JPH09306405A - Sample cooling device - Google Patents
Sample cooling deviceInfo
- Publication number
- JPH09306405A JPH09306405A JP8112297A JP11229796A JPH09306405A JP H09306405 A JPH09306405 A JP H09306405A JP 8112297 A JP8112297 A JP 8112297A JP 11229796 A JP11229796 A JP 11229796A JP H09306405 A JPH09306405 A JP H09306405A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- heat
- storage container
- refrigerant
- conducting member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001073 sample cooling Methods 0.000 title claims abstract description 43
- 239000007788 liquid Substances 0.000 claims abstract description 86
- 238000003860 storage Methods 0.000 claims abstract description 79
- 239000003507 refrigerant Substances 0.000 claims abstract description 65
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000001307 helium Substances 0.000 claims abstract description 55
- 229910052734 helium Inorganic materials 0.000 claims abstract description 55
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 55
- 238000001816 cooling Methods 0.000 claims abstract description 50
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 31
- 238000001704 evaporation Methods 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 238000012905 input function Methods 0.000 claims description 5
- 238000013016 damping Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000002826 coolant Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Abstract
(57)【要約】
【課題】 電子顕微鏡等の試料冷却装置の極低温化と温
度を補償すること。
【解決手段】 液体窒素貯留容器17の内側に液体ヘリ
ウム貯留容器18を設けた二槽構造の冷媒貯留容器16
とし、液体ヘリウム貯留容器18に結合され独立した二
つの第一、第二熱伝導部材23、26と液体窒素貯留容
器17に結合された第三の熱伝導部材20を第一熱伝導
部材23の外側に各々略筒状に包含し熱伝導と熱シール
ドを兼ね備える。第一熱伝導部材23は中空とし冷媒が
流入すろように形成するとともに熱伝導面積をピエゾ素
子27で可変可能とする。試料1もしくは試料ホルダー
2あるいは試料1もしくは試料ホルダー2を積載する冷
却部材3にヒータ25および温度センサー28を設け、
温度制御装置29とピエゾ素子駆動装置30を閉ループ
で制御することで任意の温度に設定制御し温度を補償す
る。
(57) 【Abstract】 PROBLEM TO BE SOLVED: To cryogenic temperature of a sample cooling device such as an electron microscope and to compensate the temperature. A two-tank structure refrigerant storage container 16 in which a liquid helium storage container 18 is provided inside a liquid nitrogen storage container 17
And two independent first and second heat conduction members 23 and 26 connected to the liquid helium storage container 18 and a third heat conduction member 20 connected to the liquid nitrogen storage container 17 are connected to the first heat conduction member 23. Each of them is contained in a substantially cylindrical shape on the outside and has both heat conduction and heat shield. The first heat conducting member 23 is hollow so that the refrigerant can flow in, and the heat conducting area can be changed by the piezo element 27. The sample 1 or the sample holder 2 or the cooling member 3 on which the sample 1 or the sample holder 2 is mounted is provided with a heater 25 and a temperature sensor 28,
By controlling the temperature control device 29 and the piezo element driving device 30 in a closed loop, the temperature is controlled to be set to an arbitrary temperature and the temperature is compensated.
Description
【0001】[0001]
【発明の属する技術分野】本発明は電子顕微鏡等の真空
容器内に試料を設置する装置と組み合わせて使用する極
低温試料冷却装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic sample cooling device used in combination with a device for placing a sample in a vacuum container such as an electron microscope.
【0002】[0002]
【従来の技術】従来の電子顕微鏡等の極低温試料冷却装
置として、例えば、特開63ー32847号公報に記載
のように、5K以下の極低温領域まで試料冷却可能な装
置がある。2. Description of the Related Art As a conventional cryogenic sample cooling device such as an electron microscope, for example, there is a device capable of cooling a sample to a cryogenic region of 5 K or less as described in JP-A-63-32847.
【0003】図1は従来の電子顕微鏡等の極低温試料冷
却装置の構成を示したものである。FIG. 1 shows the structure of a conventional cryogenic sample cooling device such as an electron microscope.
【0004】試料1もしくは試料ホルダ2と熱接触して
極低温に冷却する第一冷却部材3と第一冷却部材3を略
筒状に取り囲み熱シールドを行う第二および第三の冷却
部材4、5で構成された試料ステージ6を電子顕微鏡鏡
体7内に設置し、電子顕微鏡鏡体7外に互いに独立で、
前記第一冷却部材3を冷却する第一の液体ヘリウム貯留
容器8と、熱シールドを行う第二および第三の冷却部材
4、5を冷却する第二の液体ヘリウム貯留容器9および
液体窒素貯留容器10が設置される。第一および第二の
液体ヘリウム貯留容器8、9および液体窒素貯留容器1
0が各々第一の冷却部3および第二、第三の冷却部材
4、5とそれぞれ、第一熱伝導部材11および第二、第
三の熱伝導部材12、13で結合され極低温まで試料の
冷却を可能にしていた。このように、従来の極低温試料
冷却装置では熱伝導および熱輻射により低温部に流入す
る熱量は、それと接触または相対する高温部の温度が低
い程少ないことから試料1および試料ホルダー2と室温
部分との間に約100Kに冷却された液体窒素冷却部材
5を介在させ、さらに、100K以上の液体窒素冷却部
材5と数Kの液体ヘウム冷却部材3とが100度程度の
温度差を持って接触または相対しないようにするため、
試料1および試料ホルダー2を冷却する液体ヘウム冷却
部材3と液体窒素冷却部材5との間に第二の液体ヘウム
冷却部材4を介在させて、試料1および試料ホルダー2
を囲う三重熱シールド構造とし、上記三つの冷却部材を
三つの冷媒貯留容器からそれぞれ三つの熱伝導部材を介
して冷却する構造となっていた。しかし、この方式で
は、液体窒素貯留容器が一槽と液体ヘリウム貯留容器が
二槽必要となり、熱伝導および熱輻射により低温部に流
入する熱量の変化や、試料温度をヒータ等の入熱により
任意に設定する場合には、液体ヘリウムの蒸発潜熱は液
体窒素に比べて1/10と小さく、僅かな熱流入によっ
て液体ヘリウムの消費量が大きく左右される。このこと
から、従来の液体ヘリウム貯留容器が二槽方式では各々
の貯留容器の液体ヘリウム消費量が試料冷却の実験条件
により異なることとなり、試料冷却可能(試料冷却実
験)時間は二槽の液体ヘリウムの内の早く消費される側
の液体ヘリウムによって決定されてしまう。このこと
は、高価な液体ヘリウムの有効活用ができず、液体ヘリ
ウムを大量に消費することとなり経済性にも欠ける。ま
た、液体ヘリウムを貯留容器入れる作業が二度となり作
業性にも欠ける。当然貯留容器の製作費も三つの貯留容
器となり、冷媒容器が大型化するためため製造価格が上
がる等の問題点があった。さらに、冷媒の蒸発による振
動および冷媒容器外面より受ける音波等の空気振動が熱
伝導部材を介して試料もしくは試料ホルダに伝達され電
子顕微鏡等の性能を低下させていた。A first cooling member 3 which makes thermal contact with the sample 1 or the sample holder 2 to cool it to a cryogenic temperature, and a second and a third cooling member 4 which surrounds the first cooling member 3 in a substantially cylindrical shape to perform heat shield, The sample stage 6 composed of 5 is installed inside the electron microscope body 7, and outside the electron microscope body 7 independently of each other,
