of the pores can also be determined by measuring the pore size distribution by the mercury intrusion method.

【0009】第2には、1×102〜2×104Åの範囲
の細孔の細孔体積が、黒鉛粒子重量当たり0.08〜
0.4cc/gであることを特徴とする。該黒鉛粒子を
負極に使用すると、充電・放電にともなう電極の膨張・
収縮を黒鉛粒子の細孔が吸収するため、電極内部の破壊
が抑えられ、その結果得られるリチウム二次電池のサイ
クル特性を向上させることができる。1×102〜2×
104Åの範囲の細孔体積は、0.1〜0.3cc/g
であることがより好ましい。この大きさの範囲の細孔体
積が、0.08cc/g未満ではサイクル特性が低下し
0.4cc/gを超えると黒鉛粒子と集電体とを一体化
する際に使用する結着剤を多く必要となり、作成するリ
チウム二次電池の容量が低下する問題がある。この範囲
の細孔体積もまた水銀圧入法による細孔径分布測定によ
り求めることができる。
Second, the pore volume of the pores in the range of 1 × 10 2 to 2 × 10 4 、 is 0.08 to 0.08 per weight of graphite particles.
0.4 cc / g. When the graphite particles are used for the negative electrode, expansion and contraction of the electrode due to charge and discharge
Since the shrinkage is absorbed by the pores of the graphite particles, destruction inside the electrode is suppressed, and the cycle characteristics of the resulting lithium secondary battery can be improved. 1 × 10 2 to 2 ×
The pore volume in the range of 10 4 、 is 0.1-0.3 cc / g
Is more preferable. When the pore volume in this size range is less than 0.08 cc / g, the cycle characteristics deteriorate. When the pore volume exceeds 0.4 cc / g, the binder used when integrating the graphite particles and the current collector is used. This requires a large amount of lithium secondary batteries, which causes a problem that the capacity of the lithium secondary battery to be manufactured is reduced. The pore volume in this range can also be determined by measuring the pore size distribution by the mercury intrusion method.

【0010】また、本発明の黒鉛粒子は、扁平状の粒子
を複数、配向面が非平行となるように集合又は結合させ
たものが好ましい。本発明において、扁平状の粒子と
は、長軸と短軸を有する形状の粒子のことであり、完全
な球状でないものをいう。例えば鱗状、鱗片状、一部の
塊状等の形状のものがこれに含まれる。黒鉛粒子におい
て、複数の扁平状の粒子の配向面が非平行とは、それぞ
れの粒子の形状において有する扁平した面、換言すれば
最も平らに近い面を配向面として、複数の扁平状の粒子
がそれぞれの配向面を一定の方向にそろうことなく集合
している状態をいう。
[0010] The graphite particles of the present invention are preferably formed by assembling or bonding a plurality of flat particles so that their orientation planes are non-parallel. In the present invention, flat particles are particles having a shape having a major axis and a minor axis, and are not perfectly spherical. For example, a shape such as a scaly shape, a scaly shape, or a partial lump shape is included in this. In the graphite particles, the orientation plane of the plurality of flat particles is non-parallel, and the flat surface having the shape of each particle, in other words, the plane closest to the plane is the orientation surface, and the plurality of flat particles are This refers to a state in which the respective alignment planes are gathered without being aligned in a certain direction.

【0011】この黒鉛粒子において扁平状の粒子は集合
又は結合しているが、結合とは互いの粒子が、タール、
ピッチ等のバインダーを炭素化した炭素質を介して、化
学的に結合している状態をいい、集合とは互いの粒子が
化学的に結合してはないが、その形状等に起因して、そ
の集合体としての形状を保っている状態をいう。機械的
な強度の面から、結合しているものが好ましい。1つの
黒鉛粒子において、扁平状の粒子の集合又は結合する数
としては、3個以上であることが好ましい。個々の扁平
状の粒子の大きさとしては、粒径で1〜100μmであ
ることが好ましく、これらが集合又は結合した黒鉛粒子
の平均粒径の2/3以下であることが好ましい。
In the graphite particles, the flat particles are aggregated or bonded, and the bonding means that the particles are tar,
Through a carbonaceous material obtained by carbonizing a binder such as a pitch, it refers to a state in which the particles are chemically bonded.Assembling means that the particles are not chemically bonded to each other, but due to its shape and the like, A state in which the shape of the aggregate is maintained. From the standpoint of mechanical strength, it is preferable to combine them. In one graphite particle, the number of flat particles aggregated or bonded is preferably three or more. The size of each flat particle is preferably 1 to 100 μm in particle size, and is preferably 2/3 or less of the average particle size of the graphite particles in which these are aggregated or bonded.

【0012】該黒鉛粒子を負極に使用すると、集電体上
に黒鉛粒子が配向し難く、かつ、電解液との濡れ性が向
上し、負極黒鉛にリチウムを吸蔵・放出し易くなるた
め、得られるリチウム二次電池の急速充放電特性及びサ
イクル特性を向上させることができる。なお、図1に上
記黒鉛粒子の一例の粒子構造の走査型電子顕微鏡写真を
示す。図1において、(a)は本発明になる黒鉛粒子の
外表面の走査型電子顕微鏡写真、(b)は黒炎粒子の断
面の走査型電子顕微鏡写真である。(a)においては、
細かな鱗片状の黒鉛粒子が数多く、それらの粒子の配向
面を非平行にして結合し、黒鉛粒子を形成している様子
が観察できる。
When the graphite particles are used for the negative electrode, the graphite particles are hardly oriented on the current collector, the wettability with the electrolytic solution is improved, and lithium is easily inserted into and released from the negative electrode graphite. The rapid charge and discharge characteristics and the cycle characteristics of the obtained lithium secondary battery can be improved. FIG. 1 shows a scanning electron micrograph of the particle structure of one example of the graphite particles. In FIG. 1, (a) is a scanning electron micrograph of the outer surface of the graphite particles according to the present invention, and (b) is a scanning electron micrograph of a cross section of the black flame particles. In (a),
A large number of fine flake-like graphite particles can be observed in which the orientation planes of these particles are non-parallel and combined to form graphite particles.

