JPH0726795B2 - Heat transport pipe - Google Patents
Heat transport pipeInfo
- Publication number
- JPH0726795B2 JPH0726795B2 JP61267272A JP26727286A JPH0726795B2 JP H0726795 B2 JPH0726795 B2 JP H0726795B2 JP 61267272 A JP61267272 A JP 61267272A JP 26727286 A JP26727286 A JP 26727286A JP H0726795 B2 JPH0726795 B2 JP H0726795B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- boundary layer
- water
- communication pipe
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 53
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、流体を熱媒体とする熱輸送管に関するもので
ある。TECHNICAL FIELD The present invention relates to a heat transport tube using a fluid as a heat medium.
[従来の技術] 熱輸送管として現在実用化されているものにヒートパイ
プがある。[Prior Art] A heat pipe is currently in practical use as a heat transport pipe.
ヒートパイプは密封した管の中に熱作動媒体を封入する
と共に毛細管現象によって液状の作動媒体の移動を促進
するウィック材を挿入した構造である。The heat pipe has a structure in which a heat working medium is enclosed in a sealed tube and a wick material that promotes movement of a liquid working medium by a capillary phenomenon is inserted.
該ヒートパイプの1端を高熱源に他端を低熱源に配置す
ることにより高熱源側で熱作動媒体の蒸発が起って吸熱
し、蒸発した蒸気は低熱源側で冷却されて凝縮して放熱
する。凝縮液化した熱作動媒体は、ウィック材により高
熱源側へ移動し、蒸発、液化が連続する。By disposing one end of the heat pipe in the high heat source and the other end in the low heat source, the heat working medium evaporates and absorbs heat on the high heat source side, and the evaporated vapor is cooled and condensed on the low heat source side. Dissipate heat. The condensed and liquefied heat working medium moves to the high heat source side by the wick material, and evaporation and liquefaction continue.
而して、高熱源側での吸熱、低熱源側での放熱により熱
輸送が行われる。Thus, heat transfer is performed by heat absorption on the high heat source side and heat dissipation on the low heat source side.
[発明が解決しようとする問題点] 前記した様に、ヒートパイプは熱作動媒体の蒸発、凝縮
によって熱輸送が行なわれる。従って、作動温度は、使
用媒体の蒸発、凝縮温度、或は封入圧力によってきまっ
てしまう。この為、高熱源、低熱源の温度により熱作動
媒体が決定され、場合によっては適当な熱作動媒体がな
くヒートパイプの使用ができないこともある。[Problems to be Solved by the Invention] As described above, heat transfer is performed in the heat pipe by evaporation and condensation of the heat working medium. Therefore, the operating temperature depends on the evaporation or condensation temperature of the medium used or the filling pressure. Therefore, the heat working medium is determined by the temperatures of the high heat source and the low heat source, and in some cases, there is no suitable heat working medium and the heat pipe cannot be used.
更に、熱作動媒体を封入する為の真空引作業が必要であ
るし、ウィック材を用いなければならないこと、ヒート
パイプ自体は圧力容器でなくてはならないこと等、構造
上にも種々制約がある。Further, there are various restrictions on the structure, such as vacuuming work for enclosing the heat working medium, using a wick material, and the heat pipe itself being a pressure vessel. .
[問題点を解決するための手段] 本発明は上記実情を鑑み、構造が簡単で製作が容易、且
作動条件の極めて広い熱輸送管を提供しようとするもの
であって、高熱源側、低熱源側にそれぞれ流体溜を形成
し、両者を連通管で連通すると共にいずれか1方の流体
溜を加振可能とし、前記連通管内壁に、該管内壁に接す
る流体で形成される境界層の静止状態を保持するための
境界層保持手段を設けたことを特徴とするものである。[Means for Solving the Problems] In view of the above circumstances, the present invention aims to provide a heat transport pipe having a simple structure, easy manufacture, and an extremely wide operating condition. A fluid reservoir is formed on each of the heat sources, both of them are communicated by a communication pipe, and one of the fluid reservoirs can be vibrated, and the inner wall of the communication pipe has a boundary layer formed of a fluid in contact with the inner wall of the pipe. Boundary layer holding means for holding the stationary state is provided.