A first liquid helium storage container 8 that cools the first cooling member 3, and a second liquid helium storage container 9 and a liquid nitrogen storage container that cools the second and third cooling members 4 and 5 that perform heat shield. 10 are installed. First and second liquid helium storage containers 8 and 9 and liquid nitrogen storage container 1
0 is coupled to the first cooling unit 3 and the second and third cooling members 4 and 5, respectively, by the first heat conduction member 11 and the second and third heat conduction members 12 and 13, respectively, and the sample is cooled to a cryogenic temperature. Was allowed to cool. As described above, in the conventional cryogenic sample cooling device, the amount of heat flowing into the low temperature part due to the heat conduction and the heat radiation is smaller as the temperature of the high temperature part which is in contact with or is lower than the low temperature part is small. And the liquid nitrogen cooling member 5 cooled to about 100K is interposed between the liquid nitrogen cooling member 5 and the liquid nitrogen cooling member 3 having a temperature of about 100 degrees. Or to avoid relative
The second liquid helium cooling member 4 is interposed between the liquid helium cooling member 3 and the liquid nitrogen cooling member 5 for cooling the sample 1 and the sample holder 2, and the sample 1 and the sample holder 2
The structure has a triple heat shield structure that surrounds the three cooling members, and cools the three cooling members from the three refrigerant storage containers via the three heat conducting members. However, in this method, one liquid nitrogen storage container and two liquid helium storage containers are required, and the amount of heat flowing into the low temperature part due to heat conduction and heat radiation can be changed, and the sample temperature can be set arbitrarily by heat input from a heater or the like. When set to, the latent heat of vaporization of liquid helium is as small as 1/10 that of liquid nitrogen, and the consumption of liquid helium is greatly influenced by a slight heat inflow. Therefore, when the conventional liquid helium storage container is a two-tank system, the liquid helium consumption of each storage container differs depending on the experimental conditions of sample cooling, and the sample cooling possible (sample cooling experiment) time is two tanks of liquid helium. It is determined by the liquid helium on the faster consuming side. This means that expensive liquid helium cannot be effectively used, and a large amount of liquid helium is consumed, which is also economically disadvantageous. Further, the work of putting the liquid helium into the storage container is performed twice, and the workability is poor. Naturally, the manufacturing cost of the storage container also becomes three storage containers, and there is a problem that the manufacturing cost increases because the refrigerant container becomes large. Further, vibrations due to evaporation of the refrigerant and air vibrations such as sound waves received from the outer surface of the refrigerant container are transmitted to the sample or the sample holder via the heat conducting member, thereby deteriorating the performance of the electron microscope and the like.
【0005】[0005]
【発明が解決しようとする課題】上記従来技術の極低温
試料冷却装置では、冷媒と極低温試料冷却装置の冷却特
性により冷却到達温度が決定され、高温側へ任意の温度
に設定制御する場合、ヒータ等により試料もしくは試料
ホルダーまたは積載する熱伝導部材に入熱を行うと冷媒
の蒸発を早めることとなり、必然的に試料冷却保持時間
が短縮されるばかりか高価な冷媒を大量に消費すること
になる。このため冷媒の消費を低減し経済性の向上を図
る必要がある。また、液体ヘリウムの蒸発潜熱は液体窒
素に比べて1:10と小さく僅かな熱流入によって二つ
の貯留容器の液体ヘリウムの消費量が異なり、二つの貯
留容器の一方の液体ヘリウムの消費によって試料冷却保
持時間が制限され二つの貯留容器に充填した液体ヘリウ
ムが有効活用されない。In the cryogenic sample cooling device of the prior art described above, the ultimate cooling temperature is determined by the cooling characteristics of the refrigerant and the cryogenic sample cooling device, and when the temperature is set and controlled to the high temperature side, If heat is applied to the sample or sample holder or the heat conduction member to be loaded by a heater, etc., the evaporation of the refrigerant will be accelerated, which inevitably shortens the sample cooling holding time and consumes a large amount of expensive refrigerant. Become. Therefore, it is necessary to reduce the consumption of the refrigerant and improve the economical efficiency. Also, the latent heat of vaporization of liquid helium is as small as 1:10 compared to liquid nitrogen, and the consumption of liquid helium in the two storage containers differs due to a slight heat inflow, and the sample cooling occurs due to the consumption of liquid helium in one of the two storage containers. The holding time is limited and the liquid helium filled in the two storage containers cannot be effectively used.
【0006】さらに、液体窒素貯留容器が一槽と液体ヘ
リウム貯留容器が二槽の冷媒容器構成になっていること
から貯留容器に冷媒を充填するのに多大の時間を要する
ために、冷媒を充填する作業時間を短縮する必要があ
る。Further, since the liquid nitrogen storage container has a one-tank and liquid helium storage container has two-tank refrigerant container construction, it takes a lot of time to fill the storage container with the refrigerant. It is necessary to shorten the working time.
