JPH07297333A - Apparatus and method for latent heat cooling - Google Patents
Apparatus and method for latent heat coolingInfo
- Publication number
- JPH07297333A JPH07297333A JP11053494A JP11053494A JPH07297333A JP H07297333 A JPH07297333 A JP H07297333A JP 11053494 A JP11053494 A JP 11053494A JP 11053494 A JP11053494 A JP 11053494A JP H07297333 A JPH07297333 A JP H07297333A
- Authority
- JP
- Japan
- Prior art keywords
- heat sink
- refrigerant
- cooling
- temperature
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、潜熱を利用して電子装
置などの半導体から発生する熱を除去する冷却装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device which utilizes latent heat to remove heat generated from a semiconductor such as an electronic device.
【0002】[0002]
【従来の技術】従来、発熱源である半導体素子を内蔵し
た電子装置などにヒートシンクを取り付けて半導体から
発生する熱を冷却している。とくに、ヒートシンクの冷
却能力を高めるために、ヒートシンクを多孔質の吸収性
材料で構成し、水やアルコール、アセトンなどの有機化
合物からなる冷媒液体にヒートシンクを接触させて、ヒ
ートシンクに断続的または連続的に冷媒液体を供給して
気化させるとともに、気化を促進するためにブロワによ
り冷却空気をヒートシンクに吹きつけて、その蒸発熱に
よりヒートシンクの熱を奪い冷却するものが開示されて
いる(例えば、実開昭58−56495号)。また、冷
媒液体を連続的に供給するために、ヒートシンクを多孔
質金属やセラミックスで構成したり、繊維状または編み
目状の有機化合物を使用して、冷媒液体を毛管現象によ
りヒートシンクに浸透するようにしたものが開示されて
いる(例えば、特開平3−41754号)。2. Description of the Related Art Conventionally, a heat sink is attached to an electronic device or the like having a built-in semiconductor element as a heat source to cool the heat generated from the semiconductor. In particular, in order to enhance the cooling capacity of the heat sink, the heat sink is made of a porous absorbent material, and the heat sink is brought into contact with a liquid coolant made of an organic compound such as water, alcohol, or acetone to intermittently or continuously It is disclosed that a refrigerant liquid is supplied to and vaporized by a blower, and cooling air is blown to a heat sink by a blower in order to promote vaporization, and heat of the heat sink is taken by the heat of evaporation to cool the heat sink. 58-56495). Further, in order to continuously supply the refrigerant liquid, the heat sink is made of a porous metal or ceramics, or a fibrous or knitted organic compound is used so that the refrigerant liquid permeates into the heat sink by capillarity. What has been done is disclosed (for example, JP-A-3-41754).
【0003】[0003]
【発明が解決しようとする課題】ところが、従来技術で
は、気化を促進するための冷却空気を発生するブロワが
必要であるため電力の消費が大きいという問題があっ
た。また、自然対流によって冷却する場合は、冷却空気
がヒートシンクの表面に沿って流れるだけであるため、
周囲温度の変化の影響を受けてヒートシンクの温度が変
化し、ヒートシンクによって冷却される半導体素子の温
度が変わり半導体素子の動作が不安定になるという欠点
があった。本発明は、電力消費のない自然対流を利用し
た冷却装置で冷却効果を向上させ、かつ周囲温度の変化
にかかわらず、ヒートシンクの温度を一定に保つように
した潜熱冷却装置を提供することを目的とするものであ
る。However, the conventional technique has a problem that the power consumption is large because a blower for generating cooling air for promoting vaporization is required. Also, when cooling by natural convection, the cooling air only flows along the surface of the heat sink,
There is a drawback that the temperature of the heat sink changes due to the influence of the change of the ambient temperature, the temperature of the semiconductor element cooled by the heat sink changes, and the operation of the semiconductor element becomes unstable. SUMMARY OF THE INVENTION It is an object of the present invention to provide a latent heat cooling device that improves the cooling effect by a cooling device that uses natural convection without power consumption and that keeps the temperature of a heat sink constant regardless of changes in ambient temperature. It is what
【0004】[0004]
【課題を解決するための手段】上記問題を解決するた
め、本発明は、発熱体を一方の面に取りつけたヒートシ
