[go: up one dir, main page]

JPH09117800A - Biological treatment method of organic waste liquid - Google Patents

Biological treatment method of organic waste liquid

Info

Publication number
JPH09117800A
JPH09117800A JP27797395A JP27797395A JPH09117800A JP H09117800 A JPH09117800 A JP H09117800A JP 27797395 A JP27797395 A JP 27797395A JP 27797395 A JP27797395 A JP 27797395A JP H09117800 A JPH09117800 A JP H09117800A
Authority
JP
Japan
Prior art keywords
sludge
treatment
biological treatment
tank
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27797395A
Other languages
Japanese (ja)
Other versions
JP3591086B2 (en
Inventor
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP27797395A priority Critical patent/JP3591086B2/en
Publication of JPH09117800A publication Critical patent/JPH09117800A/en
Application granted granted Critical
Publication of JP3591086B2 publication Critical patent/JP3591086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)

Abstract

(57)【要約】 【課題】 余剰汚泥の減容化を行うことができ、しかも
色度やCODの上昇等の処理水質の悪化を防止し、かつ
低コストで高処理水質を得ることが可能な有機性排液の
生物処理方法を提案する。 【解決手段】 被処理液13を返送汚泥14とともに曝
気槽11に導入して好気性生物処理し、この処理液を濃
縮装置12で濃縮し、濃縮汚泥の一部を返送汚泥14と
して曝気槽11に返送する好気性処理方法において、濃
縮汚泥の一部を可溶化処理槽21に導入し、界面活性剤
の存在下に加熱処理して汚泥の可溶化処理を行った後、
曝気槽11に返送する。
(57) [Abstract] [PROBLEMS] It is possible to reduce the volume of excess sludge, prevent deterioration of treated water quality such as increase in chromaticity and COD, and obtain high treated water quality at low cost. A biological treatment method for organic wastewater is proposed. A liquid to be treated 13 is introduced into an aeration tank 11 together with return sludge 14 for aerobic biological treatment, the treatment liquid is concentrated by a concentrating device 12, and a part of the concentrated sludge is returned to the aeration tank 11. In the aerobic treatment method of returning to the above, after introducing a part of the concentrated sludge into the solubilization treatment tank 21 and performing heat treatment in the presence of a surfactant to solubilize the sludge,
It is returned to the aeration tank 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機性排液を生物処
理し、生成する汚泥を可溶化処理により減容化するよう
にした有機性排液の生物処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biological treatment of organic waste liquid, in which the organic waste liquid is biologically treated and the sludge produced is solubilized to reduce its volume.

【0002】[0002]

【従来の技術】有機性排液を活性汚泥の存在下に好気的
に生物処理する方法では、難脱水性の余剰活性汚泥が大
量に生成する。また嫌気性汚泥の存在下に嫌気的に処理
する方法でも、大量の余剰消化汚泥が生成する。このよ
うな余剰汚泥の減容化のために、余剰汚泥を好気的また
は嫌気的に消化する方法が行われている。このうち好気
的消化では、余剰汚泥を消化槽で単純に曝気して消化
し、曝気汚泥を固液分離して分離汚泥を消化槽に返送し
ている。また嫌気性消化では、余剰汚泥を消化槽に投入
し、嫌気性細菌の作用で消化している。
2. Description of the Related Art In a method of aerobically treating organic waste liquid in the presence of activated sludge, a large amount of surplus activated sludge which is hardly dehydrated is produced. A large amount of excess digested sludge is also produced by a method of anaerobically treating in the presence of anaerobic sludge. In order to reduce the volume of such excess sludge, a method of aerobically or anaerobically digesting excess sludge has been used. In the aerobic digestion, the excess sludge is simply aerated in a digestion tank to digest it, and the aerated sludge is separated into solid and liquid to return the separated sludge to the digestion tank. In anaerobic digestion, excess sludge is put into a digestion tank and digested by the action of anaerobic bacteria.

【0003】このような消化方法は、好気性または嫌気
性生物の作用を利用して消化するものであるが、余剰汚
泥自体生物処理を経て生物学的に安定した汚泥であるた
め、汚泥の減容化には限度があり、通常余剰汚泥の30
〜40%が減容化されるにすぎない。
[0003] Such a digestion method digests by utilizing the action of aerobic or anaerobic organisms. However, since excess sludge itself is biologically stable through biological treatment, sludge is reduced. There is a limit to the volume of the sludge, usually 30
Only 4040% is reduced in volume.

【0004】このような点を改善するために、特公平5
−61994号には、余剰汚泥をpH2.5以下、温度
50℃以上で可溶化したのち曝気槽に返送する有機性汚
水の処理方法が記載されている。また特開平1−224
100号には、嫌気性消化した汚泥を100〜180℃
で可溶化処理した後、この可溶化処理汚泥を嫌気消化槽
に返送する有機性汚泥の処理方法が記載されている。
In order to improve such a point, Japanese Patent Publication No.
No. 61994 describes a method for treating organic wastewater in which excess sludge is solubilized at a pH of 2.5 or lower at a temperature of 50 ° C. or higher and then returned to an aeration tank. In addition, JP-A 1-224
No. 100 is anaerobic digested sludge at 100-180 ℃
Describes a method for treating organic sludge in which the solubilized sludge is returned to the anaerobic digestion tank after being solubilized in.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような従
来の方法では汚泥の減容化は可能であるが、可溶化処理
の条件が高温で厳しいため、難生物分解性の有機物が生
成して処理液の色度やCODが上昇して処理水質が悪化
し、しかも耐熱性の高い装置を必要とし、エネルギー消
費量が多く、コスト高になるという問題点がある。
However, although it is possible to reduce the volume of sludge by such a conventional method, since the conditions for solubilization treatment are severe at high temperatures, hardly biodegradable organic substances are produced. There is a problem that the chromaticity and COD of the treatment liquid are increased and the quality of the treated water is deteriorated, and a device with high heat resistance is required, which consumes a large amount of energy and is costly.

【0006】本発明の目的は、上記問題点を解決するた
め、処理水質の悪化を抑制し、しかも低温の加熱によ
り、低コストで汚泥の減容化を行うことができる有機性
排液の生物処理方法を提案することである。
In order to solve the above problems, the object of the present invention is to suppress the deterioration of the quality of treated water, and to heat sludge at a low temperature to reduce the volume of sludge at a low cost. It is to propose a processing method.