【0007】[0007]
【課題を解決するための手段】本発明は、極低温試料冷
却装置の冷媒貯留容器を液体窒素貯留容器とその内側に
設けられた液体ヘリウム貯留容器の二槽構造とし、液体
窒素貯留容器に結合された熱伝導部材の内側に液体ヘリ
ウム貯留容器に結合された熱伝導部材を設け、この液体
ヘリウム貯留容器に結合された熱伝導部の他端を二つに
分割、または独立した二つの熱伝導部とし、熱伝導部を
三層構造にする。さらに、試料もしくは試料ホルダを冷
却する熱伝導部材の熱伝導面積を可変に、あるいは、熱
伝導部材を熱伝導面で分割し、分割部熱伝導面間の熱接
触時間を制御することにより液体ヘリウムの消費量を制
限し、試料および試料ホルダーまたは前記試料および試
料ホルダー搭載冷却部材に入熱機能および温度検出機能
を設け、試料もしくは試料ホルダーの温度を制御補償す
ることが実現される。According to the present invention, a cryogenic sample cooling device has a refrigerant storage container having a two-tank structure of a liquid nitrogen storage container and a liquid helium storage container provided inside the liquid nitrogen storage container, which is connected to the liquid nitrogen storage container. A heat conducting member connected to the liquid helium storage container is provided inside the heat conducting member, and the other end of the heat conducting portion connected to the liquid helium storage container is divided into two or two independent heat conducting members. The heat conducting part has a three-layer structure. Further, by varying the heat conduction area of the heat conduction member that cools the sample or the sample holder, or by dividing the heat conduction member by the heat conduction surface and controlling the heat contact time between the divided portion heat conduction surfaces, liquid helium It is possible to control and compensate the temperature of the sample or the sample holder by limiting the consumption amount of the sample and providing the sample and the sample holder or the cooling member mounted with the sample and the sample holder with a heat input function and a temperature detection function.
【0008】液体窒素で冷却された熱伝導部材の内側に
液体ヘリウムで冷却された二つの熱伝導部材を三層構造
に包含構成し熱シールド層を設け、中間層に流入する熱
を液体ヘリウムで吸熱する。さらに、試料もしくは試料
ホルダを冷却する冷却部材にヒータおよび温度センサー
を設置し、熱伝導部材の熱伝導面積を可変に、あるい
は、熱伝導部材を熱伝導面で分割し、分割部熱伝導面間
の熱接触時間を制御することで高温側へ任意の温度に設
定制御し温度を補償する。これにより、液体ヘリウムの
消費量を低減する。Inside the heat conducting member cooled by liquid nitrogen, two heat conducting members cooled by liquid helium are included in a three-layer structure to provide a heat shield layer, and the heat flowing into the intermediate layer is heated by liquid helium. It absorbs heat. Further, a heater and a temperature sensor are installed on a cooling member that cools the sample or the sample holder, and the heat conduction area of the heat conduction member can be changed, or the heat conduction member is divided by a heat conduction surface, and the division portion By controlling the thermal contact time of, the temperature is controlled to be set to an arbitrary temperature on the high temperature side and the temperature is compensated. This reduces the consumption of liquid helium.
【0009】[0009]
【発明の実施の形態】以下、本発明の一実施例を図を用
いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.
【0010】図2(a)は本発明の実施例で二槽構造の
冷媒貯留容器に熱伝導部材が突出し結合され、低温側の
冷媒貯留容器に結合された熱伝導部材の他端を二つの略
筒状に分割、三層の熱伝導と熱シールドを兼ねた極低温
試料冷却装置の構成図を、(b)は(a)の熱伝導部材
のA−A断面図を示す。試料1もしくは試料ホルダ2は
本冷却装置と熱接触して極低温に液体窒素14および液
体ヘリウム15を用いて熱伝導によって冷却される。電
子顕微鏡鏡体7外に設けられた冷媒貯留容器16は液体
窒素貯留容器17の内側に液体ヘリウム貯留容器18を
設け、液体窒素貯留容器に熱接触した熱シールド部材で
液体ヘリウム貯留容器18を包含して、液体窒素貯留容
器17および液体ヘリウム貯留容器18を各々断熱支持
して冷媒貯留容器16に固定された二槽構造の冷媒貯留
容器で構成する。試料1もしくは試料ホルダ2を冷却す
る第一冷却部材3は第二および第三の冷却部材4、5で
略筒状に熱シールドされている。前記液体ヘリウム貯留
容器18に第一熱伝導部材19の一端が結合され、この
第一熱伝導部材19が略筒状に分割され前記第一冷却部
材3およびを第二冷却部材4に結合され冷却される。液
体窒素貯留容器17に結合された第二熱伝導部材20は
略筒状で第一熱伝導部材19の外側に形成され第三の冷
却部材5に結合され、第二冷却部材4に結合され前記第
一熱伝導部材19とともに熱シールドが行われる。この
ように液体窒素貯留容器17と液体ヘリウム貯留容器1
8の二槽構造で構成することによって冷媒貯留容器16
の容積を大きくすることなく液体ヘリウム貯留容器18
の容積を大きくすることができる。さらに、試料1もし
くは試料ホルダー2に熱伝導や輻射によって流入する外
部入熱は蒸発潜熱の大きい(液体ヘリウム冷媒の約10
倍)液体窒素冷媒14によって第一段階で吸収され液体
窒素冷媒14の沸点より低温側は液体ヘリウム冷媒15
よって吸収される。上記のことから試料1もしくは試料
ホルダ2を冷却する第一冷却部材3と中間の熱シールド
を行う第一冷却部材3とを液体ヘリウム貯留容器17に
結合した第一熱伝導部材19の他端を略筒状に分割する
ことで、第一冷却部材3と中間の熱シールドを行う第二
冷却部材4および第一熱伝導部材19が受ける入熱を液
体ヘリウム冷媒の蒸発潜熱として受け持ち第一冷却部材
3と第二冷却部材4とに温度差を与えることができる。
液体窒素貯留容器17および液体ヘリウム貯留容器18
に結合された第一熱伝導部材19および第二熱伝導部材
20の一部分を各々の冷媒容器の中に突出する事で冷媒
との熱交換を容易にしている。また冷媒貯留容器16の
外壁に制振材21を設け冷媒の蒸発による振動および冷
媒容器外面より受ける音波等の空気振動を低減して試料
への振動流入を低減する。FIG. 2 (a) shows an embodiment of the present invention in which a heat conducting member is projectingly connected to a two-tank structure refrigerant storage container, and the other end of the heat conducting member connected to the low temperature side refrigerant storage container has two ends. FIG. 2B is a configuration diagram of a cryogenic sample cooling device that is divided into a substantially tubular shape and has three layers of heat conduction and heat shield, and FIG. The sample 1 or the sample holder 2 is brought into thermal contact with the present cooling device and cooled to a cryogenic temperature by heat conduction using liquid nitrogen 14 and liquid helium 15. The refrigerant storage container 16 provided outside the electron microscope body 7 is provided with a liquid helium storage container 18 inside the liquid nitrogen storage container 17, and includes the liquid helium storage container 18 with a heat shield member in thermal contact with the liquid nitrogen storage container. Then, the liquid nitrogen storage container 