[作用] 流体の加振により流体溜の流体が連通管中へ出入し、こ
の出入する流体と、連通管内壁に接する流体で形成され
且つ連通管内壁の境界層保持手段によって静止状態が保
持されている境界層との間で熱受授があり、熱は連通管
内の流体を介して1方の流体溜より他方の流体溜へ輸送
される。[Operation] The fluid in the fluid reservoir moves in and out of the communication pipe by vibrating the fluid, and is formed by the fluid flowing in and out and the fluid in contact with the inner wall of the communication pipe, and the stationary state is maintained by the boundary layer holding means of the inner wall of the communication pipe. The heat is transferred to and from the boundary layer, and the heat is transferred from one fluid reservoir to the other fluid reservoir via the fluid in the communication pipe.
[実施例] 以下図面を参照しつつ本発明の実施例を説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.
先ず第1図に於いて本実施例の概略を説明する。First, the outline of the present embodiment will be described with reference to FIG.
該実施例では熱媒体として水を選択した例を示す。In this embodiment, an example in which water is selected as the heat medium is shown.
1は高温水槽、2は低温水槽であり、両水槽1,2を水平
方向に延びる連通管3によって連通する。高温水槽1に
は該水槽に貯溜される水を加熱する為のヒータ(該ヒー
タは発熱源として仮に示すものであり、実際には電子機
器の発熱体等である)4を設け、更に高温水槽1内の水
を加振する為の加振機5を設ける。1 is a high temperature water tank, 2 is a low temperature water tank, and both water tanks 1 and 2 are connected by a communication pipe 3 extending in the horizontal direction. The high temperature water tank 1 is provided with a heater 4 for heating the water stored in the water tank (the heater is tentatively shown as a heat source and is actually a heating element of an electronic device, etc.) 4. A vibration exciter 5 for vibrating the water in 1 is provided.
上記構成に於いて、ヒータ4により高温水槽1内の水を
所要の温度迄加熱しておき、加振機5によって加振する
と、振動は連通管3内の水を介して低温水槽2内の水迄
伝播されるが、熱はこの振動により低温水槽2側に移動
する。In the above-mentioned structure, when the water in the high temperature water tank 1 is heated to the required temperature by the heater 4 and is vibrated by the vibration exciter 5, vibration is generated in the low temperature water tank 2 via the water in the communication pipe 3. Although propagated to water, heat moves to the low temperature water tank 2 side due to this vibration.
前記連通管3内では水の対流は殆ど生じることがなく、
従って連通管3内での熱移動については振動が不可欠
で、振動を停止すれば熱の輸送も停止される。又、熱輸
送量も振動量によって決定されるので、輸送量を多くし
たい場合は振動量を多く、輸送量を少くしたい場合は振
動量を少くすればよい。Almost no convection of water occurs in the communication pipe 3,
Therefore, vibration is indispensable for the heat transfer in the communication pipe 3, and if the vibration is stopped, the heat transport is also stopped. Further, since the heat transport amount is also determined by the vibration amount, the vibration amount may be increased when the transport amount is desired to be increased and the vibration amount may be reduced when the transport amount is desired to be decreased.
次に、第2図〜第5図に於いて連通管8内での熱移動の
原理の概略を説明する。Next, an outline of the principle of heat transfer in the communication pipe 8 will be described with reference to FIGS.
加振機5により高温水槽1内の水6aに振動が加えられる
と水6aは連通管3の高温側端部に入出し、連通管3内の
水の移動が起る。連通管3内の水の移動挙動について、
若干考察すると実際の水に移動が起こるのは連通管3も
管壁7に接する境界層8を除いた部分である。When vibration is applied to the water 6a in the high temperature water tank 1 by the vibrator 5, the water 6a enters and exits the high temperature side end of the communication pipe 3, and the water in the communication pipe 3 moves. Regarding the movement behavior of water in the communication pipe 3,
Considering a little, the movement of the actual water occurs only in the communication pipe 3 except the boundary layer 8 in contact with the pipe wall 7.
圧縮側の振動による水の移動は第2図に示されるが、連
通管3内に入込んだ高温水槽1内の水(以下高温水と称
す)6a(図中黒丸で示される)から境界層8に向って熱
移動が起り、境界層8が加熱される。The movement of water due to vibration on the compression side is shown in FIG. 2, but from the water (hereinafter referred to as high temperature water) 6a (hereinafter referred to as high temperature water) in the high temperature water tank 1 that has entered the communication pipe 3 to the boundary layer. Heat transfer occurs toward 8 and the boundary layer 8 is heated.