【0013】またアスペクト比が5以下である黒鉛粒子
は、集電体上で粒子が配向し難い傾向があり、上記と同
様にリチウムを吸蔵・放出し易くなるので好ましい。ア
スペクト比は1.2〜5であることがより好ましい。ア
スペクト比が1.2未満では、粒子間の接触面積が減る
ことにより、導電性が低下する傾向にある。同様の理由
で、さらに好ましい範囲の下限は1.3以上である。ま
た、さらに好ましい範囲の上限は、3以下であり、アス
ペクト比がこれより大きくなると、急速充放電特性が低
下し易くなる傾向がある。従って、特に好ましいアスペ
クト比は1.3〜3である。
[0013] Graphite particles having an aspect ratio of 5 or less are preferable because the particles tend to be hardly oriented on the current collector and easily occlude and release lithium as described above. The aspect ratio is more preferably 1.2 to 5. If the aspect ratio is less than 1.2, the contact area between the particles tends to decrease, so that the conductivity tends to decrease. For the same reason, the lower limit of the more preferable range is 1.3 or more. Further, the upper limit of the more preferable range is 3 or less, and when the aspect ratio is larger than this, the rapid charge / discharge characteristics tend to be easily deteriorated. Therefore, a particularly preferable aspect ratio is 1.3 to 3.

【0014】なお、アスペクト比は、黒鉛粒子の長軸方
向の長さをA、短軸方向の長さをBとしたとき、A/B
で表される。本発明におけるアスペクト比は、顕微鏡で
黒鉛粒子を拡大し、任意に100個の黒鉛粒子を選択
し、A/Bを測定し、その平均値をとったものである。
また、アスペクト比が5以下である黒鉛粒子の構造とし
ては、より小さい黒鉛粒子の集合体又は結合体であるこ
とが好ましく、前記の、扁平状の粒子を複数、配向面が
非平行となるように集合又は結合させた黒鉛粒子を用い
ることがより好ましい。
The aspect ratio is defined as A / B where A is the length of the graphite particle in the major axis direction and B is the length of the graphite particle in the minor axis direction.
It is represented by The aspect ratio in the present invention is obtained by magnifying graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
In addition, the structure of the graphite particles having an aspect ratio of 5 or less is preferably an aggregate or a combination of smaller graphite particles, and a plurality of the flat particles, the orientation plane of which is non-parallel. It is more preferable to use graphite particles that are aggregated or bonded to the same.

【0015】また、本発明の黒鉛粒子は、比表面積が8
2/g以下のものが好ましく、より好ましくは5m2
g以下とされる。該黒鉛粒子を負極に使用すると、得ら
れるリチウム二次電池の急速充放電特性及びサイクル特
性を向上させることができ、また、第一サイクル目の不
可逆容量を小さくすることができる。比表面積が、8m
2/gを超えると、得られるリチウム二次電池の第一サ
イクル目の不可逆容量が大きくなる傾向にあり、エネル
ギー密度が小さく、さらに負極を作製する際多くの結着
剤が必要になる傾向がある。得られるリチウム二次電池
の急速充放電特性、サイクル特性等がさらに良好な点か
ら、比表面積は、1.5〜5m2/gであることがさら
に好ましく、2〜5m2/gであることが極めて好まし
い。比表面積の測定は、BET法(窒素ガス吸着法)な
どの既知の方法をとることができる。
The graphite particles of the present invention have a specific surface area of 8
m 2 / g or less are preferred ones, more preferably 5 m 2 /
g or less. When the graphite particles are used for a negative electrode, the obtained lithium secondary battery can have improved rapid charge / discharge characteristics and cycle characteristics, and can have a reduced irreversible capacity in the first cycle. The specific surface area is 8m
When it exceeds 2 / g, the irreversible capacity in the first cycle of the obtained lithium secondary battery tends to increase, the energy density tends to be low, and a large amount of binder tends to be required when producing a negative electrode. is there. The specific surface area is more preferably 1.5 to 5 m 2 / g, and more preferably 2 to 5 m 2 / g, from the viewpoint that the obtained lithium secondary battery has more favorable rapid charge / discharge characteristics and cycle characteristics. Is very preferred. The specific surface area can be measured by a known method such as a BET method (nitrogen gas adsorption method).

【0016】さらに、本発明で用いる各黒鉛粒子のX線
広角回析における結晶の層間距離d(002)は3.3
8Å以下が好ましく、3.37〜3.35Åの範囲がよ
り好ましい。結晶の層間距離d(002)が3.38&A
ring;を超えると放電容量が小さくなる傾向がある。c
軸方向の結晶子の大きさLc(002)は500Å以上
が好ましく、1000〜100000Åであることがよ
り好ましい。結晶の層間距離d(002)が小さくなるか
c軸方向の結晶子の大きさLc(002)が大きくなる
と、放電容量が大きくなる傾向がある。
Furthermore, the interlayer distance d (002) of the crystals in the wide-angle X-ray diffraction of each graphite particle used in the present invention is 3.3.
8 ° or less is preferable, and the range of 3.37 to 3.35 ° is more preferable. The crystal interlayer distance d (002) is 3.38 & A
If it exceeds ring ;, the discharge capacity tends to be small. c
The crystallite size Lc (002) in the axial direction is preferably 500 ° or more, more preferably 1000 to 100000 °. As the interlayer distance d (002) of the crystal decreases or the crystallite size Lc (002) in the c-axis direction increases, the discharge capacity tends to increase.