17 and the liquid helium storage container 18 are adiabatically supported, and are constituted by a two-tank structure refrigerant storage container fixed to the refrigerant storage container 16. The first cooling member 3 that cools the sample 1 or the sample holder 2 is heat-shielded by the second and third cooling members 4 and 5 in a substantially cylindrical shape. One end of a first heat conducting member 19 is joined to the liquid helium storage container 18, the first heat conducting member 19 is divided into a substantially cylindrical shape, and the first cooling member 3 and the second cooling member 4 are joined and cooled. To be done. The second heat conducting member 20 connected to the liquid nitrogen storage container 17 is formed in a substantially cylindrical shape outside the first heat conducting member 19, is connected to the third cooling member 5, and is connected to the second cooling member 4. Heat shielding is performed together with the first heat conduction member 19. Thus, the liquid nitrogen storage container 17 and the liquid helium storage container 1
Refrigerant storage container 16
Liquid helium storage container 18 without increasing the volume of
The volume of can be increased. Furthermore, the external heat input flowing into the sample 1 or the sample holder 2 by heat conduction or radiation has a large evaporation latent heat (about 10 times that of the liquid helium refrigerant).
Liquid nitrogen refrigerant 14 is absorbed in the first stage and the temperature lower than the boiling point of liquid nitrogen refrigerant 14 is liquid helium refrigerant 15
Therefore, it is absorbed. From the above, the other end of the first heat conducting member 19 in which the first cooling member 3 for cooling the sample 1 or the sample holder 2 and the first cooling member 3 for performing the intermediate heat shield are connected to the liquid helium storage container 17 By dividing into a substantially tubular shape, the heat input to the first cooling member 3 and the second cooling member 4 and the first heat conducting member 19 which perform intermediate heat shield are taken as evaporation latent heat of the liquid helium refrigerant, and the first cooling member. 3 and the second cooling member 4 can be provided with a temperature difference.
Liquid nitrogen storage container 17 and liquid helium storage container 18
A part of the first heat conducting member 19 and the second heat conducting member 20 coupled to the above is projected into each refrigerant container to facilitate heat exchange with the refrigerant. Further, a damping material 21 is provided on the outer wall of the refrigerant storage container 16 to reduce vibration due to evaporation of the refrigerant and air vibration such as sound waves received from the outer surface of the refrigerant container to reduce the inflow of vibration into the sample.
【0011】図3(a)は本発明の実施例で前記実施例
の低温側の冷媒貯留容器に結合された熱伝導部材を二つ
の独立した略筒状で構成し、三層の熱伝導と熱シールド
を兼た極低温試料冷却装置の構成図を、(b)は(a)
の熱伝導部材のA−A断面図を示す。すなわち本例で
は、図1の実施例の液体ヘリウム貯留容器18に結合さ
れた第一熱伝導部材19を分割することなく各々独立し
た第一熱伝導部材22の外側に略筒状に第二熱伝導部材
23を設け液体ヘリウム貯留容器18に結合する。これ
により第一熱伝導部材22と第二熱伝導部材23との熱
伝達系を分離することができ熱シールド特性および試料
冷却到達特性を向上することができる。FIG. 3 (a) shows an embodiment of the present invention in which the heat conducting member coupled to the low temperature side refrigerant storage container of the above embodiment is formed into two independent substantially cylindrical shapes, and has three layers of heat conduction. A block diagram of a cryogenic sample cooling device that also serves as a heat shield is shown in (b) and (a).
AA sectional drawing of the heat conduction member of FIG. That is, in this example, the first heat conducting member 19 coupled to the liquid helium storage container 18 of the embodiment of FIG. A conductive member 23 is provided and connected to the liquid helium storage container 18. Thereby, the heat transfer system of the first heat conducting member 22 and the second heat conducting member 23 can be separated, and the heat shield characteristic and the sample cooling arrival characteristic can be improved.
【0012】図4(a)は本発明の実施例で前記実施例
の低温側の冷媒貯留容器に結合された熱伝導部材を中空
とし冷媒貯留容器に充填された冷媒が熱伝導部材の中空
部に流入する構造の極低温試料冷却装置の構成図を、
(b)は(a)の熱伝導部材のA−A断面図を示す。本
例の場合は、図3の実施例の液体ヘリウム貯留容器18
に結合された第一熱伝導部材22を中空とし液体ヘリウ
ム貯留容器18に充填された液体ヘリウム冷媒15が第
一熱伝導部材24の中空部に流入し液体ヘリウム冷媒1
5が充填されるようにした。これにより極低温試料冷却
装置の大型化により冷媒貯留容器16と冷却される試料
3との距離が増大し熱伝導部材(20、23、24)が
長くなっても試料冷却到達特性を低下させることがな
い。このとき第一熱伝導部材24の中空部に僅かの傾斜
をつけ冷却冷媒の気化したガスを排出し易くすることが
できる。FIG. 4 (a) shows an embodiment of the present invention in which the heat conducting member coupled to the low temperature side refrigerant storage container of the above embodiment is hollow and the refrigerant filled in the refrigerant storing container is a hollow portion of the heat conducting member. The configuration diagram of the cryogenic sample cooling device that flows into the
(B) shows the AA sectional view of the heat conductive member of (a). In the case of this example, the liquid helium storage container 18 of the embodiment of FIG.