ンクを冷媒の蒸発の潜熱によって冷却する潜熱冷却装置
において、地面に対して垂直に設けた前記ヒートシンク
と、前記ヒートシンクの他方の面に平行に空隙を介して
設け、かつ多孔質材料からなる吸収シートの両面に多孔
状の金属シートを固定した冷媒蒸発パネルと、前記ヒー
トシンクの両端付近に設け、かつ前記冷媒蒸発パネルと
前記ヒートシンクとの間の空隙を温度変化に応じて変化
させる変位機構と、前記冷媒蒸発パネルの下端を冷媒に
浸漬する冷媒槽とを備えたものである。また、発熱体を
一方の面に取りつけたヒートシンクを冷媒の蒸発の潜熱
によって冷却する潜熱冷却装置において、地面に対して
垂直に設けた前記ヒートシンクと、前記ヒートシンクの
他方の面に接触させて固定し、かつ多孔質材料からなる
吸収シートの両面に多孔状の金属シートを固定した冷媒
蒸発パネルと、前記冷媒蒸発パネルと平行に空隙を介し
て設けた金属性の冷却プレートと、前記ヒートシンクの
両端付近に設け、かつ前記冷媒蒸発パネルと前記冷却プ
レートとの間の空隙を温度変化に応じて変化させる変位
機構と、前記冷媒蒸発パネルの下端を冷媒に浸漬する冷
媒槽とを備えたものである。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention relates to a latent heat cooling device for cooling a heat sink having a heating element attached to one surface thereof by latent heat of vaporization of a refrigerant, in which the heat sink is perpendicular to the ground. The heat sink provided, a refrigerant evaporation panel in which a porous metal sheet is fixed to both surfaces of an absorption sheet made of a porous material, and a space provided in parallel with the other surface of the heat sink with a gap, and near both ends of the heat sink. And a displacement mechanism for changing a gap between the refrigerant evaporation panel and the heat sink according to a temperature change, and a refrigerant tank for immersing a lower end of the refrigerant evaporation panel in a refrigerant. Further, in a latent heat cooling device for cooling a heat sink having a heating element attached to one surface by latent heat of vaporization of a refrigerant, the heat sink provided perpendicularly to the ground is fixed in contact with the other surface of the heat sink. , And a refrigerant evaporation panel in which porous metal sheets are fixed on both sides of an absorption sheet made of a porous material, a metallic cooling plate provided in parallel with the refrigerant evaporation panel via a gap, and near both ends of the heat sink And a displacement mechanism for changing the gap between the refrigerant evaporation panel and the cooling plate according to temperature changes, and a refrigerant tank for immersing the lower end of the refrigerant evaporation panel in the refrigerant.
【0005】[0005]
【作用】上記手段により、周囲温度が高い時には、変位
機構によりヒートシンクと冷媒蒸発パネルとの間の空隙
を小さくし、または冷媒蒸発パネルと冷却プレートとの
間の空隙を大きくし、ヒートシンクと周囲空気との間の
熱伝達率を高める。その結果、ヒートシンクの冷却効果
が大きくなり、ヒートシンクの温度と周囲温度との差を
小さくする。周囲温度が低い時には、空隙を前記と逆の
方向へ操作し、熱伝導率を低める。その結果、冷却効果
が低下し、ヒートシンクの温度と周囲温度との差を大き
くする。このように、周囲温度が高いときはヒートシン
クの冷却効果を高め、周囲温度が低いときはヒートシン
クの冷却効果を低くして、ヒートシンクの温度を常に一
定に維持する。According to the above means, when the ambient temperature is high, the displacement mechanism reduces the gap between the heat sink and the refrigerant evaporation panel, or increases the gap between the refrigerant evaporation panel and the cooling plate to prevent the heat sink and the ambient air. Increase the heat transfer coefficient between and. As a result, the cooling effect of the heat sink is increased, and the difference between the temperature of the heat sink and the ambient temperature is reduced. When the ambient temperature is low, the void is operated in the opposite direction to lower the thermal conductivity. As a result, the cooling effect is reduced, increasing the difference between the heat sink temperature and the ambient temperature. In this way, the cooling effect of the heat sink is enhanced when the ambient temperature is high, and the cooling effect of the heat sink is reduced when the ambient temperature is low, so that the temperature of the heat sink is always kept constant.