次に膨張側の振動となったときは、入込んだ高温水6aは
高温水槽1内に戻り、逆に低温水槽2内の水(以下低温
水と称す)6bが連通管3内に入込む(第3図参照)。と
ころが、前記した様に境界層8が加熱されている為、今
度は境界層8から連通管3内の水に熱移動が生じ、該内
部の水を昇温させる。Next, when vibration occurs on the expansion side, the high temperature water 6a that has entered returns to the high temperature water tank 1, and conversely, the water (hereinafter referred to as low temperature water) 6b in the low temperature water tank 2 enters the communication pipe 3. (See Figure 3). However, since the boundary layer 8 is heated as described above, heat is transferred from the boundary layer 8 to the water in the communication pipe 3 to raise the temperature of the water inside.
再び圧縮側振動が起ると、前記同様高温水6aが入込んで
境界層8を加熱するが、更に前記膨張側振動時に加温さ
れた部分の水が低温水槽2側へ移動し、やはり境界層を
昇温させる(第4図)。When the vibration on the compression side occurs again, the high temperature water 6a enters and heats the boundary layer 8 in the same manner as described above, but the part of the water heated at the time of the vibration on the expansion side moves to the low temperature water tank 2 side, and again the boundary The layers are heated (Fig. 4).
次に膨張側振動で、高温水の入込んだ部分、更に低温水
槽2側部分で境界層8から連通管3内の水への熱移動が
起る(第5図参照)。Next, due to the vibration on the expansion side, heat is transferred from the boundary layer 8 to the water in the communication pipe 3 in the portion where the high temperature water has entered, and further in the portion where the low temperature water tank 2 is present (see FIG. 5).
上記したメカニズムにより高温水槽内の水(勿論低温水
槽内の水であってもよい)を加振することにより熱輸送
を行える。又、この熱輸送は振動の媒介によって行わ
れ、熱輸送量は振動量(振幅×振動数)により、熱輸送
速度は熱移動速度(振動数)によって決定され、振動の
停止によって熱輸送は停止される。Heat transfer can be performed by vibrating the water in the high temperature water tank (of course, the water in the low temperature water tank) by the mechanism described above. In addition, this heat transfer is performed by vibration mediation, the heat transfer amount is determined by the vibration amount (amplitude x frequency), the heat transfer speed is determined by the heat transfer speed (frequency), and the heat transfer is stopped by stopping the vibration. To be done.
前記した様に本熱輸送のメカニズムに於いて、連通管3
内の境界層8が大きな役割を生じ、且境界層と移動する
水との間の温度差が大きい程熱輸送能力は高くなる。As described above, in the heat transfer mechanism, the communication pipe 3
The inner boundary layer 8 plays a larger role, and the larger the temperature difference between the boundary layer and the moving water, the higher the heat transport capacity.
又、該境界層8が入込んだ高温水6aから熱を受け易い状
態とすれば、熱輸送効率は更に上昇する。Further, if the boundary layer 8 is set in a state where it is likely to receive heat from the high temperature water 6a that has entered, the heat transport efficiency is further increased.
境界層8の熱受授能力を増大させる1の手段として、境
界層の静止を確実にすること、流体間の接触面積を増大
することが挙げられる。One way to increase the heat transfer capacity of the boundary layer 8 is to ensure the stationary of the boundary layer and to increase the contact area between fluids.
境界層8の静止を確実にさせた連通管3の構造例として
第6図〜第9図に示すものがある。6 to 9 show examples of the structure of the communication pipe 3 in which the stationary of the boundary layer 8 is ensured.
第6図に示すものは、連通管3内にコイル10を挿入さ
せ、該コイル10を管壁7に密着させたものである。該コ
イル10の存在により、コイルの線材と線材間に水が保有
され、この保有によりが境界層の静止が確実化される。In FIG. 6, the coil 10 is inserted into the communication pipe 3 and the coil 10 is brought into close contact with the pipe wall 7. The presence of the coil 10 causes water to be retained between the wire rods of the coil, which ensures that the boundary layer remains stationary.
第7図は、管壁7に突起11を多数形成せしめたもので、
該突起11により同様に水が保有される。FIG. 7 shows a large number of protrusions 11 formed on the pipe wall 7,
Water is also retained by the projections 11.