Liquid helium refrigerant 15 filled in liquid helium storage container 18 with hollow first heat conduction member 22 coupled to the first heat conduction member 24 flows into the hollow portion of first heat conduction member 24, and liquid helium refrigerant 1
5 was filled. As a result, the size of the cryogenic sample cooling device is increased, so that the distance between the refrigerant storage container 16 and the sample 3 to be cooled is increased and the sample cooling arrival characteristics are deteriorated even if the heat conduction members (20, 23, 24) are lengthened. There is no. At this time, the hollow portion of the first heat-conducting member 24 can be slightly inclined so that the vaporized gas of the cooling refrigerant can be easily discharged.
【0013】図4の実施例では第一熱伝導部材24を中
空としたが同様に第二、第三の熱伝導部材20、23を
中空にし熱シールド特性および試料冷却到達特性をさら
に向上させることができる。In the embodiment shown in FIG. 4, the first heat conducting member 24 is hollow, but the second and third heat conducting members 20 and 23 are similarly hollow to further improve the heat shield characteristics and the sample cooling arrival characteristics. You can
【0014】図5(a)は本発明の実施例で前記実施例
の低温側の冷媒貯留容器に結合された熱伝導部材の任意
の位置で熱伝導面積を可変とし、温度制御と温度補償を
可能にした極低温試料冷却装置の構成図を、(b)は
(a)の熱伝導部材のA−A断面図を示す。図のよう
に、冷却された試料1もしくは試料ホルダー2の温度を
高温側へ任意の温度にヒータ25等の入熱によって設定
制御すると、入熱により冷却冷媒を蒸発させることとな
る。冷媒の消費量を低減するため第一熱伝導部材26を
分割し、分割部の熱伝導面積を可変にすることで伝熱量
を制御し冷却冷媒を蒸発させることなく冷却された試料
1もしくは試料ホルダー2の温度を高温側へ任意の温度
に設定制御することができる。本実施例では第一熱伝導
部材26の分割部にピエゾ素子27を設け、さらに、試
料1もしくは試料ホルダー2の搭載された第一冷却部材
3にヒータ25と温度センサー28を設け、温度制御装
置29とピエゾ素子駆動装置30を閉ループで制御する
ことで第一熱伝導部材26の分割部の熱伝導面積を可変
にし、試料1もしくは試料ホルダー2の温度を任意に設
定制御し温度が補償される。ピエゾ素子27によらず他
の駆動手段の場合は第一熱伝導部材26に入熱がされな
いような駆動手段をとる必要がある。FIG. 5 (a) shows an embodiment of the present invention in which the heat conduction area is made variable at an arbitrary position of the heat conduction member coupled to the low temperature side refrigerant storage container of the above embodiment to perform temperature control and temperature compensation. The block diagram of the cryogenic sample cooling device made possible is shown, (b) shows the AA sectional view of the heat conductive member of (a). As shown in the figure, if the temperature of the cooled sample 1 or the sample holder 2 is set and controlled to the high temperature side by the heat input of the heater 25 or the like, the cooling refrigerant is evaporated by the heat input. The first heat conducting member 26 is divided in order to reduce the consumption of the refrigerant, and the heat conducting area of the divided portion is made variable to control the heat transfer amount, thereby cooling the sample 1 or the sample holder without evaporating the cooling refrigerant. The temperature of 2 can be set and controlled to the high temperature side at an arbitrary temperature. In this embodiment, a piezo element 27 is provided in the divided portion of the first heat conduction member 26, and a heater 25 and a temperature sensor 28 are provided in the first cooling member 3 on which the sample 1 or the sample holder 2 is mounted, and a temperature control device is provided. By controlling 29 and the piezo element driving device 30 in a closed loop, the heat conduction area of the divided portion of the first heat conduction member 26 is made variable, and the temperature of the sample 1 or the sample holder 2 is arbitrarily set and controlled to compensate the temperature. . In the case of other driving means regardless of the piezo element 27, it is necessary to take a driving means so that heat is not input to the first heat conducting member 26.
【0015】図6(a)は本発明の実施例で前記実施例
の低温側の冷媒貯留容器に結合された熱伝導部材の任意
の位置で分割し、分割部熱伝導面間の熱接触時間を制御
し、温度制御と温度補償を可能にした極低温試料冷却装
置の構成図を、(b)は(a)の熱伝導部材のA−A断
面図を示す。本図は、図5の実施例と目的を同様にした
別の実施例である。冷却された試料1もしくは試料ホル
ダー2の温度を高温側へ任意の温度に設定制御するため
に、本実施例では第一熱伝導部材31の分割部にピエゾ
素子32を設け、さらに試料1もしくは試料ホルダー2
の搭載された第一冷却部材3にヒータ25と温度センサ
ー28を設け、第一熱伝導部材31の分割部熱伝導面間
の熱接触時間を温度制御装置29とピエゾ素子駆動装置
30を閉ループで制御することで任意の温度に設定制御
され温度が補償される。ピエゾ素子30によらず他の駆
動手段の場合も図5の実施例と同様に、第一熱伝導部材
31に入熱がされないような駆動手段をとる必要があ
る。FIG. 6 (a) shows an embodiment of the present invention in which the heat conducting member connected to the low temperature side refrigerant storage container of the embodiment is divided at any position, and the heat contact time between the heat conducting surfaces of the divided portions is divided. 2A is a configuration diagram of a cryogenic sample cooling device capable of controlling temperature control and temperature compensation, and FIG. 6B is a sectional view taken along line AA of the heat conducting member of FIG. This drawing is another embodiment having the same purpose as the embodiment of FIG. In order to set and control the temperature of the cooled sample 1 or the sample holder 2 to an arbitrary temperature on the high temperature side, a piezo element 32 is provided in the divided part of the first heat conducting member 31 in the present embodiment, and further the sample 1 or the sample Holder 2
The heater 25 and the temperature sensor 28 are provided on the mounted first cooling member 3, and the thermal contact time between the divided heat conducting surfaces of the first heat conducting member 31 is controlled by the temperature controller 29 and the piezoelectric element driving device 30 in a closed loop. By controlling, the temperature is set and controlled to an arbitrary temperature and the temperature is compensated. In the case of other driving means instead of the piezo element 30, as in the embodiment of FIG. 5, it is necessary to take a driving means so that heat is not input to the first heat conducting member 31.