【0006】[0006]
【実施例】以下、本発明を図に示す実施例について説明
する。図1は本発明の第1の実施例を示す側断面図、図
2はその正面図である。図において、地面に垂直方向に
伸びる平板状のヒートシンク1の一方の面に半導体素子
を内蔵したパワーモジュール2を固定してあり、他方の
面に空隙Gを介して平行に冷媒蒸発パネル3を配置し、
冷媒蒸発パネル3の上端および下端を温度の変化に応じ
て変位する変位機構4によって支持してある。冷媒蒸発
パネル3は、紙や布など多孔質材料からなる吸収シート
31の両面に網状または多孔状の金属シート32を固定
してある。ヒートシンク1の下端には水などの冷媒5を
収納する冷媒槽6を設け、吸収シート31の下端を冷媒
5に浸漬してある。変位機構4は、バイメタル41の一
方端をヒートシンク1に固定し、他方端を冷媒蒸発パネ
ル3に回動し得るようにピン連結してある。Embodiments of the present invention will be described below with reference to the drawings. 1 is a side sectional view showing a first embodiment of the present invention, and FIG. 2 is a front view thereof. In the figure, a power module 2 containing a semiconductor element is fixed to one surface of a flat plate-shaped heat sink 1 extending vertically to the ground, and a refrigerant evaporation panel 3 is arranged in parallel on the other surface with a gap G therebetween. Then
The upper and lower ends of the refrigerant evaporation panel 3 are supported by a displacement mechanism 4 that displaces in accordance with changes in temperature. The refrigerant evaporation panel 3 has a mesh-like or porous metal sheet 32 fixed to both surfaces of an absorbent sheet 31 made of a porous material such as paper or cloth. The lower end of the heat sink 1 is provided with a coolant tank 6 for containing a coolant 5 such as water, and the lower end of the absorption sheet 31 is immersed in the coolant 5. The displacement mechanism 4 has one end fixed to the heat sink 1 and the other end pin-coupled to the refrigerant evaporation panel 3 so as to be rotatable.
【0007】ここで本発明の原理を説明する。ヒートシ
ンク1の温度が上昇すると、冷媒蒸発パネル3に熱が伝
わり、吸収シート31に含まれる冷媒5が蒸発する。そ
の際、ヒートシンク1の周囲空気から蒸発の潜熱として
熱を奪うため、ヒートシンク1が冷却される。ところ
で、地面に垂直方向に伸びる平板状のヒートシンク1と
それに平行に設けた冷媒蒸発パネル3との間の空隙Gの
大きさと、ヒートシンク1と周囲空気間の熱伝達率の大
きさとの関係は、図3に示すように、空隙Gが0〜5m
m程度の間では熱伝達率が50〜30(W/m2 ℃)変
化し、空隙Gが大きくなるにしたがって熱伝達率は低下
する。ここで、半導体素子の温度TD は、周囲温度T
0 、ヒートシンクの温度TH と周囲温度T0 との差ΔT
1 、半導体素子の温度TD とヒートシンクの温度TH と
の差ΔT2 から、 TD =T0 +ΔT1 +ΔT2 で決
まるから、図4に示すように、半導体素子の温度TD を
一定にするためには、周囲温度T0 の変化に応じてΔT
1 をコントロールすればよいことがわかる。したがっ
て、上記構成により、周囲温度が高い時に、図1(a)
に示すように、バイメタル41の温度が上がってほぼ直
線状に変形し、冷媒蒸発パネル3をヒートシンク1に近
付けて空隙Gを小さくし、熱伝達率を高める。その結
果、冷却効果が大きくなり、ヒートシンク1の温度と周
囲温度との差ΔT1 を小さくする。周囲温度が低い時、
図1(b)に示すように、バイメタル41の温度が低下
して湾曲し、冷媒蒸発パネル3をヒートシンク1から離
して空隙Gを大きくし、熱伝達率を低める。その結果、
冷却効果が低下し、ヒートシンク1の温度と周囲温度と
の差ΔT1 を大きくする。このように、周囲温度が高い
ときはヒートシンクの冷却効果を高め、周囲温度が低い
ときはヒートシンクの冷却効果を低くして、ヒートシン
クの温度を常に一定に維持する。The principle of the present invention will now be described. When the temperature of the heat sink 1 rises, heat is transferred to the refrigerant evaporation panel 3 and the refrigerant 5 contained in the absorption sheet 31 evaporates. At that time, heat is taken from the air around the heat sink 1 as latent heat of evaporation, so that the heat sink 1 is cooled. By the way, the relationship between the size of the gap G between the flat plate-shaped heat sink 1 extending in the direction perpendicular to the ground and the refrigerant evaporation panel 3 provided in parallel with it, and the size of the heat transfer coefficient between the heat sink 1 and the ambient air is: As shown in FIG. 3, the gap G is 0 to 5 m.