【0007】[0007]

【課題を解決するための手段】本発明は、有機性排液を
生物処理槽において好気性または嫌気性微生物を含む生
物汚泥の存在下に生物処理する方法であって、有機性排
液を生物処理槽に導入して、好気性または嫌気性微生物
を含む生物汚泥の存在下に好気性または嫌気性生物処理
する生物処理工程と、生物処理槽内の混合液または濃縮
汚泥を引抜き、この引抜汚泥を界面活性剤の存在下に加
熱して可溶化処理した後、生物処理槽に移送する可溶化
処理工程とを含むことを特徴とする有機性排液の生物処
理方法である。
The present invention is a method for biologically treating an organic waste liquid in a biological treatment tank in the presence of biological sludge containing aerobic or anaerobic microorganisms. Introduced into the treatment tank, the biological treatment process of treating aerobic or anaerobic organisms in the presence of biological sludge containing aerobic or anaerobic microorganisms, and withdrawing the mixed liquid or concentrated sludge in the biological treatment tank, Is heated in the presence of a surfactant to perform a solubilization treatment, and then the solubilization treatment step of transferring the solubilization treatment to a biological treatment tank is carried out.

【0008】本発明において処理の対象となる有機性排
液は、生物処理によって処理される有機物を含有する排
液または汚泥であるが、難生物分解性の有機物または無
機物が含有されていてもよい。このような有機性排液と
しては下水、し尿、食品工場排水、その他の産業排液、
これらの排液を処理した際に生じる余剰汚泥等の汚泥な
どがあげられる。
The organic effluent to be treated in the present invention is a effluent or sludge containing an organic substance to be treated by a biological treatment, but it may also contain a hardly biodegradable organic substance or an inorganic substance. . Such organic effluents include sewage, night soil, food factory effluents, other industrial effluents,
Examples thereof include sludge such as surplus sludge generated when treating these waste liquids.

【0009】このような有機性排液を生物処理する生物
処理工程は、好気性生物処理でも嫌気性生物処理でもよ
い。好気性生物処理としては、活性汚泥法、生物膜法な
どがあげられる。活性汚泥法は有機性排液を活性汚泥の
存在下に好気性生物処理する処理法であり、有機性排液
を曝気槽で活性汚泥と混合して曝気し、混合液を濃縮装
置で濃縮し、濃縮汚泥の一部を曝気槽に返送する標準活
性汚泥法が一般的であるが、これを変形した他の処理法
でもよい。また生物膜法は担体に生物膜を形成して好気
性下に排液と接触させる処理である。また嫌気性処理と
しては、嫌気性消化法、高負荷嫌気性処理法などがあげ
られる。
The biological treatment step for biologically treating such organic waste liquid may be an aerobic biological treatment or an anaerobic biological treatment. Examples of aerobic biological treatment include activated sludge method and biofilm method. The activated sludge method is an aerobic biological treatment of organic wastewater in the presence of activated sludge.The organic wastewater is mixed with activated sludge in an aeration tank and aerated, and the mixture is concentrated by a concentrator. In general, a standard activated sludge method in which a part of the concentrated sludge is returned to the aeration tank is used, but another treatment method modified from the standard activated sludge method may be used. The biofilm method is a treatment in which a biofilm is formed on a carrier and aerobically brought into contact with the drainage. Examples of the anaerobic treatment include an anaerobic digestion method and a high-load anaerobic treatment method.

【0010】好気性生物処理および嫌気性生物処理の処
理条件は特に制限されず、通常の好気性生物処理または
嫌気性生物処理の条件が採用できる。例えば、好気性生
物処理の場合、汚泥の消化においては消化槽(生物処理
槽)滞留時間は1日以上、通常3〜15日とすることが
でき、有機性排水の活性汚泥処理においては汚泥負荷
0.1〜0.5kg−BOD/MLSS/日のような運
転ができる。また嫌気性処理の場合、汚泥の消化におい
ては消化槽(生物処理槽)滞留時間は2.5日以上、通
常5〜30日とすることができる。
The treatment conditions for aerobic organism treatment and anaerobic organism treatment are not particularly limited, and ordinary aerobic organism treatment or anaerobic organism treatment conditions can be adopted. For example, in the case of aerobic biological treatment, the digestion tank (biological treatment tank) residence time can be set to 1 day or longer, usually 3 to 15 days in sludge digestion, and sludge load in organic sludge activated sludge treatment. Operation such as 0.1-0.5 kg-BOD / MLSS / day is possible. In the case of anaerobic treatment, the digestion tank (biological treatment tank) residence time in digesting sludge can be 2.5 days or longer, and usually 5 to 30 days.

【0011】本発明では、このような生物処理における
処理系から生物汚泥の一部を引抜き、この引抜汚泥を可
溶化処理する。生物汚泥を引抜く場合、濃縮装置で濃縮
された濃縮汚泥を引抜いてもよいし、生物処理槽から混
合液の状態で引抜いてもよいが、可溶化処理が小さい容
量の処理槽で行うことができ、しかも加熱エネルギーが
少なくてもよいので前者の方が好ましい。濃縮装置とし
ては、沈殿装置、遠心分離機、膜分離装置などの公知の
装置が使用できる。これらの中では、汚泥を高濃縮でき
るので、遠心分離装置、膜分離装置が好ましい。
In the present invention, a part of the biological sludge is extracted from the treatment system in such biological treatment, and the extracted sludge is solubilized. When removing the biological sludge, the concentrated sludge concentrated by the concentrating device may be withdrawn, or the mixed solution may be withdrawn from the biological treatment tank, but the solubilization process should be performed in a small capacity treatment tank. The former is preferred because it can be performed and requires less heating energy. As the concentrating device, a known device such as a precipitation device, a centrifuge or a membrane separation device can be used. Among these, the centrifugal separator and the membrane separator are preferable because the sludge can be highly concentrated.