【0016】以上実施例で説明したが、実施例の略筒状
に構成された熱伝導部材は製作上分割して製作し一体に
結合する手段をとる場合は、熱伝導を十分考慮した手段
をとる必要がある。As described above with reference to the embodiments, when the heat conducting member having a substantially cylindrical shape according to the embodiment is divided for manufacturing and the means for joining is integrally formed, means for sufficiently considering heat conduction should be used. Need to take.
【0017】[0017]
【発明の効果】以上の結果、極低温試料冷却装置の冷却
到達温度を向上させるとともに、高温側への任意の温度
に設定制御し温度を補償することができる。さらに、冷
却冷媒の消費量、特に蒸発潜熱が小さくて高価な液体ヘ
リウムの消費量を削減でき、稼働コストを低減し試料冷
却稼働時間の向上を図ることができる。As a result of the above, the cooling ultimate temperature of the cryogenic sample cooling device can be improved, and the temperature can be compensated by setting and controlling the temperature toward the high temperature side. Further, it is possible to reduce the consumption amount of the cooling refrigerant, particularly the consumption amount of liquid helium which is expensive due to the small latent heat of vaporization, which can reduce the operating cost and improve the sample cooling operating time.
【図1】電子顕微鏡等の従来の極低温試料冷却装置の概
略構成図。FIG. 1 is a schematic configuration diagram of a conventional cryogenic sample cooling device such as an electron microscope.
【図2】(a)は本発明の一実施例を示す極低温試料冷
却装置の構成図、(b)は(a)の熱伝導部材のA−A
断面図。FIG. 2 (a) is a configuration diagram of a cryogenic sample cooling device showing an embodiment of the present invention, and FIG. 2 (b) is a heat-conducting member AA of FIG. 2 (a).
Sectional view.
【図3】(a)は本発明の他の実施例を示す極低温試料
冷却装置の構成図、(b)は(a)の熱伝導部材のA−
A断面図。FIG. 3A is a configuration diagram of a cryogenic sample cooling device showing another embodiment of the present invention, and FIG. 3B is a view A- of the heat conduction member of FIG.
A sectional drawing.
【図4】(a)は本発明の他の実施例を示す極低温試料
冷却装置の構成図、(b)は(a)の熱伝導部材のA−
A断面図。FIG. 4A is a configuration diagram of a cryogenic sample cooling device showing another embodiment of the present invention, and FIG. 4B is a view of A- of the heat conduction member of FIG.
A sectional drawing.
【図5】(a)は本発明の他の実施例を示す極低温試料
冷却装置の構成図、(b)は(a)の熱伝導部材のA−
A断面図。5A is a block diagram of a cryogenic sample cooling device showing another embodiment of the present invention, and FIG. 5B is a view of A- of the heat conduction member of FIG.
A sectional drawing.
【図6】(a)は本発明の他の実施例を示す極低温試料
冷却装置の構成図、(b)は(a)の熱伝導部材のA−
A断面図。6 (a) is a configuration diagram of a cryogenic sample cooling device showing another embodiment of the present invention, and FIG. 6 (b) is A- of the heat conducting member of FIG.
A sectional drawing.
1:試料、2:試料ホルダー、3:第一冷却部材、7:
電子顕微鏡鏡体、8:第一液体ヘリウム貯留容器、9:
第二液体ヘリウム貯留容器、10:液体窒素貯留容器、
11:第一熱伝導部材、12:第二熱伝導部材、13:
第二熱伝導部材、14:液体窒素冷媒、15:液体ヘリ
ウム冷媒、16:冷媒貯留容器、17:液体窒素貯留容
器、18:液体ヘリウム貯留容器、19:第一熱伝導部
材、20:第二熱伝導部材、21:制振材、22:第一
熱伝導部材、23:第二熱伝導部材、24:第一熱伝導
部材、25:ヒータ、26:第一熱伝導部材、27:ピ
エゾ素子、28:温度センサー、29:温度制御装置、
30:ピエゾ素子駆動装置、31:第一熱伝導部材、3
2:ピエゾ素子。1: sample, 2: sample holder, 3: first cooling member, 7:
Electron microscope microscope body, 8: first liquid helium storage container, 9:
Second liquid helium storage container, 10: liquid nitrogen storage container,
11: first heat conducting member, 12: second heat conducting member, 13:
Second heat conduction member, 14: Liquid nitrogen refrigerant, 15: Liquid helium refrigerant, 16: Refrigerant storage container, 17: Liquid nitrogen storage container, 18: Liquid helium storage container, 19: First heat conduction member, 20: Second Heat conduction member, 21: Damping material, 22: First heat conduction member, 23: Second heat conduction member, 24: First heat conduction member, 25: Heater, 26: First heat conduction member, 27: Piezo element , 28: temperature sensor, 29: temperature control device,
30: Piezo element driving device, 31: First heat conducting member, 3
2: Piezo element.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松波 正吉 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 (72)発明者 松田 強 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 (72)発明者 川崎 猛 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 (72)発明者 古津 忠夫 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masayoshi Matsunami 2520 Akanuma, Hatoyama-cho, Hiki-gun, Saitama Stock Company Hitachi Research Laboratory (72) Inventor Tsuyoshi Matsuda 2520 Akanuma, Hayama, Hiki-gun, Saitama Prefecture Stock Company Hitachi Research Laboratory (72) Inventor Takeshi Kawasaki 2520 Akanuma, Hatoyama-cho, Hiki-gun, Saitama Stock Company Hitachi Ltd. Basic Research Laboratory (72) Inventor Tadao Furitsu 2520 Akanuma, Hatoyama-cho, Hiki-gun, Saitama Hitachi Ltd. Basic Research Center
Claims (10)
しくは試料ホルダーを搭載する試料ステージを複数の熱
シールド層で包含し、その試料ステージと各々の熱シー
ルド層を冷却するための冷媒貯留容器と、両者をつなぐ
熱伝導部材からなる試料冷却装置において、冷媒貯留容
器に熱伝導部材の一端が結合され、当該熱伝導部材の熱
伝導部を複数の略筒状に分割し、複数の熱シールド層を
兼ね、各々独立した熱伝導部材とすることを特徴とする
試料冷却装置。1. A sample stage equipped with a sample or a sample holder to be installed in a body of an electron microscope or the like is enclosed by a plurality of heat shield layers, and the sample stage and each of the heat shield layers are stored with a cooling medium. In a sample cooling device comprising a container and a heat conducting member connecting the two, one end of the heat conducting member is coupled to the refrigerant storage container, and the heat conducting portion of the heat conducting member is divided into a plurality of substantially tubular shapes, and a plurality of heat A sample cooling device, which also functions as a shield layer and is an independent heat conducting member.