The heat transfer coefficient changes by 50 to 30 (W / m 2 ° C) in the range of about m, and the heat transfer coefficient decreases as the gap G increases. Here, the temperature T D of the semiconductor element is the ambient temperature T
0 , the difference ΔT between the heat sink temperature T H and the ambient temperature T 0
1, the difference [Delta] T 2 between the temperature T D and the temperature T H of the heat sink of the semiconductor device, because determined by T D = T 0 + ΔT 1 + ΔT 2, as shown in FIG. 4, a constant temperature T D of the semiconductor element to, in response to changes in ambient temperature T 0 [Delta] T
You can see that you can control 1 . Therefore, with the above configuration, when the ambient temperature is high, as shown in FIG.
As shown in, the temperature of the bimetal 41 rises and deforms into a substantially linear shape, and the refrigerant evaporation panel 3 is brought closer to the heat sink 1 to reduce the gap G and increase the heat transfer coefficient. As a result, the cooling effect is increased, and the difference ΔT 1 between the temperature of the heat sink 1 and the ambient temperature is reduced. When the ambient temperature is low,
As shown in FIG. 1 (b), the temperature of the bimetal 41 is lowered and curved, and the refrigerant evaporation panel 3 is separated from the heat sink 1 to increase the gap G and reduce the heat transfer coefficient. as a result,
The cooling effect decreases, and the difference ΔT 1 between the temperature of the heat sink 1 and the ambient temperature increases. In this way, the cooling effect of the heat sink is enhanced when the ambient temperature is high, and the cooling effect of the heat sink is reduced when the ambient temperature is low, so that the temperature of the heat sink is always kept constant.
【0008】図5は第2の実施例を示す側断面図であ
る。図において、地面に垂直方向に伸びる平板状のヒー
トシンク1の一方の面に半導体素子を内蔵したパワーモ
ジュール2を固定してあり、他方の面には冷媒蒸発パネ
ル3を密着して配置し、冷媒蒸発パネル3に平行に空隙
を介してアルミニウム等の金属製の冷却プレート7を配
置してある。冷却プレート7の上端および下端は温度の
変化に応じて変位する変位機構4によって支持してあ
る。冷媒蒸発パネル3、変位機構4、冷媒槽6の構成は
第1の実施例とほぼ同じである。この場合、冷媒蒸発パ
ネル3と冷却プレート7との間の空隙Gの大きさと、ヒ
ートシンク1から周囲空気への熱伝達率の大きさとの関
係は、図6に示すように、空隙Gが0〜5mm程度の間
では熱伝達率が50〜30(W/m2 ℃)変化し、空隙
Gが大きくなるにしたがって熱伝達率は上昇する。ここ
で、半導体素子の温度TD は、周囲温度T0 、ヒートシ
ンクの温度TH と周囲温度T0 との差ΔT1 、半導体素
子の温度TD とヒートシンクの温度TH との差ΔT2 か
ら、 TD =T0 +ΔT1 +ΔT2 で決まるから、図
7に示すように、半導体素子の温度TD を一定にするた
めには、周囲温度T0 の変化に応じてΔT1 をコントロ
ールすればよいことがわかる。したがって、上記構成に
より、周囲温度が高い時は、図5(a)に示すように、
バイメタル41の温度が上がってほぼ湾曲し、冷却プレ
ート7を冷媒蒸発パネル3から離して空隙Gを大きく
し、熱伝達率を高める。その結果、冷却効果が大きくな
り、ヒートシンク1の温度と周囲温度との差ΔT1 を小
さくする。周囲温度が低い時、図5(a)に示すよう
に、バイメタル41の温度が低下して直線状に変形し、
冷却プレート7を冷媒蒸発パネル3に近づけて空隙Gを
小さくし、熱伝達率を低める。その結果、冷却効果が低
下し、ヒートシンク1の温度と周囲温度との差ΔT1 を
大きくする。このように、第1の実施例と同じく、周囲
温度が高くなるとヒートシンクの冷却効果を高め、周囲
温度が低くなるとヒートシンクの冷却効果を低くして、
ヒートシンクの温度を常に一定に維持する。なお、変位
機構4は、第1の実施例では図8(a)、第2の実施例
では図8(b)に示すように、動作温度の異なる形状記
憶材料を直列に複数段重ねて構成した変位部材42の一
方端をヒートシンク1に固定し、他方端を冷媒蒸発パネ
ル3または冷却プレート7に固定した構成とし、周囲温
度の変化に応じて冷媒蒸発パネル3または冷却プレート
7の位置を移動し、空隙Gの大きさをコントロールする
ようにしてもよい。FIG. 5 is a side sectional view showing a second embodiment. In the figure, a power module 2 containing a semiconductor element is fixed to one surface of a flat plate-shaped heat sink 1 extending in the vertical direction to the ground, and a refrigerant evaporation panel 3 is closely arranged on the other surface of the heat sink 1. A cooling plate 7 made of metal such as aluminum is arranged in parallel with the evaporation panel 3 with a gap therebetween. The upper and lower ends of the cooling plate 7 are supported by a displacement mechanism 4 that displaces in response to changes in temperature. The configurations of the refrigerant evaporation panel 3, the