【0012】濃縮汚泥は一部または全部を引抜汚泥とし
て引抜いて可溶化処理することができる。前者の場合、
濃縮汚泥の一部を可溶化処理し、他の一部を返送汚泥と
して生物処理槽に返送し、残部を余剰汚泥または消化汚
泥として排出することができる。生物処理槽には活性な
微生物が存在しており、被処理液中の有機物や可溶化処
理汚泥を基質として増殖するので、生物処理槽への汚泥
の返送は必ずしも必要ではないが、活性な微生物を生物
処理槽に供給できるので汚泥の返送を行うのが好まし
い。本発明では、余剰汚泥に加えて、返送汚泥として生
物処理槽に返送される汚泥の一部をさらに引抜いて可溶
化処理するのが好ましく、この場合余剰汚泥の発生量を
より少なくすることができ、条件によっては余剰汚泥の
発生量をゼロにすることもできる。この点については、
後で詳しく述べる。
The concentrated sludge can be partially or wholly extracted as a drawn-out sludge for solubilization treatment. In the former case,
It is possible to solubilize part of the concentrated sludge, return the other part to the biological treatment tank as return sludge, and discharge the rest as excess sludge or digested sludge. Since there are active microorganisms in the biological treatment tank and they proliferate using organic matter in the liquid to be treated and solubilized sludge as a substrate, it is not always necessary to return the sludge to the biological treatment tank. Since sludge can be supplied to the biological treatment tank, it is preferable to return sludge. In the present invention, in addition to excess sludge, it is preferable to further pull out a part of the sludge returned to the biological treatment tank as return sludge for solubilization treatment, in which case the amount of excess sludge generated can be further reduced. Depending on the conditions, the amount of excess sludge generated can be reduced to zero. In this regard,
More on this later.

【0013】本発明では、引抜汚泥を界面活性剤の存在
下に加熱して可溶化処理する。本発明で使用する界面活
性剤としては、たとえばポリオキシエチレンノニルフェ
ニルエーテル、ポリオキシエチレンアルキルエーテル等
のノニオン性界面活性剤;ラウリルベンゼンスルフォン
酸ナトリウム、ソディウムドデシルスルフェート等のア
ニオン性界面活性剤;テトラデシルアミン、セチルトリ
メチルアンモニウムクロリド等のカチオン性界面活性剤
などがあげられる。これらの中では生物分解性が高く、
微生物の消化活性を阻害しないノニオン性界面活性剤が
好ましい。
In the present invention, the drawn sludge is heated in the presence of a surfactant to solubilize it. Examples of the surfactant used in the present invention include nonionic surfactants such as polyoxyethylene nonylphenyl ether and polyoxyethylene alkyl ether; anionic surfactants such as sodium laurylbenzene sulfonate and sodium dodecyl sulfate; Examples thereof include cationic surfactants such as tetradecylamine and cetyltrimethylammonium chloride. Among these, biodegradability is high,
Nonionic surfactants that do not inhibit the digestive activity of microorganisms are preferred.

【0014】界面活性剤の添加量は、可溶化処理するM
LVSSに対して10〜100,000mg/kg、好
ましくは1,000〜20,000mg/kgとするの
が望ましい。このような量で界面活性剤を添加すること
により、可溶化処理汚泥を生物処理槽に導入して生物処
理しても微生物の消化活性が阻害されることはなく、ま
た処理全体の効率に影響を及ぼすような新たな負荷とは
ならないで界面活性剤の添加効果が得られ、従来の方法
に比べて穏和な条件で可溶化処理を行うことができる。
界面活性剤は可溶化処理槽(加熱処理槽)または可溶化
処理槽に供給する引抜汚泥に添加するのが好ましい。
The amount of surfactant added is M for solubilization treatment.
It is desirable that the amount of LVSS is 10 to 100,000 mg / kg, preferably 1,000 to 20,000 mg / kg. By adding the surfactant in such an amount, even if the solubilized sludge is introduced into the biological treatment tank and biologically treated, the digestive activity of microorganisms is not hindered and the efficiency of the entire treatment is affected. The effect of adding the surfactant can be obtained without causing a new load that affects the solubilization, and the solubilization treatment can be performed under milder conditions than the conventional method.
The surfactant is preferably added to the solubilization treatment tank (heat treatment tank) or the drawn sludge supplied to the solubilization treatment tank.

【0015】加熱温度は50〜150℃、好ましくは6
0〜90℃とするのが望ましい。加熱時間は、連続式の
場合滞留時間として15分間〜6時間、好ましくは30
分間〜2時間、バッチ式の場合10分間〜6時間、好ま
しくは30分間〜1時間とするのが望ましい。
The heating temperature is 50 to 150 ° C., preferably 6
The temperature is preferably 0 to 90 ° C. The heating time is 15 minutes to 6 hours, preferably 30 as a residence time in the case of a continuous system.
It is desirable that the time is from 2 minutes to 2 hours, and in the case of a batch method, from 10 minutes to 6 hours, preferably 30 minutes to 1 hour.

【0016】このような条件で可溶化処理することによ
り、有機性汚泥の90%以上が易生物分解性物質に改質
される。そして可溶化処理汚泥を好気性または嫌気性生
物処理することにより、有機物が微生物により分解さ
れ、汚泥が減容する。条件にもよるが、1回の可溶化処
理で、処理に供した引抜汚泥の1/3〜1/4が減容化
される。可溶化処理汚泥の生物処理は、汚泥を引抜いた
処理系の生物処理槽に返送(循環)して行うこともでき
るし、別の処理系の生物処理槽に導入して行うこともで
きる。
By performing the solubilization treatment under such conditions, 90% or more of the organic sludge is modified into a readily biodegradable substance. Then, by subjecting the solubilized sludge to aerobic or anaerobic biological treatment, organic matter is decomposed by microorganisms and the sludge volume is reduced. Depending on the conditions, one-time solubilization treatment reduces the volume of 1/3 to 1/4 of the drawn-out sludge subjected to the treatment. The biological treatment of the solubilized sludge can be carried out by returning (circulating) it to the biological treatment tank of the treatment system from which the sludge has been extracted, or by introducing it into the biological treatment tank of another treatment system.