て、冷媒貯留容器に熱伝導部材の一端が結合され、か
つ、当該熱伝導部材を略筒状の複数の熱伝導部で構成す
るように配置し、複数の熱シールド層を兼ね、各々独立
した熱伝導部材とすることを特徴とする請求項1記載の
試料冷却装置。2. When the refrigerant storage container and the heat transfer member are connected, one end of the heat transfer member is connected to the refrigerant storage container, and the heat transfer member is composed of a plurality of substantially cylindrical heat transfer portions. 2. The sample cooling device according to claim 1, wherein the sample cooling devices are arranged in such a manner that they also serve as a plurality of heat shield layers and are independent heat conducting members.
て、冷媒貯留容器に熱伝導部材の一端が冷媒貯留容器の
中に突出し、冷媒と熱伝導部材とが直接接触ように構成
したことを特徴とする請求項1記載の試料冷却装置。3. When the refrigerant storage container and the heat conducting member are joined together, one end of the heat conducting member projects into the refrigerant storing container so that the refrigerant and the heat conducting member are in direct contact with each other. The sample cooling device according to claim 1.
て、熱伝導部材を中空とし冷媒貯留容器に充填された冷
媒が熱伝導部材の中空部に流入し、冷媒が充填されるよ
うに構成したことを特徴とする請求項1記載の試料冷却
装置。4. When the refrigerant storage container and the heat conducting member are combined, the heat conducting member is hollow so that the refrigerant filled in the refrigerant storing container flows into the hollow portion of the heat conducting member and is filled with the refrigerant. The sample cooling device according to claim 1, wherein the sample cooling device is configured.
第一熱伝導部材と第一熱伝導部材の外側に略筒状に設け
られた第二熱伝導部材を1つの液体ヘリウム冷媒貯留容
器に結合し、第二熱伝導部材の外側に略筒状に設けられ
た第三熱伝導部材を液体窒素冷媒貯留容器に結合するよ
うに構成し、熱シールド層を設けたことを特徴とする請
求項1記載の試料冷却装置。5. A first heat-conducting member for cooling the sample or the sample holder and a second heat-conducting member provided in a substantially cylindrical shape outside the first heat-conducting member are coupled to one liquid helium refrigerant storage container. The third heat conducting member, which is provided in a substantially cylindrical shape outside the second heat conducting member, is configured to be coupled to the liquid nitrogen refrigerant storage container, and a heat shield layer is provided. Sample cooler.
を可変にすることにより熱伝導熱量を制御し、かつ、試
料および試料ホルダーまたは前記試料および試料ホルダ
ー搭載冷却部材に入熱機能および温度検出機能を設け、
試料もしくは試料ホルダーの温度を制御補償することを
特徴とする請求項1又は2記載の試料冷却装置。6. A heat conduction area is made variable at an arbitrary position of the heat conduction member to control a heat conduction heat quantity, and a heat input function to a sample and a sample holder or a cooling member mounted with the sample and the sample holder. A temperature detection function is provided,
The sample cooling device according to claim 1 or 2, wherein the temperature of the sample or the sample holder is controlled and compensated.
設け、ピエゾ素子駆動により前記熱伝導面積可変部の熱
伝導面積を制御し、かつ、試料および試料ホルダーまた
は前記試料および試料ホルダー搭載冷却部材に入熱機能
および温度検出機能を設け、試料もしくは試料ホルダー
の温度を補償することを特徴とする請求項6記載の試料
冷却装置。7. A piezo element is provided in the heat conduction area variable portion, the heat conduction area of the heat conduction area variable portion is controlled by driving the piezo element, and the sample and sample holder or the sample and sample holder is mounted. The sample cooling device according to claim 6, wherein the cooling member is provided with a heat input function and a temperature detection function to compensate for the temperature of the sample or the sample holder.
記熱伝導部材の分割部熱伝導面間の熱接触時間を制御
し、かつ、試料および試料ホルダーまたは前記試料およ
び試料ホルダー搭載冷却部材に入熱機能および温度検出
機能を設け、試料もしくは試料ホルダーの温度を制御補
償することを特徴とする請求項1又は2記載の試料冷却
装置。8. The heat conducting member is divided at an arbitrary position to control the heat contact time between the heat conducting surfaces of the divided portions of the heat conducting member, and the sample and sample holder or the sample and sample holder mounted cooling. 3. The sample cooling device according to claim 1, wherein the member is provided with a heat input function and a temperature detection function to control and compensate the temperature of the sample or the sample holder.
設け、ピエゾ素子駆動により前記熱伝導部材の分割部熱
伝達面間の熱接触時間を制御し、かつ、試料および試料
ホルダーまたは前記試料および試料ホルダー搭載冷却部
材に入熱機能および温度検出機能を設け、試料ホルダー
の温度を補償することを特徴とする請求項7記載の試料
冷却装置。9. A piezo element is provided in the divided portion of the heat conducting member, and the thermal contact time between the divided portion heat transfer surfaces of the heat conducting member is controlled by driving the piezo element, and the sample and the sample holder or the The sample cooling device according to claim 7, wherein the sample and the cooling member mounted on the sample holder are provided with a heat input function and a temperature detection function to compensate for the temperature of the sample holder.