【0017】本発明の黒鉛粒子の製造法に特に制限はな
いが、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバイン
ダに黒鉛化触媒を1〜50重量%添加して混合し、焼成
した後粉砕することによりまず黒鉛粒子を得ることが好
ましい。ついで、該黒鉛粒子に有機系結着剤及び溶剤を
添加して混合し、粘度を調製した後、該混合物を集電体
に塗布し、乾燥して溶剤を除去した後、加圧して一体化
してリチウム二次電池用負極とすることができる。
Although there is no particular limitation on the method for producing the graphite particles of the present invention, 1 to 50% by weight of a graphitization catalyst is added to a graphitizable aggregate or graphite and a graphitizable binder, mixed and calcined. It is preferable to obtain graphite particles first by post-grinding. Then, an organic binder and a solvent are added to the graphite particles and mixed, and the viscosity is adjusted. The mixture is applied to a current collector, dried, and the solvent is removed. To form a negative electrode for a lithium secondary battery.

【0018】黒鉛化可能な骨材としては、例えば、コー
クス粉末、樹脂の炭化物等が使用できるが、黒鉛化でき
る粉末材料であれば特に制限はない。中でも、ニードル
コークス等の黒鉛化しやすいコークス粉末が好ましい。
また黒鉛としては、例えば天然黒鉛粉末、人造黒鉛粉末
等が使用できるが粉末状であれば特に制限はない。黒鉛
化可能な骨材又は黒鉛の粒径は、本発明で作製する黒鉛
粒子の粒径より小さいことが好ましい。
As the graphitizable aggregate, for example, coke powder, resin carbide and the like can be used, but there is no particular limitation as long as the material can be graphitized. Among them, coke powder such as needle coke which is easily graphitized is preferable.
As the graphite, for example, natural graphite powder, artificial graphite powder and the like can be used, but there is no particular limitation as long as the powder is in the form of powder. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite particles produced in the present invention.

【0019】さらに黒鉛化触媒としては、例えば鉄、ニ
ッケル、チタン、ケイ素、硼素等の金属、これらの炭化
物、酸化物などの黒鉛化触媒が使用できる。これらの中
で、ケイ素または硼素の炭化物または酸化物が好まし
い。これらの黒鉛化触媒の添加量は、得られる黒鉛粒子
に対して好ましくは1〜50重量%、より好ましくは5
〜40重量%の範囲、さらに好ましくは5〜30重量%
の範囲とされ、1重量%未満であると黒鉛粒子のアスペ
クト比及び比表面積が大きくなり黒鉛の結晶の発達が悪
くなる傾向にあり、一方50重量%を超えると均一に混
合することが困難で作業性が悪くなる傾向にある。
Further, as the graphitization catalyst, for example, metals such as iron, nickel, titanium, silicon and boron, and their graphitization catalysts such as carbides and oxides can be used. Of these, carbides or oxides of silicon or boron are preferred. The amount of the graphitization catalyst to be added is preferably 1 to 50% by weight, more preferably 5 to 50% by weight based on the obtained graphite particles.
-40% by weight, more preferably 5-30% by weight
If the content is less than 1% by weight, the aspect ratio and the specific surface area of the graphite particles tend to be large, and the development of graphite crystals tends to be poor. On the other hand, if it exceeds 50% by weight, it is difficult to mix them uniformly. Workability tends to deteriorate.

【0020】バインダとしては、例えば、タール、ピッ
チの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が
好ましい。バインダの配合量は、扁平状の黒鉛化可能な
骨材又は黒鉛に対し、5〜80重量%添加することが好
ましく、10〜80重量%添加することがより好まし
く、15〜80重量%添加することがさらに好ましい。
バインダの量が多すぎたり少なすぎると、作製する黒鉛
粒子のアスペクト比及び比表面積が大きくなり易いとい
う傾向がある。黒鉛化可能な骨材又は黒鉛とバインダの
混合方法は、特に制限はなく、ニーダー等を用いて行わ
れるが、バインダの軟化点以上の温度で混合することが
好ましい。具体的にはバインダがピッチ、タール等の際
には、50〜300℃が好ましく、熱硬化性樹脂の場合
には、20〜100℃が好ましい。
As the binder, for example, organic materials such as thermosetting resin and thermoplastic resin are preferable in addition to tar and pitch. The binder is preferably added in an amount of 5 to 80% by weight, more preferably 10 to 80% by weight, and more preferably 15 to 80% by weight, based on the flat graphitizable aggregate or graphite. Is more preferable.
If the amount of the binder is too large or too small, the graphite particles to be produced tend to have an increased aspect ratio and specific surface area. The method of mixing the graphitizable aggregate or graphite and the binder is not particularly limited, and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, the temperature is preferably 50 to 300 ° C, and when the binder is a thermosetting resin, the temperature is preferably 20 to 100 ° C.

【0021】次に上記の混合物を焼成し、黒鉛化処理を
行う。なお、この処理の前に上記混合物を所定形状に成
形しても良い。さらに、成形後、黒鉛化前に粉砕し、粒
径を調整した後、黒鉛化を行っても良い。焼成は前記混
合物が酸化し難い条件で焼成することが好ましく、例え
ば窒素雰囲気中、アルゴンガス雰囲気中、真空中で焼成
する方法が挙げられる。黒鉛化の温度は、2000℃以
上が好ましく、2500℃以上であることがより好まし
く、2800℃〜3200℃であることがさらに好まし
い。黒鉛化の温度が低いと、黒鉛の結晶の発達が悪く、
放電容量が低くなる傾向があると共に添加した黒鉛化触
媒が作製する黒鉛粒子に残存し易くなる傾向がある。黒
鉛化触媒が、作製する黒鉛粒子中に残存すると、放電容
量が低下する。黒鉛化の温度が高すぎると、黒鉛が昇華
することがある。
Next, the above mixture is fired and graphitized. The mixture may be formed into a predetermined shape before this treatment. Further, after the molding, it may be pulverized before graphitization, and after adjusting the particle size, graphitization may be performed. The firing is preferably performed under conditions in which the mixture is unlikely to be oxidized. Examples of the firing include a method of firing in a nitrogen atmosphere, an argon gas atmosphere, or a vacuum. The temperature for graphitization is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. to 3200 ° C. If the graphitization temperature is low, the development of graphite crystals is poor,
The discharge capacity tends to decrease and the added graphitization catalyst tends to remain in the produced graphite particles. If the graphitization catalyst remains in the graphite particles to be produced, the discharge capacity decreases. If the graphitization temperature is too high, the graphite may sublime.