【0017】本発明においては、可溶化処理する汚泥の
量を多くするほど汚泥の減容率は高くなる。ただし、可
溶化処理した汚泥中の有機物を生物分解する際に汚泥が
増殖するので、単に余剰汚泥を可溶化処理しただけでは
余剰汚泥をゼロにすることはできないが、増殖する汚泥
量を見かけ上ゼロになるように過剰の汚泥を引抜いて可
溶化処理する場合には、系全体から生じる余剰汚泥の量
をゼロにすることもできる。例えば、汚泥を消化処理す
る場合、消化槽(生物処理槽)の滞留時間中に可溶化処
理槽に循環され、可溶化処理される回数を考慮すると、
流入汚泥量のおよそ1/3〜1/6に相当する量を可溶
化処理すればよい。なお、可溶化処理する汚泥の量が多
くなると生物処理性能が低下する場合があるが、このよ
うなときには汚泥を担持するための担体を生物処理槽内
に設け、一定量の汚泥量を保持することにより、生物処
理性能を高く維持することができる。
In the present invention, the larger the amount of sludge to be solubilized, the higher the sludge volume reduction rate. However, since the sludge grows when the organic matter in the solubilized sludge is biodegraded, the excess sludge cannot be reduced to zero simply by solubilizing the excess sludge, but the amount of grown sludge is apparent. When the excess sludge is extracted and solubilized so as to be zero, the amount of excess sludge generated from the entire system can be made zero. For example, when digesting sludge, considering the number of solubilization treatments that are circulated to the solubilization treatment tank during the residence time of the digestion tank (biological treatment tank),
An amount corresponding to approximately 1/3 to 1/6 of the amount of inflowing sludge may be solubilized. When the amount of sludge to be solubilized increases, the biological treatment performance may decrease, but in such a case, a carrier for supporting the sludge is provided in the biological treatment tank to maintain a certain amount of sludge. Thereby, the biological treatment performance can be maintained high.

【0018】本発明における汚泥減容化の原理を図を用
いて説明する。図1は汚泥減容化の原理を説明するため
の模式図である。図において、1は生物処理系、2は可
溶化処理系である。生物処理系1は、有機性排液を生物
汚泥と接触させて好気的または嫌気的に分解する処理系
であり、生物処理槽と濃縮装置とが別々に設けられる
が、これらを含めた全体の処理系として図示されてい
る。可溶化処理系2は混合液または濃縮液の状態で引抜
かれる引抜汚泥を可溶化処理する処理系として図示され
ている。可溶化処理により汚泥は加水分解され、BOD
源になる。
The principle of sludge volume reduction in the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction. In the figure, 1 is a biological treatment system and 2 is a solubilization treatment system. The biological treatment system 1 is a treatment system that aerobically or anaerobically decomposes an organic waste liquid by bringing it into contact with biological sludge, and a biological treatment tank and a concentrating device are separately provided, but the entire system including them is included. Is shown as a processing system. The solubilization treatment system 2 is illustrated as a treatment system for solubilizing the drawn sludge drawn in the state of a mixed solution or a concentrated solution. Sludge is hydrolyzed by the solubilization process, and BOD
Become a source.

【0019】図1の生物処理系1には、生物処理を行う
ために一定量の生物汚泥3aが保持されている。このよ
うな生物処理系1に被処理液4を導入して生物処理を行
うと、被処理液4に含まれるBODは生物汚泥3aに同
化され、その増殖により新たに生成汚泥3bが生成す
る。一方、系内の生物汚泥3aは自己分解により、自己
分解分3cが消失する。従って定常状態では、生成汚泥
3bと自己分解分3cの差が増殖汚泥3dとして増殖す
る。
The biological treatment system 1 shown in FIG. 1 holds a certain amount of biological sludge 3a for biological treatment. When the liquid to be treated 4 is introduced into the biological treatment system 1 and biological treatment is performed, the BOD contained in the liquid to be treated 4 is assimilated into the biological sludge 3a, and a new generated sludge 3b is generated due to the proliferation thereof. On the other hand, the biological sludge 3a in the system self-decomposes, and the self-decomposed component 3c disappears. Therefore, in the steady state, the difference between the produced sludge 3b and the self-decomposition 3c grows as the grown sludge 3d.

【0020】増殖汚泥3dを余剰汚泥として可溶化処理
系2で処理する場合を、図1に破線5で示しているが、
増殖汚泥3dを可溶化処理して生物処理系1に戻すと、
可溶化処理により生成するBODが汚泥に転換して、別
の生成汚泥3eが生成し、この分が実質的な汚泥増殖分
となり、余剰汚泥として排出されなければならない。こ
れに対し、増殖汚泥3dよりも多い量の引抜汚泥3fを
生物処理系1から引抜き、可溶化処理系2で可溶化処理
してBODに転換し、可溶化処理汚泥6を生物処理系1
に戻すことにより、可溶化処理で生成したBODから別
の生成汚泥3gが生成する。この場合、引抜汚泥3fと
生成汚泥3gの差が無機化部分3hとなる。
A case where the sewage treatment system 2 treats the multiplied sludge 3d as excess sludge is shown by a broken line 5 in FIG.
When solubilized sludge 3d is returned to biological treatment system 1,
BOD generated by the solubilization process is converted into sludge, and another generated sludge 3e is generated, and this amount becomes a substantial sludge growth amount and must be discharged as excess sludge. On the other hand, a larger amount of the extracted sludge 3f than the propagated sludge 3d is extracted from the biological treatment system 1, solubilized by the solubilization treatment system 2 and converted into BOD, and the solubilized sludge 6 is converted into the biological treatment system 1.
By returning to BOD, another 3 g of produced sludge is produced from the BOD produced by the solubilization treatment. In this case, the difference between the drawn sludge 3f and the produced sludge 3g becomes the mineralized portion 3h.

【0021】ここで増殖汚泥3dよりも多い量の引抜汚
泥3fを可溶化処理してBODに転換することにより、
増殖汚泥3dのみを可溶化処理する場合よりも、無機化
部分が多くなり、汚泥減容化率は高くなる。増殖汚泥3
dと無機化部分3hが等しくなるように、引抜汚泥3f
の量を決めると、余剰汚泥は実質的にゼロになる。増殖
汚泥3dが無機化部分3hより多い場合は、その差が実
質的な増加部分3iとなり、余剰汚泥7として系外に排
出される。8は生物処理系1の処理液である。
Here, a larger amount of the extracted sludge 3f than the propagated sludge 3d is solubilized and converted into BOD.
Compared to the case of solubilizing only the propagated sludge 3d, the mineralized portion is increased and the sludge volume reduction rate is increased. Breeding sludge 3
3d of drawn sludge so that d and the mineralized portion 3h become equal
When the amount of is determined, the surplus sludge becomes substantially zero. When the amount of the grown sludge 3d is larger than that of the mineralized portion 3h, the difference becomes a substantially increased portion 3i, and the excess sludge 7 is discharged out of the system. 8 is a treatment liquid of the biological treatment system 1.