displacement mechanism 4, and the refrigerant tank 6 are almost the same as those in the first embodiment. In this case, the relationship between the size of the gap G between the refrigerant evaporation panel 3 and the cooling plate 7 and the size of the heat transfer coefficient from the heat sink 1 to the ambient air is that the gap G is 0 to 0 as shown in FIG. Within about 5 mm, the heat transfer coefficient changes by 50 to 30 (W / m 2 ° C), and the heat transfer coefficient increases as the gap G increases. Here, the temperature T D of the semiconductor element, the ambient temperature T 0, the difference [Delta] T 1 between the temperature T H and the ambient temperature T 0 of the heat sink, the difference [Delta] T 2 between the temperature T D and the temperature T H of the heat sink of the semiconductor element , T D = T 0 + ΔT 1 + ΔT 2 Therefore, as shown in FIG. 7, in order to keep the temperature T D of the semiconductor element constant, ΔT 1 should be controlled according to the change in ambient temperature T 0. I know it's good. Therefore, according to the above configuration, when the ambient temperature is high, as shown in FIG.
The temperature of the bimetal 41 rises and becomes substantially curved, and the cooling plate 7 is separated from the refrigerant evaporation panel 3 to enlarge the gap G and increase the heat transfer coefficient. As a result, the cooling effect is increased, and the difference ΔT 1 between the temperature of the heat sink 1 and the ambient temperature is reduced. When the ambient temperature is low, as shown in FIG. 5A, the temperature of the bimetal 41 decreases and the bimetal 41 deforms linearly,
The cooling plate 7 is brought closer to the refrigerant evaporation panel 3 to reduce the gap G and reduce the heat transfer coefficient. As a result, the cooling effect is reduced and the difference ΔT 1 between the temperature of the heat sink 1 and the ambient temperature is increased. Thus, as in the first embodiment, when the ambient temperature is high, the cooling effect of the heat sink is enhanced, and when the ambient temperature is low, the cooling effect of the heat sink is reduced,
Keep the heat sink temperature constant at all times. The displacement mechanism 4 is configured by stacking a plurality of shape memory materials having different operating temperatures in series as shown in FIG. 8A in the first embodiment and FIG. 8B in the second embodiment. The displacement member 42 has one end fixed to the heat sink 1 and the other end fixed to the refrigerant evaporation panel 3 or the cooling plate 7, and the position of the refrigerant evaporation panel 3 or the cooling plate 7 is moved according to a change in ambient temperature. However, the size of the gap G may be controlled.
【発明の効果】以上述べたように、本発明によれば、ヒ
ートシンクと冷媒蒸発パネルとの間または冷媒蒸発パネ
ルと平行な冷却プレートとの間に空隙を設け、かつ空隙
の大きさを周囲温度に応じて変化させて、ヒートシンク
の温度を常に一定になるようにしてあるので、電力消費
のない自然対流を利用した冷却装置で冷却効果を向上さ
せ、かつ特性が安定するように半導体素子の温度を一定
に保つ潜熱冷却装置を提供できる効果がある。As described above, according to the present invention, an air gap is provided between the heat sink and the refrigerant evaporation panel or between the cooling plate parallel to the refrigerant evaporation panel, and the size of the air gap is set to the ambient temperature. The temperature of the heat sink is constantly kept constant by changing the temperature of the semiconductor element so that the cooling effect using natural convection without power consumption improves the cooling effect and stabilizes the characteristics. There is an effect that it is possible to provide a latent heat cooling device that keeps the temperature constant.