【0022】次に、得られた黒鉛化物を粉砕することが
好ましい。黒鉛化物の粉砕方法は、特に制限はないが、
例えばジェットミル、振動ミル、ピンミル、ハンマーミ
ル等の既知の方法をとることができる。粉砕後の粒径
は、平均粒径が1〜100μmが好ましく、10〜50
μmであることがより好ましい。平均粒径が大きくなり
すぎる場合は作製する電極の表面に凹凸ができ易くなる
傾向がある。なお、本発明において平均粒径は、レーザ
ー回折粒度分布計により測定することができる。
Next, the obtained graphitized product is preferably pulverized. The method of pulverizing the graphitized material is not particularly limited,
For example, a known method such as a jet mill, a vibration mill, a pin mill, and a hammer mill can be used. The particle size after pulverization is preferably such that the average particle size is 1 to 100 μm,
More preferably, it is μm. If the average particle size is too large, the surface of the electrode to be produced tends to have irregularities. In the present invention, the average particle size can be measured by a laser diffraction particle size distribution meter.

【0023】以上に示す工程を経ることにより、本発明
の黒鉛粒子を得ることができる。得られた前記黒鉛粒子
は、有機系結着材及び溶剤を含む材料を混合して、シー
ト状、ペレット状等の形状に成形される。有機系結着剤
としては、例えば、ポリエチレン、ポリプロピレン、エ
チレンプロピレンターポリマー、ブタジエンゴム、スチ
レンブタジエンゴム、ブチルゴム、イオン伝導率の大き
な高分子化合物等が使用できる。本発明においてイオン
伝導率の大きな高分子化合物としては、ポリフッ化ビニ
リデン、ポリエチレンオキサイド、ポリエピクロルヒド
リン、ポリフォスファゼン、ポリアクリロニトリル等が
使用できる。これらの中では、イオン伝導率の大きな高
分子化合物が好ましく、ポリフッ化ビニリデンが特に好
ましい。
Through the steps described above, the graphite particles of the present invention can be obtained. The obtained graphite particles are formed into a sheet-like or pellet-like shape by mixing a material containing an organic binder and a solvent. As the organic binder, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, a polymer compound having a high ionic conductivity, and the like can be used. In the present invention, as the polymer compound having a large ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, and the like can be used. Among these, a polymer compound having a large ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.

【0024】有機系結着剤の含有量は、黒鉛粉末と有機
系結着剤との混合物に対して、3〜20重量%用いるこ
とが好ましい。溶剤としては特に制限はなく、N−メチ
ル2−ピロリドン、ジメチルホルムアミド、イソプロパ
ノール等が用いられる。溶剤の量に特に制限はなく、所
望の粘度に調整できればよいが、混合物に対して、30
〜70重量%用いられることが好ましい。
The content of the organic binder is preferably 3 to 20% by weight based on the mixture of the graphite powder and the organic binder. The solvent is not particularly limited, and N-methyl 2-pyrrolidone, dimethylformamide, isopropanol and the like are used. The amount of the solvent is not particularly limited as long as it can be adjusted to a desired viscosity.
It is preferably used in an amount of up to 70% by weight.

【0025】集電体としては、例えばニッケル、銅等の
箔、メッシュなどの金属集電体が使用できる。なお一体
化は、例えばロール、プレス等の成形法で行うことがで
き、またこれらを組み合わせて一体化してもよい。この
ようにして得られた負極はリチウムイオン二次電池やリ
チウムポリマ二次電池等のリチウム二次電池の負極とし
て用いられる。例えば、リチウムイオン二次電池におい
ては、セパレータを介して正極を対向して配置し、かつ
電解液を注入する。本発明によれば、従来の炭素材料を
負極に使用したリチウム二次電池に比較して、急速充放
電特性及びサイクル特性に優れ、かつ不可逆容量が小さ
いリチウム二次電池を作製することができる。
As the current collector, for example, a metal current collector such as a foil of nickel or copper, or a mesh can be used. In addition, the integration can be performed by a molding method such as a roll, a press, or the like, and these may be combined and integrated. The negative electrode thus obtained is used as a negative electrode of a lithium secondary battery such as a lithium ion secondary battery or a lithium polymer secondary battery. For example, in a lithium ion secondary battery, a positive electrode is arranged to face a separator, and an electrolyte is injected. ADVANTAGE OF THE INVENTION According to this invention, compared with the lithium secondary battery which used the conventional carbon material for the negative electrode, the lithium secondary battery which is excellent in a quick charge / discharge characteristic and a cycle characteristic, and whose irreversible capacity is small can be manufactured.

【0026】本発明におけるリチウム二次電池の正極に
用いられる材料については特に制限はなく、LiNiO
2、LiCoO2、LiMn24等を単独又は混合して使
用することができる。電解液としては、LiClO4
LiPF6、LiAsF6、LiBF4、LiSO3CF3
等のリチウム塩を例えばエチレンカーボネート、ジエチ
ルカーボネート、ジメトキシエタン、ジメチルカーボネ
ート、テトラヒドロフラン、プロピレンカーボネート等
の非水系溶剤に、ポリフッ化ビニリデン等の高分子固体
電解質に溶解又は含有させたいわゆる有機電解液を使用
することができる。
There is no particular limitation on the material used for the positive electrode of the lithium secondary battery in the present invention.
2 , LiCoO 2 , LiMn 2 O 4, etc. can be used alone or as a mixture. LiClO 4 ,
LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3
For example, a so-called organic electrolytic solution in which a lithium salt such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, or a non-aqueous solvent such as propylene carbonate is dissolved or contained in a polymer solid electrolyte such as polyvinylidene fluoride is used. can do.