【0022】上記生物処理系1における生物処理容量を
V、その生物汚泥濃度をX、汚泥収率をY、被処理液流
量(処理液流量)をQ、被処理液の有機物濃度をCi、
処理液の有機物濃度をCe、生物処理された有機物濃度
を(Ci−Ce)、汚泥自己分解定数をKd、余剰汚泥
排出量をq、可溶化処理系への引抜量をQ′、可溶化処
理された汚泥が生物汚泥に再変換された割合をkとする
と、物質収支は次の〔1〕式で表される。
In the biological treatment system 1, the biological treatment capacity is V, the biological sludge concentration is X, the sludge yield is Y, the treated liquid flow rate (treatment liquid flow rate) is Q, the organic matter concentration of the treated liquid is Ci,
The concentration of organic matter in the treated liquid is Ce, the concentration of biologically treated organic matter is (Ci-Ce), the sludge self-decomposition constant is Kd, the excess sludge discharge amount is q, the amount drawn into the solubilization treatment system is Q ', and the solubilization treatment is performed. The mass balance is represented by the following equation [1], where k is the rate at which the generated sludge is converted back into biological sludge.

【0023】[0023]

【数1】 V dX/dt=Y Q (Ci−Ce) −V Kd X−q X−Q′X+k Q′X 〔1〕 〔1〕式において、V dX/dtは生物処理系1における生
物汚泥3aの変化量、Y Q (Ci−Ce) は生成汚泥3bの
量、V Kd Xは自己分解分3cの量、q Xは余剰汚泥7の
排出量、Q′Xは引抜汚泥3fの量、k Q′Xは生成汚泥3
gの量を示している。
[Formula 1] V dX / dt = YQ (Ci−Ce) −V Kd X−q X−Q′X + k Q′X [1] In the formula [1], V dX / dt is the biological sludge in the biological treatment system 1. 3a, YQ (Ci-Ce) is the amount of produced sludge 3b, V Kd X is the amount of self-decomposition 3c, q X is the amount of excess sludge 7 discharged, Q'X is the amount of extracted sludge 3f, k Q'X is generated sludge 3
The amount of g is shown.

【0024】ここでQ (Ci−Ce) /V=LV(槽負荷)、q
/v=1/SRT(余剰汚泥滞留時間比)、Q′/V=θ(可
溶化処理系への生物汚泥の循環比)、(1−k)=δ
(無機化率)とおくと、定常状態では、〔1〕式は次の
〔2〕式のように簡略化される。
Where Q (Ci-Ce) / V = LV (tank load), q
/ V = 1 / SRT (excess sludge retention time ratio), Q '/ V = θ (circulation ratio of biological sludge to the solubilization treatment system), (1-k) = δ
Assuming (mineralization rate), in a steady state, the equation [1] is simplified as the following equation [2].

【数2】 Y LV/X=Kd+1/SRT+δθ 〔2〕[Formula 2] Y LV / X = Kd + 1 / SRT + δθ [2]

【0025】可溶化処理系2が存在しない通常の生物処
理系では、〔2〕式の第3項(δθ)がないので、汚泥
負荷を一定としたとき第2項で余剰汚泥(X/SRT)が決
定される。これに対して可溶化処理を組合せた処理系で
は、〔2〕式から明らかなように、第3項の値により余
剰汚泥が減容化する。そして第3項の値が第2項の値に
匹敵するような条件下では、余剰汚泥を排出しなくても
(1/SRT=0)、汚泥負荷を通常の値に設定すること
が可能である。
In a normal biological treatment system in which the solubilization treatment system 2 does not exist, the third term (δθ) in the equation [2] does not exist, so when the sludge load is constant, excess sludge (X / SRT) is calculated in the second term. ) Is determined. On the other hand, in the treatment system in which the solubilization treatment is combined, as is apparent from the equation [2], the volume of the excess sludge is reduced by the value of the third term. And under the condition that the value of the third term is comparable to the value of the second term, it is possible to set the sludge load to a normal value without discharging the excess sludge (1 / SRT = 0). is there.

【0026】本発明の方法では、界面活性剤の存在下に
可溶化処理することにより、従来と同程度の減容化率を
得るためには従来より低い温度で、または同じ温度で処
理する場合は短い時間で可溶化処理することができる。
このため難生物分解成分の生成を抑制することができ、
しかも従来に比べて低い耐熱性の装置を使用することが
できるとともに、エネルギー消費量も少なくすることも
でき、かつ臭気も抑制することができる。
In the method of the present invention, the solubilization treatment is carried out in the presence of a surfactant, and in order to obtain a volume reduction rate comparable to that of the conventional method, the treatment is carried out at a temperature lower than the conventional temperature or at the same temperature. Can be solubilized in a short time.
For this reason, it is possible to suppress the production of difficult biodegradable components,
Moreover, it is possible to use a device having a lower heat resistance than that of the conventional one, reduce energy consumption, and suppress odor.

【0027】[0027]

【発明の実施の形態】次に本発明の実施の形態を図面に
より説明する。図2ないし図4はそれぞれ別の実施の形
態の生物処理装置を示す系統図であり、図2は好気性処
理液を濃縮装置により濃縮した濃縮汚泥を可溶化処理す
る例、図3は曝気槽内の混合液を可溶化処理する例、図
4は嫌気性生物処理槽内の混合液を可溶化処理する例を
示している。図2において、1は好気性の生物処理系、
2は可溶化処理系、11は曝気槽、12は濃縮装置とし
ての沈殿装置、21は可溶化処理槽、23は界面活性剤
供給路、24は加熱器である。
Embodiments of the present invention will now be described with reference to the drawings. 2 to 4 are system diagrams showing biological treatment apparatuses of different embodiments, FIG. 2 is an example of solubilizing concentrated sludge obtained by concentrating an aerobic treatment liquid by a concentrating apparatus, and FIG. 3 is an aeration tank. FIG. 4 shows an example of solubilizing the mixed liquid in the inside, and FIG. 4 shows an example of solubilizing the mixed liquid in the anaerobic biological treatment tank. In FIG. 2, 1 is an aerobic biological treatment system,
2 is a solubilization treatment system, 11 is an aeration tank, 12 is a precipitation device as a concentrating device, 21 is a solubilization treatment tank, 23 is a surfactant supply passage, and 24 is a heater.