又、第8図は管壁7に沿わせて金網12を設けたものであ
り、第9図は金網12と同様な作用をするパンチメタル13
を設けたものである。Further, FIG. 8 shows a wire mesh 12 provided along the pipe wall 7, and FIG. 9 shows a punch metal 13 having the same function as the wire mesh 12.
Is provided.
或は特に図示していないが、管壁表面にスポンジ等多孔
質層を形成してもよい。Alternatively, although not particularly shown, a porous layer such as sponge may be formed on the surface of the tube wall.
又、境界層8の熱受授能力を増加させる他の手段とし
て、境界層8と高温水6aとの熱移動を促進する補助手段
を講じることができる。即ち、前記したコイル10、突起
11、金網12等の境界層保持手段として銅、アルミニウム
等の熱伝導率の高いものを選択すれば、前記した熱移動
のメカニズムの他に該保持手段が高温水より熱を受け、
更に境界層が該保持手段より熱を受けるという熱移動経
路が確保される。Further, as another means for increasing the heat transfer capability of the boundary layer 8, an auxiliary means for promoting heat transfer between the boundary layer 8 and the high temperature water 6a can be provided. That is, the coil 10 and the protrusion described above.
If copper, aluminum or the like having a high thermal conductivity is selected as the boundary layer holding means for the wire mesh 12 and the like, the holding means receives heat from high temperature water in addition to the above-described heat transfer mechanism,
Furthermore, a heat transfer path is secured in which the boundary layer receives heat from the holding means.
又、連通管3を小径にして多数設けてもよく、大径の連
通管3の中に細管を多数挿通させてもよく、金属繊維を
綿状にしたものを連通管に詰める等してもよい。或は、
連通管3は軸心方向に熱伝導がよいと境界層と移動水側
との温度差が小さくなって熱輸送効率が低下するが、連
通管を複数の短管を結合した構成として各短管の間は熱
絶縁すればよい。Also, a large number of communication tubes 3 may be provided with a small diameter, a large number of thin tubes may be inserted into the communication tube 3 of a large diameter, and a cotton fiber-shaped metal fiber may be packed in the communication tubes. Good. Or
If the communication pipe 3 has good heat conduction in the axial direction, the temperature difference between the boundary layer and the moving water side becomes small and the heat transfer efficiency decreases. Thermal insulation may be provided between the two.
更に又、上記実施例として熱媒体を水としたが、油等そ
の他の液体であってもよく或は空気等の気体であっても
よい。Furthermore, although the heat medium is water in the above embodiment, it may be other liquid such as oil or gas such as air.
[発明の効果] 以上述べた如く本発明によれば下記の優れた効果を発揮
し得る。[Effects of the Invention] As described above, according to the present invention, the following excellent effects can be exhibited.
(i) 離れた高熱源、低熱源間での熱輸送が可能であ
る。(I) It is possible to transfer heat between a high heat source and a low heat source that are separated from each other.
(ii) 熱輸送を行うのに熱媒体の相変化を必要としな
いので、熱媒体はどの様なものでもよく、高熱源低熱源
の温度により使用すべき熱媒体の種類が限定されること
がない。(Ii) Since heat transfer does not require a phase change of the heat medium, any heat medium may be used, and the type of heat medium to be used may be limited by the temperature of the high heat source and the low heat source. Absent.
(iii) 熱輸送の開始停止は熱媒体へ振動を加えるこ
と、加振を停止させることで行え、熱輸送量の増減は加
振態様の変化で行えるので、熱輸送の制御は極めて容易
である。(Iii) The start and stop of heat transport can be performed by applying vibration to the heat medium and stopping the vibration, and the amount of heat transport can be increased or decreased by changing the vibration mode, so control of heat transport is extremely easy. .
(iv) 熱媒体としての流体に振動を与えることに加
え、連通管内壁に境界層保持手段を設けて、連通管内壁
に接する流体で形成される境界層の静止状態を保持して
いるため、境界層の熱受授能力を増大させることがで
き、熱輸送能力を高めることができる。(Iv) In addition to vibrating the fluid as the heat medium, the boundary layer holding means is provided on the inner wall of the communication pipe to hold the stationary state of the boundary layer formed by the fluid in contact with the inner wall of the communication pipe. The heat transfer capacity of the boundary layer can be increased, and the heat transport capacity can be improved.