【0027】液体の電解液を使用する場合に用いられる
セパレータとしては、例えばポリエチレン、ポリプロピ
レン等のポリオレフィンを主成分とした不織布、クロ
ス、微孔フィルム又はこれらを組み合わせたものを使用
することができる。なお、図2に円筒型リチウム二次電
池の一例の一部断面正面図を示す。図2に示す円筒型リ
チウム二次電池は、薄板状に加工された正極1と、同様
に加工された負極2が、ポリエチレン製微孔膜等のセパ
レータ3を介して重ね合わせたものを捲回し、これを金
属製等の電池缶7に挿入し、密閉化されている。正極1
は正極タブ4を介して正極蓋6に接合され、負極2は負
極タブ5を介して電池底部へ接合されている。正極蓋6
はガスケット8にて電池缶7へ固定されている。
As the separator used when a liquid electrolyte is used, for example, a nonwoven fabric, cloth, microporous film or the like in which a polyolefin such as polyethylene or polypropylene as a main component can be used. FIG. 2 shows a partial cross-sectional front view of an example of the cylindrical lithium secondary battery. The cylindrical lithium secondary battery shown in FIG. 2 is formed by winding a positive electrode 1 processed into a thin plate and a negative electrode 2 processed in the same manner with a separator 3 such as a polyethylene microporous membrane interposed therebetween. This is inserted into a battery can 7 made of metal or the like to be sealed. Positive electrode 1
Is connected to the positive electrode lid 6 via the positive electrode tab 4, and the negative electrode 2 is connected to the battery bottom via the negative electrode tab 5. Positive electrode cover 6
Is fixed to the battery can 7 by a gasket 8.

【0028】[0028]

【実施例】実施例1 平均粒径が5μmのコークス粉末40重量部、タールピ
ッチ25重量部、平均粒径が48μmの炭化ケイ素5重
量部及びコールタール20重量部を混合し、200℃で
1時間撹拌した。次いで、窒素雰囲気中で2800℃で
焼成した後粉砕し、平均粒径が30μmの黒鉛粒子を作
製した。得られた黒鉛粒子を水銀圧入法による細孔径分
布測定(島津ポアサイザー9320形使用)を行った結
果、10 2〜106Åの範囲に細孔を有し、黒鉛粒子重量
当たりの全細孔体積は、0.6cc/gであった。ま
た、1×102〜2×104Åの範囲の細孔体積は、黒鉛
粒子重量当たり0.20cc/gであった。また得られ
た黒鉛粒子を100個任意に選び出し、アクペクト比の
平均値を測定した結果、1.5であり、黒鉛粒子のBE
T法による比表面積は、1.5m2/gであり、黒鉛粒
子のX線広角回析による結晶の層間距離d(002)は
3.362Å及び結晶子の大きさLc(002)は10
00Å以上であった。さらに、得られた黒鉛粒子の走査
型電子顕微鏡(SEM写真)によれば、この黒鉛粒子
は、扁平状の粒子が複数配向面が非平行となるように集
合又は結合した構造をしていた。
EXAMPLE 1 40 parts by weight of coke powder having an average particle size of 5 μm, tarpi
5 parts by weight, silicon carbide 5 layers with an average particle size of 48 μm
And 20 parts by weight of coal tar at 200 ° C.
Stir for 1 hour. Then, at 2800 ° C. in a nitrogen atmosphere
After baking, pulverized to produce graphite particles with an average particle size of 30 μm.
Made. The obtained graphite particles are subjected to a pore size distribution by mercury intrusion method.
Cloth measurement (using Shimadzu Pore Sizer 9320)
Fruit, 10 Two-106Has pores in the range of Å, graphite particles weight
The total pore volume per was 0.6 cc / g. Ma
1 × 10Two~ 2 × 10FourThe pore volume in the range Å is graphite
It was 0.20 cc / g per particle weight. Also obtained
Arbitrarily selected 100 graphite particles,
As a result of measuring the average value, it was 1.5, and the BE of the graphite particles was
Specific surface area by T method is 1.5mTwo/ G, graphite particles
The interlayer distance d (002) of the crystal by X-ray wide angle diffraction of the
3.362 ° and the crystallite size Lc (002) are 10
It was more than 00 °. In addition, scanning of the obtained graphite particles
According to a scanning electron microscope (SEM photograph), the graphite particles
Means that flat particles are collected so that multiple orientation planes are non-parallel.
Had a combined or bonded structure.