【0028】図2の処理装置による有機性排液の好気性
生物処理方法は、被処理液路13から有機性の排液また
は汚泥を曝気槽11に導入し、返送汚泥路14を通して
返送される返送汚泥および曝気槽11内の活性汚泥と混
合し、空気供給路16から供給される空気を散気装置1
5から散気して好気性生物処理を行う。これにより、被
処理液中の有機物は生物酸化反応によって分解される。
In the aerobic biological treatment method of the organic waste liquid by the treatment apparatus of FIG. 2, the organic waste liquid or sludge is introduced from the liquid passage 13 into the aeration tank 11 and returned through the return sludge passage 14. Air mixed with the returned sludge and the activated sludge in the aeration tank 11 and supplied with air from the air supply passage 16 is used as the air diffuser 1
Aerate from 5 and perform aerobic biological treatment. As a result, the organic matter in the liquid to be treated is decomposed by the biological oxidation reaction.

【0029】曝気槽11内の混合液(反応液)の一部は
連絡路17を通して沈殿装置12に導入し、沈降分離に
より分離液と分離汚泥(濃縮汚泥)とに分離する。分離
液は処理液として処理液路18から系外に排出し、分離
汚泥は分離汚泥取出路19から取出し、その一部は返送
汚泥として返送汚泥路14から曝気槽11に返送し、残
部の一部または全部は汚泥引抜路22を通して可溶化処
理槽21に導入して可溶化処理を行う。
A part of the mixed liquid (reaction liquid) in the aeration tank 11 is introduced into the settling device 12 through the communication path 17 and separated into a separated liquid and a separated sludge (concentrated sludge) by sedimentation separation. The separated liquid is discharged as a treated liquid from the treated liquid passage 18 to the outside of the system, the separated sludge is taken out from the separated sludge take-out passage 19, a part of it is returned as the returned sludge to the aeration tank 11 from the returned sludge passage 14, and the remaining part Some or all of them are introduced into the solubilization treatment tank 21 through the sludge extraction passage 22 to perform the solubilization treatment.

【0030】可溶化処理槽21では、界面活性剤供給路
23から界面活性剤を添加し、加熱器24により加熱
し、攪拌器25により緩やかに攪拌しながら引抜汚泥を
可溶化処理する。これにより汚泥が加水分解されてBO
D化する。可溶化処理汚泥は可溶化処理汚泥路26から
曝気槽11に連続的に戻し、好気性生物処理する。これ
により可溶化処理により変換されたBOD成分が分解除
去され、好気性生物処理系1から生じる余剰汚泥が減容
化する。余剰汚泥が生じる場合は余剰汚泥排出路20か
ら系外へ排出する。
In the solubilization treatment tank 21, the surfactant is added from the surfactant supply passage 23, heated by the heater 24, and the drawn sludge is solubilized by the agitator 25 while gently stirring. As a result, sludge is hydrolyzed and BO
Convert to D. The solubilized sludge is continuously returned from the solubilized sludge passage 26 to the aeration tank 11 and treated with aerobic organisms. As a result, the BOD component converted by the solubilization treatment is decomposed and removed, and the excess sludge generated from the aerobic biological treatment system 1 is reduced in volume. When excess sludge is generated, it is discharged from the excess sludge discharge path 20 to the outside of the system.

【0031】図3の装置による処理方法は、曝気槽11
内の混合液の一部を引抜汚泥として汚泥引抜路22から
引抜き、この引抜汚泥に界面活性剤供給路23から界面
活性剤を添加した後、可溶化処理槽21に導入して可溶
化処理を行う。他の操作は図2の場合と同様である。
The treatment method by the apparatus of FIG.
A part of the mixed liquid in the inside is drawn out from the sludge drawing path 22 as drawn sludge, and a surfactant is added to the drawn sludge from the surfactant supply path 23, and then introduced into the solubilization treatment tank 21 for solubilization treatment. To do. Other operations are the same as those in FIG.

【0032】図2および図3では、濃縮装置として沈殿
装置12を採用しているが、膜分離装置、遠心分離装置
などの他の濃縮装置を採用することもできる。また曝気
槽11の代わりに嫌気処理槽を用いて嫌気処理すること
もできる。また可溶化処理汚泥は、汚泥を引抜いた生物
処理系1以外の好気性または嫌気性生物処理系に移送し
て生物処理することもできる。
Although the precipitation device 12 is used as the concentrating device in FIGS. 2 and 3, other concentrating devices such as a membrane separating device and a centrifugal separating device can also be adopted. Further, instead of the aeration tank 11, an anaerobic treatment tank can be used for anaerobic treatment. Further, the solubilized sludge can be transferred to an aerobic or anaerobic biological treatment system other than the biological treatment system 1 from which the sludge has been extracted for biological treatment.

【0033】図4において、1は嫌気性の生物処理系、
2は可溶化処理系、31は嫌気処理槽、36は膜分離装
置である。図4の処理装置による処理方法は、被処理液
路13から有機性の排液または汚泥を嫌気処理槽31に
導入し、返送汚泥路14を通して返送される返送汚泥お
よび嫌気処理槽31内の生物汚泥と混合し、攪拌器32
により緩やかに攪拌しながら嫌気性生物処理を行う。こ
れにより、被処理液中の有機物は酸生成菌およびメタン
発酵菌により分解される。生成するメタンガスを含む消
化ガスは排ガス路33から排出する。
In FIG. 4, 1 is an anaerobic biological treatment system,
2 is a solubilization treatment system, 31 is an anaerobic treatment tank, and 36 is a membrane separation device. In the treatment method by the treatment device of FIG. 4, the organic sludge or sludge is introduced into the anaerobic treatment tank 31 from the liquid passage 13 to be treated and the organisms in the returned sludge and the anaerobic treatment tank 31 are returned through the return sludge passage 14. Mixer with sludge 32
The anaerobic biological treatment is performed with gentle stirring. As a result, the organic matter in the liquid to be treated is decomposed by the acid-producing bacterium and the methane-fermenting bacterium. The digestion gas containing the produced methane gas is discharged from the exhaust gas passage 33.