第1図は本発明の1実施例の概略を示す説明図、第2図
〜第5図は熱輸送のメカニズムを示す説明図、第6図〜
第9図はそれぞれ他の実施例を示す説明図である。 1は高温水槽、2は低温水槽、3は連通管、4はヒー
タ、5は加振機、8は境界層を示す。FIG. 1 is an explanatory view showing an outline of one embodiment of the present invention, FIGS. 2 to 5 are explanatory views showing a mechanism of heat transport, and FIGS.
FIG. 9 is an explanatory diagram showing another embodiment. 1 is a high temperature water tank, 2 is a low temperature water tank, 3 is a communication pipe, 4 is a heater, 5 is a vibrator, and 8 is a boundary layer.
Claims (1)
成し、両者を連通管で連通すると共にいずれか1方の流
体溜を加振可能とし、前記連通管内壁に、該管内壁に接
する流体で形成される境界層の静止状態を保持するため
の境界層保持手段を設けたことを特徴とする熱輸送管。1. A fluid reservoir is formed on each of a high heat source side and a low heat source side, both of which are communicated by a communicating pipe, and at least one of the fluid reservoirs can be vibrated, and the communicating pipe inner wall is connected to the communicating pipe inner wall. A heat transport pipe, characterized in that boundary layer holding means for holding the stationary state of the boundary layer formed by the fluid in contact with the heat exchanger is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61267272A JPH0726795B2 (en) | 1986-11-10 | 1986-11-10 | Heat transport pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61267272A JPH0726795B2 (en) | 1986-11-10 | 1986-11-10 | Heat transport pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63123992A JPS63123992A (en) | 1988-05-27 |
JPH0726795B2 true JPH0726795B2 (en) | 1995-03-29 |
Family
ID=17442534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61267272A Expired - Lifetime JPH0726795B2 (en) | 1986-11-10 | 1986-11-10 | Heat transport pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726795B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01123116U (en) * | 1988-02-16 | 1989-08-22 | ||
JPH01123117U (en) * | 1988-02-17 | 1989-08-22 | ||
JPH0678878B2 (en) * | 1988-12-02 | 1994-10-05 | リンナイ株式会社 | Heat transfer method and device |
JPH02124412U (en) * | 1989-03-24 | 1990-10-12 | ||
JP5636803B2 (en) * | 2010-08-04 | 2014-12-10 | 国立大学法人名古屋大学 | Loop heat pipe and electronic equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5421262U (en) * | 1977-07-15 | 1979-02-10 |
-
1986
- 1986-11-10 JP JP61267272A patent/JPH0726795B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63123992A (en) | 1988-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4067315A (en) | Solar heat pipe | |
JP3591339B2 (en) | Loop type heat pipe | |
US4785875A (en) | Heat pipe working liquid distribution system | |
JPS6354758A (en) | Solid heat pipe module | |
US3746081A (en) | Heat transfer device | |
US20130098583A1 (en) | Heat pipe dissipating system and method | |
US4058160A (en) | Heat transfer device | |
US3924674A (en) | Heat valve device | |
JPS63294328A (en) | Heat energy transmitter and seal jaw for packaging machine with said device | |
US3777811A (en) | Heat pipe with dual working fluids | |
JPH0726795B2 (en) | Heat transport pipe | |
JP4193188B2 (en) | Thin composite plate heat pipe | |
CN112432532A (en) | Evaporator assembly and loop heat pipe | |
CA1098896A (en) | Heat pipe heat amplifier | |
CN110926249A (en) | Heat dissipation device capable of keeping heating element at constant temperature and manufacturing method | |
US3955619A (en) | Heat transfer device | |
JPS58164993A (en) | Accumulation type heat exchanger | |
JPH10220975A (en) | Composite plate heat pipe | |
JPH02130948A (en) | Cooling device for semiconductor | |
JP2005337336A (en) | Liquefied gas vaporizer | |
JP4236374B2 (en) | Chiller and cooling system | |
US20250056764A1 (en) | Heat-conducting plate | |
JPS59138895A (en) | Heat pipe | |
CN117500244A (en) | A heat transfer structure, radiator and server that enhances the activated porous capillary structure | |
JPH0429245Y2 (en) |