【図1】 本発明の第1の実施例を示す側断面図であ
る。FIG. 1 is a side sectional view showing a first embodiment of the present invention.
【図2】 図1の正面図である。FIG. 2 is a front view of FIG.
【図3】 本発明の第1の実施例の空隙と熱伝達率との
関係を示す説明図である。FIG. 3 is an explanatory diagram showing a relationship between a void and a heat transfer coefficient according to the first embodiment of this invention.
【図4】 本発明の第1の実施例の空隙と温度との関係
を示す説明図である。FIG. 4 is an explanatory diagram showing a relationship between voids and temperature in the first embodiment of the present invention.
【図5】 本発明の第2の実施例を示す側断面図であ
る。FIG. 5 is a side sectional view showing a second embodiment of the present invention.
【図6】 本発明の第2の実施例の空隙と熱伝達率との
関係を示す説明図である。FIG. 6 is an explanatory diagram showing a relationship between a void and a heat transfer coefficient according to a second embodiment of the present invention.
【図7】 本発明の第2の実施例の空隙と温度との関係
を示す説明図である。FIG. 7 is an explanatory diagram showing a relationship between voids and temperature according to the second embodiment of the present invention.
【図8】 本発明の変位機構の他の実施例の要部を示す
側断面図である。FIG. 8 is a side sectional view showing a main part of another embodiment of the displacement mechanism of the present invention.
1 ヒートシンク、2 パワーモジュール、3 冷媒蒸
発パネル、31 吸収シート、32 金属シート、4
変位機構、41 バイメタル、42 変位部材、5 冷
媒、6、冷媒槽、7 冷却プレート1 Heat Sink, 2 Power Module, 3 Refrigerant Evaporation Panel, 31 Absorption Sheet, 32 Metal Sheet, 4
Displacement mechanism, 41 Bimetal, 42 Displacement member, 5 Refrigerant, 6, Refrigerant tank, 7 Cooling plate
Claims (4)
ンクを冷媒の蒸発の潜熱によって冷却する潜熱冷却装置
において、地面に対して垂直に設けた前記ヒートシンク
と、前記ヒートシンクの他方の面に平行に空隙を介して
設け、かつ多孔質材料からなる吸収シートの両面に多孔
状の金属シートを固定した冷媒蒸発パネルと、前記ヒー
トシンクの両端付近に設け、かつ前記冷媒蒸発パネルと
前記ヒートシンクとの間の空隙を温度変化に応じて変化
させる変位機構と、前記冷媒蒸発パネルの下端を浸漬す
る冷媒を収納する冷媒槽とを備えたことを特徴とする潜
熱冷却装置。1. A latent heat cooling device for cooling a heat sink having a heating element attached to one surface thereof by latent heat of evaporation of a refrigerant, wherein the heat sink provided perpendicular to the ground and the other surface of the heat sink are parallel to each other. A refrigerant evaporation panel having a porous metal sheet fixed to both surfaces of an absorption sheet made of a porous material and provided through a gap, and provided near both ends of the heat sink, and between the refrigerant evaporation panel and the heat sink. A latent heat cooling device comprising: a displacement mechanism that changes a gap according to a temperature change; and a coolant tank that stores a coolant in which a lower end of the coolant evaporation panel is immersed.
ンクを冷媒の蒸発の潜熱によって冷却する潜熱冷却装置
において、地面に対して垂直に設けた前記ヒートシンク
と、前記ヒートシンクの他方の面に接触させて固定し、
かつ多孔質材料からなる吸収シートの両面に多孔状の金
属シートを固定した冷媒蒸発パネルと、前記冷媒蒸発パ
ネルと平行に空隙を介して設けた金属性の冷却プレート
と、前記ヒートシンクの両端付近に設け、かつ前記冷媒
蒸発パネルと前記冷却プレートとの間の空隙を温度変化
に応じて変化させる変位機構と、前記冷媒蒸発パネルの
下端を冷媒に浸漬する冷媒槽とを備えたことを特徴とす
る潜熱冷却装置。2. A latent heat cooling device for cooling a heat sink having a heating element attached to one surface thereof with latent heat of evaporation of a refrigerant, wherein the heat sink provided perpendicular to the ground is brought into contact with the other surface of the heat sink. Fixed and
And a refrigerant evaporation panel having porous metal sheets fixed on both sides of an absorbent sheet made of a porous material, a metallic cooling plate provided with a gap in parallel with the refrigerant evaporation panel, and near both ends of the heat sink. And a displacement mechanism for changing a gap between the refrigerant evaporation panel and the cooling plate according to a temperature change, and a refrigerant tank for immersing a lower end of the refrigerant evaporation panel in a refrigerant. Latent heat cooling device.