【0034】嫌気処理槽31内の混合液(反応液)の一
部は連絡路17から取出し、ポンプ34で加圧して膜分
離装置36に導いて、分離膜37により膜分離する。こ
れにより透過液38と濃縮液39とに分離する。この透
過液38は処理液として処理液路18から系外に排出
し、濃縮液39は濃縮液取出路19aから取出し、返送
汚泥として返送汚泥路14から嫌気処理槽31に返送
し、余剰汚泥が生じる場合は余剰汚泥排出路20から系
外へ排出する。
A part of the mixed liquid (reaction liquid) in the anaerobic treatment tank 31 is taken out from the communication passage 17, pressurized by the pump 34, guided to the membrane separation device 36, and separated by the separation membrane 37. As a result, the permeated liquid 38 and the concentrated liquid 39 are separated. The permeated liquid 38 is discharged as a treated liquid from the treated liquid passage 18 to the outside of the system, the concentrated liquid 39 is taken out from the concentrated liquid take-out passage 19a, and is returned to the anaerobic treatment tank 31 from the returned sludge passage 14 as excess sludge. When it occurs, it is discharged from the excess sludge discharge path 20 to the outside of the system.

【0035】可溶化処理系2では、嫌気処理槽31内の
混合液の一部を引抜汚泥として汚泥引抜路22から引抜
き、可溶化処理槽21に導入して可溶化処理を行う。他
の操作は図2の場合と同様である。
In the solubilization treatment system 2, a part of the mixed liquid in the anaerobic treatment tank 31 is drawn out as sludge from the sludge drawing passage 22 and introduced into the solubilization processing tank 21 for solubilization treatment. Other operations are the same as those in FIG.

【0036】図4では、濃縮装置として膜分離装置36
を使用しているが、沈殿装置、遠心分離装置などの他の
濃縮装置を採用することもできる。また嫌気処理槽31
の代わりに曝気槽を用いて好気処理することもできる。
In FIG. 4, a membrane separator 36 is used as a concentrator.
However, other concentrating devices such as a precipitation device and a centrifuge can also be used. Also, anaerobic treatment tank 31
It is also possible to perform aerobic treatment using an aeration tank instead of.

【0037】[0037]

【実施例】【Example】

比較例1 図3の装置により、ただし可溶化処理系2における可溶
化処理を省略して有機性排液を好気性処理した。すなわ
ち、下水余剰汚泥(MLSS=6000mg/l)を2
0 literの曝気槽11および10 literの沈殿装置12
で連続処理した。汚泥は4 liter/日の量で連続投入し
た。曝気槽11内の混合液を1日1 liter引抜いた。そ
の結果、2か月後には曝気槽11内のMLSSは10,
600mg/lとなった。
Comparative Example 1 The apparatus of FIG. 3 was used, but the solubilization treatment in the solubilization treatment system 2 was omitted, and the organic waste liquid was aerobically treated. That is, sewage surplus sludge (MLSS = 6000 mg / l)
0 liter aeration tank 11 and 10 liter settler 12
Was continuously processed. Sludge was continuously added at a rate of 4 liters / day. The mixed solution in the aeration tank 11 was withdrawn by 1 liter a day. As a result, after 2 months, the MLSS in the aeration tank 11 was 10,
It became 600 mg / l.

【0038】比較例2 上記の運転で、曝気槽11内の混合液を1日1.5 lit
er引抜き、可溶化処理槽21に導入して60℃で2時間
加熱して可溶化処理し、曝気槽11へ戻した。可溶化処
理は毎日行った。MLSSを10,000mg/lに維
持して運転したところ、60日後の時点で余剰汚泥が1
日当り乾燥重量で4.7g生成した。この処理水のCO
Crは310〜380mg/lであった。なお処理水の
CODCrは、15,000rpmで5分間遠心分離した
上澄み液について測定した。
Comparative Example 2 With the above operation, the mixed solution in the aeration tank 11 was lit for 1.5 liters a day.
er was drawn out, introduced into the solubilization treatment tank 21, heated at 60 ° C. for 2 hours for solubilization treatment, and returned to the aeration tank 11. The solubilization treatment was performed every day. When operated with the MLSS maintained at 10,000 mg / l, excess sludge was reduced to 1 after 60 days.
It produced 4.7 g dry weight per day. CO of this treated water
D Cr was 310~380mg / l. The COD Cr of the treated water was measured on the supernatant obtained by centrifugation at 15,000 rpm for 5 minutes.

【0039】比較例3 上記の運転で、曝気槽11内の混合液を1日1 liter引
抜き、可溶化処理槽21に導入して120℃で2時間加
熱して可溶化処理し、曝気槽11へ戻した。可溶化処理
は毎日行った。余剰汚泥の排出を全く行わず、沈殿汚泥
を全量曝気槽11に返送したところ、MLSSは徐々に
増加した。2か月経過後、MLSSは16,000mg
/l付近で安定した。この処理水のCODCrは730〜
840mg/lであった。
Comparative Example 3 With the above operation, the mixed liquid in the aeration tank 11 was drawn out by 1 liter per day, introduced into the solubilization treatment tank 21 and heated at 120 ° C. for 2 hours for solubilization treatment. I returned to. The solubilization treatment was performed every day. When the entire amount of the settled sludge was returned to the aeration tank 11 without discharging the excess sludge, the MLSS gradually increased. 2 months later, MLSS is 16,000 mg
Stable around / l. The COD Cr of this treated water is 730 to
It was 840 mg / l.