【0029】次いで得られた黒鉛粒子90重量%に、N
−メチル−2−ピロリドンに溶解したポリフッ化ビニリ
デン(PVDF)を固形分で10重量%を加えて混練し
て黒鉛ペーストを作製した。この黒鉛ペーストを厚さが
10μmの圧延銅箔に塗布し、さらに乾燥して、面圧4
90MPa(0.5トン/cm2)の圧力で圧縮成形
し、試料電極とした。黒鉛粒子層の厚さは90μm及び
密度は1.6g/cm3とした。作製した試料電極を3
端子法による定電流充放電を行い、リチウム二次電池用
負極としての評価を行った。図3はリチウム二次電池の
概略図であり、試料電極の評価は図3に示すようにガラ
スセル9に、電解液10としてLiPF6をエチレンカ
ーボネート(EC)及びジメチルカーボネート(DM
C)(ECとDMCは体積比で1:1)の混合溶媒に1
モル/リットルの濃度になるように溶解した溶液を入
れ、試料電極11、セパレータ12及び対極13を積層
して配置し、さらに参照極14を上部から吊るしてリチ
ウム二次電池を作製して行った。なお、対極13及び参
照極14には金属リチウムを使用し、セパレータ4には
ポリエチレン微孔膜を使用した。得られたリチウム二次
電池を用いて試料電極11と対極13の間に、試料電極
の面積に対して、0.5mA/cm2の定電流で5mV
(Vvs.Li/Li+)まで充電し、1V(Vvs.
Li/Li+)まで放電する試験を繰り返した。表1に
サイクル目の黒鉛粒子の単位重量当たりの充電容量、放
電容量及び30サイクル目の黒鉛粒子の単位重量当たり
の放電容量を示す。
Next, 90% by weight of the obtained graphite particles was added with N
10% by weight of polyvinylidene fluoride (PVDF) dissolved in -methyl-2-pyrrolidone was added and kneaded to prepare a graphite paste. This graphite paste was applied to a rolled copper foil having a thickness of 10 μm, and further dried to obtain a surface pressure of 4 μm.
It was compression molded at a pressure of 90 MPa (0.5 ton / cm 2 ) to obtain a sample electrode. The thickness of the graphite particle layer was 90 μm and the density was 1.6 g / cm 3 . 3
Constant current charge / discharge was performed by a terminal method, and evaluation as a negative electrode for a lithium secondary battery was performed. FIG. 3 is a schematic view of a lithium secondary battery. The evaluation of the sample electrode was performed by using LiPF 6 as an electrolyte 10 in ethylene carbonate (EC) and dimethyl carbonate (DM) as shown in FIG.
C) (1: 1 volume ratio of EC and DMC)
A solution dissolved at a concentration of mol / liter was put therein, the sample electrode 11, the separator 12, and the counter electrode 13 were stacked and arranged, and the reference electrode 14 was suspended from above to produce a lithium secondary battery. . Note that metallic lithium was used for the counter electrode 13 and the reference electrode 14, and a polyethylene microporous membrane was used for the separator 4. Using the obtained lithium secondary battery, 5 mV with a constant current of 0.5 mA / cm 2 between the sample electrode 11 and the counter electrode 13 with respect to the area of the sample electrode.
(Vvs. Li / Li + ) and 1 V (Vvs.
The test for discharging to Li / Li + ) was repeated. Table 1 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.

【0030】実施例2 平均粒径が20μmのコークス粉末50重量部、ピッチ
20重量部、平均粒径が48μmの炭化ケイ素7重量部
及びコールタール10重量部を混合し、200℃で1時
間撹拌した。次いで、窒素雰囲気中で2800℃で焼成
した後粉砕し、平均粒径が30μmの黒鉛粒子を得た。
得られた黒鉛粒子を水銀圧入法による細孔径分布測定
(島津ポアサイザー9320形使用)を行った結果、1
2〜106Åの範囲に細孔を有し、黒鉛粒子重量当たり
の全細孔体積は、1.5cc/gであった。また、1×
102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量
当たり0.13cc/gであった。また得られた黒鉛粒
子を100個任意に選び出し、アスペクト比の平均値を
測定した結果、2.3であり、黒鉛粒子のBET法によ
る比表面積は、3.6m2/gであり、黒鉛粒子のX線
広角回析による結晶の層間距離d(002)は3.36
1Å及び結晶子の大きさLc(002)は1000Å以
上であった。さらに得られた黒鉛粒子は、扁平状の粒子
が複数配向面が非平行となるように集合又は結合した構
造をしていた。以下実施例1と同様の工程を経てリチウ
ム二次電池を作製し、実施例1と同様の試験を行った。
表1に1サイクル目の黒鉛粒子の単位重量当たり充電容
量、放電容量及び30サイクル目の黒鉛粒子の単位重量
当たり放電容量を示す。
Example 2 50 parts by weight of coke powder having an average particle diameter of 20 μm, 20 parts by weight of pitch, 7 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. did. Next, the powder was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to obtain graphite particles having an average particle diameter of 30 μm.
The obtained graphite particles were subjected to a pore size distribution measurement using a mercury intrusion method (using Shimadzu Pore Sizer 9320).
0 2-10 have pores in the range of 6 Å, the total pore volume per graphite particle weight was 1.5 cc / g. Also, 1 ×
10 2 to 2 × 10 pore volumes of 4 Å range was graphite particles by weight per 0.13 cc / g. In addition, 100 obtained graphite particles were arbitrarily selected, and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles determined by the BET method was 3.6 m 2 / g. The crystal interlayer distance d (002) obtained by X-ray wide angle diffraction is 3.36.
1 ° and the crystallite size Lc (002) were 1000 ° or more. Further, the obtained graphite particles had a structure in which flat particles were aggregated or bonded so that a plurality of orientation planes became non-parallel. Hereinafter, a lithium secondary battery was manufactured through the same steps as in Example 1, and the same test as in Example 1 was performed.
Table 1 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.