ヒートシンクを冷却する潜熱冷却方法において、周囲温
度の変化に応じて前記ヒートシンクと前記冷媒蒸発パネ
ルとの間の空隙を変化させ、前記ヒートシンクの温度を
一定に維持することを特徴とする潜熱冷却方法。3. The latent heat cooling method for cooling the heat sink by the latent heat cooling device according to claim 1, wherein a gap between the heat sink and the refrigerant evaporation panel is changed according to a change in ambient temperature, and the heat sink of the heat sink is changed. A latent heat cooling method characterized by maintaining a constant temperature.
ヒートシンクを冷却する潜熱冷却方法において、周囲温
度の変化に応じて前記冷却プレートと前記冷媒蒸発パネ
ルとの間の空隙を変化させ、前記ヒートシンクの温度を
一定に維持することを特徴とする潜熱冷却方法。4. The latent heat cooling method for cooling the heat sink by the latent heat cooling device according to claim 2, wherein a gap between the cooling plate and the refrigerant evaporation panel is changed according to a change in ambient temperature, and the heat sink is provided. A method for cooling latent heat, characterized in that the temperature of is kept constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11053494A JPH07297333A (en) | 1994-04-25 | 1994-04-25 | Apparatus and method for latent heat cooling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11053494A JPH07297333A (en) | 1994-04-25 | 1994-04-25 | Apparatus and method for latent heat cooling |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07297333A true JPH07297333A (en) | 1995-11-10 |
Family
ID=14538254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11053494A Pending JPH07297333A (en) | 1994-04-25 | 1994-04-25 | Apparatus and method for latent heat cooling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07297333A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006147761A (en) * | 2004-11-18 | 2006-06-08 | Fuji Electric Systems Co Ltd | Cooling system |
KR101036170B1 (en) * | 2011-02-16 | 2011-05-23 | 이광로 | Complex cooling device for computer parts |
-
1994
- 1994-04-25 JP JP11053494A patent/JPH07297333A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006147761A (en) * | 2004-11-18 | 2006-06-08 | Fuji Electric Systems Co Ltd | Cooling system |
KR101036170B1 (en) * | 2011-02-16 | 2011-05-23 | 이광로 | Complex cooling device for computer parts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2247912C2 (en) | Microcooling device | |
US5283715A (en) | Integrated heat pipe and circuit board structure | |
JP5372472B2 (en) | Conductive cooling circuit board structure | |
US8223494B2 (en) | Conduction cooled circuit board assembly | |
JP3470612B2 (en) | Electronics | |
US5357271A (en) | Thermal printhead with enhanced laterla heat conduction | |
US20050280996A1 (en) | Heat dissipating device with enhanced boiling/condensation structure | |
JPH0629683A (en) | Heat pipe type heat dissipation unit for electronic apparatus | |
KR960705351A (en) | Heat sink and cooling method using it | |
JPH0727999B2 (en) | Integrated heat pipe module | |
US3613774A (en) | Unilateral heat transfer apparatus | |
JP2007263427A (en) | Loop type heat pipe | |
JPH07297333A (en) | Apparatus and method for latent heat cooling | |
JPH06123567A (en) | Heat exchanging structure proper to liquid storage tank | |
JPH06349722A (en) | Substrate heating device | |
JP3398456B2 (en) | Substrate cooling device | |
JP2002062071A (en) | Flat plate type heat pipe | |
JPH0661184A (en) | Plasma processing device | |
JPH08186205A (en) | Temperature control device and method | |
JPH09306405A (en) | Sample cooling device | |
JPH09210582A (en) | Heat pipe | |
JP2002289962A (en) | Optical element module provided with heat transfer medium utilizing phase change | |
JP7399742B2 (en) | Cooling system | |
JPH0726795B2 (en) | Heat transport pipe | |
JPH02146498A (en) | Small heat transport device |