液体窒素冷媒貯留容器を設け、液体窒素冷媒貯留容器に
熱接触した熱シールド部材で液体ヘリウム冷媒貯留容器
包含し、液体ヘリウム冷媒貯留容器および液体窒素冷媒
貯留容器を包含する冷媒容器に断熱支持固定し、冷媒容
器外周に制振材を設け冷媒の蒸発による振動および冷媒
容器外面より受ける音波等の空気振動を低減することを
特徴とする請求項5記載の試料冷却装置10. A liquid nitrogen refrigerant storage container is provided outside the liquid helium refrigerant storage container, and the liquid helium refrigerant storage container is covered by a heat shield member in thermal contact with the liquid nitrogen refrigerant storage container. A heat-insulating support fixed to a refrigerant container including a nitrogen refrigerant storage container, a vibration damping material is provided on the outer circumference of the refrigerant container to reduce vibration due to evaporation of the refrigerant and air vibration such as sound waves received from the outer surface of the refrigerant container. 5. Sample cooling device according to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8112297A JPH09306405A (en) | 1996-05-07 | 1996-05-07 | Sample cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8112297A JPH09306405A (en) | 1996-05-07 | 1996-05-07 | Sample cooling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09306405A true JPH09306405A (en) | 1997-11-28 |
Family
ID=14583165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8112297A Pending JPH09306405A (en) | 1996-05-07 | 1996-05-07 | Sample cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09306405A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1451849A1 (en) * | 2001-10-05 | 2004-09-01 | Canon Kabushiki Kaisha | Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method |
US7053370B2 (en) | 2001-10-05 | 2006-05-30 | Canon Kabushiki Kaisha | Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus |
JP2007026815A (en) * | 2005-07-14 | 2007-02-01 | Kyoto Univ | Top entry type sample stage tilting device |
US7385206B2 (en) * | 2003-01-21 | 2008-06-10 | Canon Kabushiki Kaisha | Probe-holding apparatus, sample-obtaining apparatus, sample-processing apparatus, sample-processing method and sample-evaluating method |
CN102033307A (en) * | 2010-10-15 | 2011-04-27 | 上海理工大学 | Dew prevention device for low-temperature microscope stage |
EP3809445A1 (en) * | 2019-10-15 | 2021-04-21 | Jeol Ltd. | Cooling apparatus for charged particle beam device |
EP4120315A3 (en) * | 2021-06-21 | 2023-04-19 | FEI Company | Vibration-free cryogenic cooling |
-
1996
- 1996-05-07 JP JP8112297A patent/JPH09306405A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1451849A1 (en) * | 2001-10-05 | 2004-09-01 | Canon Kabushiki Kaisha | Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method |
US7053370B2 (en) | 2001-10-05 | 2006-05-30 | Canon Kabushiki Kaisha | Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus |
EP1451849A4 (en) * | 2001-10-05 | 2007-07-18 | Canon Kk | Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method |
US7615764B2 (en) | 2001-10-05 | 2009-11-10 | Canon Kabushiki Kaisha | Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus |
US7385206B2 (en) * | 2003-01-21 | 2008-06-10 | Canon Kabushiki Kaisha | Probe-holding apparatus, sample-obtaining apparatus, sample-processing apparatus, sample-processing method and sample-evaluating method |
US7531797B2 (en) | 2003-01-21 | 2009-05-12 | Canon Kabushiki Kaisha | Probe-holding apparatus, sample-obtaining apparatus, sample-processing apparatus, sample-processing method and sample-evaluating method |
JP2007026815A (en) * | 2005-07-14 | 2007-02-01 | Kyoto Univ | Top entry type sample stage tilting device |
CN102033307A (en) * | 2010-10-15 | 2011-04-27 | 上海理工大学 | Dew prevention device for low-temperature microscope stage |
EP3809445A1 (en) * | 2019-10-15 | 2021-04-21 | Jeol Ltd. | Cooling apparatus for charged particle beam device |
US11127561B2 (en) | 2019-10-15 | 2021-09-21 | Jeol Ltd. | Cooling apparatus for charged particle beam device |
EP4120315A3 (en) * | 2021-06-21 | 2023-04-19 | FEI Company | Vibration-free cryogenic cooling |
US12123816B2 (en) | 2021-06-21 | 2024-10-22 | Fei Company | Vibration-free cryogenic cooling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8752616B2 (en) | Thermal management systems including venting systems | |
JP4873210B2 (en) | Low temperature fuel storage container | |
JPH05264182A (en) | Integrated heat pipe, assembly for heat exchanger and clamping as well as obtaining method thereof | |
US3750745A (en) | High heat flux heat pipe | |
JPH09306405A (en) | Sample cooling device | |
US3702533A (en) | Hot-gas machine comprising a heat transfer device | |
EP0703448B1 (en) | Mechanical cooling system | |
EP2641038B1 (en) | Cooling apparatus and method | |
JP3934308B2 (en) | Cryostat | |
WO2004031675A1 (en) | Evaporator for a heat transfer system | |
CN100457379C (en) | Manufacture of a heat transfer system | |
JPH10238973A (en) | Thin composite plate heat pipe | |
CN116098144A (en) | Low-temperature storage method, sample storage unit, storage device and transportation device for biological samples | |
CA3095654C (en) | Isothermalized mirror assembly | |
JPH02130948A (en) | Cooling device for semiconductor | |
JPH0726795B2 (en) | Heat transport pipe | |
EP1498679B1 (en) | System and method for heat transfer | |
JPH09273877A (en) | Heat pipe type air cooler | |
JPH1196953A (en) | Cooled sample observation device | |
JPH07297333A (en) | Apparatus and method for latent heat cooling | |
CN101469912A (en) | Capillary material liquid-storage refrigerating device | |
Duband et al. | Helium adsorption coolers for space | |
KR102409620B1 (en) | Cooling device and manufacturing method for thereof | |
EP3978978A1 (en) | Isothermalized mirror assembly | |
JPH05129097A (en) | Drift tube type linear accelerator |