【0031】比較例1 メソカーボンマイクロビーズ(川崎製鉄(株)製、商品
名KMFC)を窒素雰囲気中で2800℃で焼成し、平
均粒径が25μmの黒鉛粒子を得た。得られた黒鉛粒子
を水銀圧入法による細孔径分布測定(島津ポアサイザー
9320形使用)を行った結果、102〜106Åの範囲
に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、
0.35cc/gであった。また、1×102〜2×1
4Åの範囲の細孔体積は、黒鉛粒子重量当たり0.0
6cc/gであった。また得られた黒鉛粒子を100個
任意に選び出し、アスペクト比の平均値を測定した結
果、1であり、黒鉛粒子のBET法による比表面積は、
1.4m2/gであり、黒鉛粒子のX線広角回析による
結晶の層間距離d(002)は3.378Å及び結晶子
の大きさLc(002)は500Åであった。以下実施
例1と同様の工程を経て、リチウム二次電池を作製し、
実施例1と同様の試験を行った。表1に1サイクル目の
黒鉛粒子の単位重量当たりの充電容量、放電容量及び3
0サイクル目の黒鉛粒子の単位重量当たりの放電容量を
示す。
Comparative Example 1 Mesocarbon microbeads (KMFC, manufactured by Kawasaki Steel Corporation) were fired at 2800 ° C. in a nitrogen atmosphere to obtain graphite particles having an average particle size of 25 μm. The results of the obtained graphite particles were subjected pore size distribution measurement by the mercury porosimetry (Shimadzu Poasaiza 9320 form used), has pores in the range of 10 2 to 10 6 Å, the total pore volume per graphite particles by weight Is
It was 0.35 cc / g. Also, 1 × 10 2 to 2 × 1
0 4 pore volumes ranging Å is graphite particles by weight per 0.0
It was 6 cc / g. Further, 100 obtained graphite particles were arbitrarily selected, and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles determined by the BET method was 1,
It was 1.4 m 2 / g, the interlayer distance d (002) of the crystals by X-ray wide angle diffraction of the graphite particles was 3.378 °, and the crystallite size Lc (002) was 500 °. Hereinafter, through the same steps as in Example 1, a lithium secondary battery was manufactured.
The same test as in Example 1 was performed. Table 1 shows the charge capacity, discharge capacity and 3
It shows the discharge capacity per unit weight of graphite particles at the 0th cycle.

【0032】比較例2 平均粒径が5μmのコークス粉末50重量部、ピッチ1
0重量部、平均粒径が65μmの酸化鉄30重量部及び
コールタール20重量部を混合し、200℃で1時間撹
拌した。次いで、窒素雰囲気中で2800℃で焼成した
後粉砕し、平均粒径が15μmの黒鉛粒子を得た。得ら
れた黒鉛粒子を水銀圧入法による細孔径分布測定(島津
ポアサイザー9320形使用)を行った結果、102
106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全
細孔体積は、2.1cc/gであった。また、1×10
2〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当た
り0.42cc/gであった。また得られた黒鉛粒子を
100個任意に選び出し、アスペクト比の平均値を測定
した結果、2.8であり、黒鉛粒子のBET法による比
表面積は、8.3m2/gであり、黒鉛粒子のX線広角
回析による結晶の層間距離d(002)は3.365Å
及び結晶子の大きさLc(002)は1000Å以上で
あった。以下、実施例1と同様の工程を経て、リチウム
二次電池を作製し、実施例1と同様の試験を行った。表
1に1サイクル目の黒鉛粒子の単位重量当たりの充電容
量、放電容量及び30サイクル目の黒鉛粒子の単位重量
当たりの放電容量を示す。
Comparative Example 2 50 parts by weight of coke powder having an average particle size of 5 μm, pitch 1
0 parts by weight, 30 parts by weight of iron oxide having an average particle size of 65 μm, and 20 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Next, the powder was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to obtain graphite particles having an average particle size of 15 μm. The resulting pore size distribution measurement of graphite particles by mercury porosimetry (Shimadzu Poasaiza 9320 form used) the result of 10 2 -
It had pores in the range of 10 6 %, and the total pore volume per graphite particle weight was 2.1 cc / g. Also, 1 × 10
The pore volume in the range of 2 to 2 × 10 4 0.4 was 0.42 cc / g per graphite particle weight. Further, 100 obtained graphite particles were arbitrarily selected, and the average value of the aspect ratio was measured. As a result, it was 2.8. The specific surface area of the graphite particles by the BET method was 8.3 m 2 / g. The interlayer distance d (002) of the crystal by X-ray wide angle diffraction of 3.365 ° is 3.365 °.
And the crystallite size Lc (002) was 1000 ° or more. Hereinafter, a lithium secondary battery was manufactured through the same steps as in Example 1, and the same test as in Example 1 was performed. Table 1 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示されるように、本発明はの黒鉛粒
子を用いて得られたリチウム二次電池は、高容量でサイ
クル特性に優れることが明らかである。
As shown in Table 1, it is clear that the lithium secondary battery obtained by using the graphite particles of the present invention has high capacity and excellent cycle characteristics.

【0035】[0035]

【発明の効果】請求項1及び5に記載の黒鉛粒子は、サ
イクル特性に優れたリチウム二次電池に好適なものであ
る。請求項2、3、6及び7に記載の黒鉛粒子は、急速
充放電特性及びサイクル特性に優れたリチウム二次電池
に好適なものである。請求項4及び8記載の黒鉛粒子
は、急速充放電特性及びサイクル特性に優れ、かつ第一
サイクル目の不可逆容量が小さく、リチウム二次電池に
好適なものである。
The graphite particles according to the first and fifth aspects are suitable for a lithium secondary battery having excellent cycle characteristics. The graphite particles according to the second, third, sixth and seventh aspects are suitable for a lithium secondary battery having excellent rapid charge / discharge characteristics and cycle characteristics. The graphite particles according to claims 4 and 8 are excellent in rapid charge / discharge characteristics and cycle characteristics, and have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries.

【0036】請求項9記載の黒鉛粒子の製造法によれ
ば、急速充放電特性及びサイクル特性に優れ、かつ第一
サイクル目の不可逆容量が小さく、リチウム二次電池に
好適なものである。請求項10記載の黒鉛ペーストは、
急速充放電特性及びサイクル特性に優れ、かつ第一サイ
クル目の不可逆容量が小さく、リチウム二次電池に好適
なものである。請求項11記載のリチウム二次電池用負
極は、急速充放電特性及びサイクル特性に優れ、かつ第
一サイクル目の不可逆容量が小さく、リチウム二次電池
に好適なものである。請求項12記載のリチウム二次電
池は、急速充放電特性及びサイクル特性に優れ、かつ第
一サイクル目の不可逆容量が小さいものである。
According to the method for producing graphite particles of the ninth aspect, the graphite particles are excellent in rapid charge / discharge characteristics and cycle characteristics, and have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries. The graphite paste according to claim 10,
It is excellent in rapid charge / discharge characteristics and cycle characteristics, and has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. The negative electrode for a lithium secondary battery according to the eleventh aspect has excellent rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. The lithium secondary battery according to the twelfth aspect has excellent rapid charge / discharge characteristics and cycle characteristics, and has a small irreversible capacity in the first cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる黒鉛粒子の走査型電子顕微鏡写
真であり、(a)は粒子の外表面の写真、(b)は粒子
の断面の写真である。
FIG. 1 is a scanning electron micrograph of graphite particles used in the present invention, wherein (a) is a photograph of the outer surface of the particles and (b) is a photograph of a cross section of the particles.

【図2】円筒型リチウム二次電池の一部断面正面図であ
る。
FIG. 2 is a partial cross-sectional front view of a cylindrical lithium secondary battery.

【図3】本発明の実施例で、充放電特性及び不可逆容量
の測定に用いたリチウム二次電池の概略図である。
FIG. 3 is a schematic view of a lithium secondary battery used for measurement of charge / discharge characteristics and irreversible capacity in Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極タブ 5 負極タブ 6 正極蓋 7 電池缶 8 ガスケット 9 ガラスセル 10 電解液 11 試料電極(負極) 12 セパレータ 13 対極(正極) 14 参照極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket 9 Glass cell 10 Electrolyte 11 Sample electrode (negative electrode) 12 Separator 13 Counter electrode (positive electrode) 14 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 和夫 茨城県日立市鮎川町三丁目3番1号 日 立化成工業株式会社 山崎工場内 (56)参考文献 特開 平10−158005(JP,A) 特開2002−83586(JP,A) 国際公開97/42671(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C01B 31/04 H01M 4/02,4/58 H01M 4/04,10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuo Yamada 3-3-1 Ayukawacho, Hitachi City, Ibaraki Prefecture Inside the Yamazaki Plant of Hitachi Chemical Co., Ltd. (56) References JP-A-10-158005 (JP, A JP-A-2002-83586 (JP, A) WO 97/42671 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 31/04 H01M 4 / 02,4 / 58 H01M 4 / 04,10 / 40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 扁平状の粒子を複数、配向面が非平行と
なるように集合又は結合させてなり、102〜106Åの
範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり
0.4〜2.0cc/gであるリチウム二次電池負極用
黒鉛粒子。
1. A method in which a plurality of flat particles are aggregated or bonded so that their orientation planes are non-parallel, and the pore volume of pores having a size in the range of 10 2 to 10 6 mm is graphite particles. Graphite particles for a lithium secondary battery negative electrode having a weight of 0.4 to 2.0 cc / g.
【請求項2】 扁平状の粒子を複数、配向面が非平行と
なるように集合又は結合させてなり、1×102〜2×
104Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子
重量当たり0.08〜0.4cc/gであるリチウム二
次電池負極用黒鉛粒子。
2. A method in which a plurality of flat particles are aggregated or bonded so that their orientation planes are non-parallel, and 1 × 10 2 to 2 ×
Graphite particles for a negative electrode of a lithium secondary battery, wherein the pore volume of pores having a size in the range of 10 4 % is 0.08 to 0.4 cc / g per graphite particle weight.
JP2001208318A 1996-12-26 2001-07-09 Graphite particles for lithium secondary battery negative electrode Expired - Lifetime JP3321782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001208318A JP3321782B2 (en) 1996-12-26 2001-07-09 Graphite particles for lithium secondary battery negative electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-348406 1996-12-26
JP34840696 1996-12-26
JP2001208318A JP3321782B2 (en) 1996-12-26 2001-07-09 Graphite particles for lithium secondary battery negative electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33100797A Division JP3305995B2 (en) 1996-12-26 1997-11-14 Graphite particles for lithium secondary battery negative electrode

Publications (2)

Publication Number Publication Date
JP2002083587A JP2002083587A (en) 2002-03-22
JP3321782B2 true JP3321782B2 (en) 2002-09-09

Family

ID=26578739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001208318A Expired - Lifetime JP3321782B2 (en) 1996-12-26 2001-07-09 Graphite particles for lithium secondary battery negative electrode

Country Status (1)

Country Link
JP (1) JP3321782B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175983A (en) * 1996-12-26 2011-09-08 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery
JP2004022507A (en) * 2002-06-20 2004-01-22 Sony Corp Electrode and battery using it
EP1511101B1 (en) * 2003-08-21 2015-05-27 Samsung SDI Co., Ltd. Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery comprising same
JP4535761B2 (en) * 2004-03-30 2010-09-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR102500915B1 (en) 2015-01-16 2023-02-16 미쯔비시 케미컬 주식회사 Carbon material and nonaqueous secondary battery using carbon material
US20210091373A1 (en) * 2018-03-28 2021-03-25 Hitachi Chemical Company, Ltd. Method for manufacturing negative electrode material for lithium-ion secondary battery, and method for manufacturing lithium-ion secondary battery
WO2019186828A1 (en) * 2018-03-28 2019-10-03 日立化成株式会社 Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019186830A1 (en) * 2018-03-28 2019-10-03 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20210083288A1 (en) * 2018-03-28 2021-03-18 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2002083587A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
KR100442178B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
US7906240B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3361510B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP4232404B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3892957B2 (en) Method for producing graphite particles
JP2002343341A (en) Negative electrode for lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP5853293B2 (en) Negative electrode for lithium secondary battery
JP5704473B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4687661B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2005289803A (en) Graphite grain, graphite paste using graphite grain, negative electrode for lithium secondary battery, and lithium secondary battery
JPH10223231A (en) Anode for lithium secondary battery and lithium secondary battery
JP2008016455A (en) Negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term