【0040】実施例1 比較例2の運転と平行して、曝気槽11内の混合液を1
日1 liter引抜き、可溶化処理槽21に導入して可溶化
処理した。可溶化処理は、熱処理汚泥量に対して2%の
量のポリオキシエチレンノニルフェニルエーテル(HL
B=14)を添加し、60℃で2時間行った。可溶化処
理は毎日行い、可溶化処理汚泥は曝気槽11へ戻した。
余剰汚泥の排出を全く行わず、沈殿汚泥は全量曝気槽1
1へ返送したところ、MLSSは徐々に増加したが、約
1か月経過後に12,000〜14,000mg/lで
安定した。この処理水のCODCrは360〜540mg
/lであった。
Example 1 In parallel with the operation of Comparative Example 2, the mixed liquid in the aeration tank 11 was changed to 1
1 liter per day was drawn and introduced into the solubilization treatment tank 21 for solubilization treatment. The solubilization treatment is performed by using polyoxyethylene nonylphenyl ether (HL
B = 14) was added and the reaction was carried out at 60 ° C. for 2 hours. The solubilization treatment was performed every day, and the solubilization-treated sludge was returned to the aeration tank 11.
Excess sludge is not discharged at all and all settled sludge is aerated tank 1
When it was returned to 1, the MLSS gradually increased, but after about 1 month, it was stabilized at 12,000 to 14,000 mg / l. The COD Cr of this treated water is 360 to 540 mg.
/ L.

【0041】実施例2 実施例1に続いて、曝気槽11内の混合液を1日1 lit
er引抜き、可溶化処理槽21に導入して可溶化処理し
た。可溶化処理は、熱処理汚泥量に対して1%の量のラ
ウリルベンゼンスルフォン酸ナトリウム(アニオン性界
面活性剤)を添加し、60℃で2時間行った。可溶化処
理は毎日行い、可溶化処理汚泥は曝気槽11へ戻した。
その結果、MLSSは13,000〜15,000mg
/lで安定し、余剰汚泥の排出は行う必要がなかった
(沈殿汚泥は全量曝気槽11へ返送した)。この処理水
のCODCrは430〜570mg/lであった。
Example 2 Following Example 1, the mixed solution in the aeration tank 11 was lit for 1 day per day.
er was drawn out and introduced into the solubilization treatment tank 21 for solubilization treatment. The solubilization treatment was performed at 60 ° C. for 2 hours by adding sodium laurylbenzenesulfonate (anionic surfactant) in an amount of 1% with respect to the heat-treated sludge amount. The solubilization treatment was performed every day, and the solubilization-treated sludge was returned to the aeration tank 11.
As a result, MLSS was 13,000 to 15,000 mg.
It was stable at 1 / l, and it was not necessary to discharge the excess sludge (all the settled sludge was returned to the aeration tank 11). The COD Cr of this treated water was 430 to 570 mg / l.

【0042】上記の結果から、界面活性剤を添加するこ
とにより、低い温度で可溶化処理しても汚泥の減容化率
が高いことがわかる。すなわち、界面活性剤を用いて6
0℃で可溶化処理した場合の減容効果(実施例1、2)
は、界面活性剤を添加しないで120℃で可溶化処理し
た場合(比較例2)と同等またはそれ以上の結果が得ら
れた。しかも実施例1、2のCODCrは比較例2に比べ
て低く、処理水の悪化を抑制することができることがわ
かる。
From the above results, it is understood that by adding the surfactant, the sludge volume reduction rate is high even if the solubilization treatment is performed at a low temperature. That is, 6 using a surfactant
Volume reduction effect when solubilized at 0 ° C (Examples 1 and 2)
The same or higher results were obtained as in the case of solubilizing treatment at 120 ° C. without adding a surfactant (Comparative Example 2). Moreover, COD Cr of Examples 1 and 2 is lower than that of Comparative Example 2, and it can be seen that deterioration of treated water can be suppressed.

【0043】[0043]

【発明の効果】本発明の有機性排液の生物処理方法は、
生物処理槽内の混合液または濃縮汚泥を引抜き、この引
抜汚泥を界面活性剤の存在下に加熱して可溶化処理した
後、生物処理槽に移送する可溶化処理工程を含んでいる
ので、処理水質の悪化を抑制し、しかも低い耐熱性の装
置を使用して、低コストで汚泥の減容化を行うことがで
きる。
The biological treatment method for organic waste liquid of the present invention comprises:
Since the mixed solution or concentrated sludge in the biological treatment tank is drawn out, the extracted sludge is heated in the presence of a surfactant to be solubilized, and then transferred to the biological treatment tank. It is possible to reduce the volume of sludge at low cost by using a device that suppresses deterioration of water quality and has low heat resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】汚泥減容化の原理を説明するための模式図であ
る。
FIG. 1 is a schematic diagram for explaining the principle of sludge volume reduction.

【図2】本発明の実施形態の生物処理装置を示す系統図
である。
FIG. 2 is a system diagram showing a biological treatment apparatus according to an embodiment of the present invention.

【図3】本発明の他の実施形態の生物処理装置を示す系
統図である。
FIG. 3 is a system diagram showing a biological treatment apparatus according to another embodiment of the present invention.

【図4】本発明の他の実施形態の生物処理装置を示す系
統図である。
FIG. 4 is a system diagram showing a biological treatment apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 生物処理系 2 可溶化処理系 3a 生物汚泥 3b、3e、3g 生成汚泥 3c 自己分解分 3d 増殖汚泥 3f 引抜汚泥 3h 無機化部分 3i 増加部分 4 被処理液 6 可溶化処理汚泥 7 余剰汚泥 8 処理液 11 曝気槽 12 沈殿装置 13 被処理液路 14 返送汚泥路 15 散気装置 16 空気供給路 17 連絡路 18 処理液路 19 分離汚泥取出路 19a 濃縮液取出路 20 余剰汚泥排出路 21 可溶化処理槽 22 汚泥引抜路 23 界面活性剤供給路 24 加熱器 25、32 攪拌器 26 可溶化処理汚泥路 31 嫌気処理槽 33 排ガス路 34 ポンプ 36 膜分離装置 37 分離膜 38 透過液 39 濃縮液 1 Biological treatment system 2 Solubilization treatment system 3a Biological sludge 3b, 3e, 3g Produced sludge 3c Self-decomposition 3d Proliferation sludge 3f Extracted sludge 3h Mineralized part 3i Increased part 4 Solubilized sludge 7 Excess sludge 8 Treatment Liquid 11 Aeration tank 12 Precipitator 13 Processed liquid path 14 Returned sludge path 15 Air diffuser 16 Air supply path 17 Communication path 18 Treatment liquid path 19 Separation sludge discharge path 19a Concentrated liquid discharge path 20 Excess sludge discharge path 21 Solubilization treatment Tank 22 Sludge extraction passage 23 Surfactant supply passage 24 Heater 25, 32 Stirrer 26 Solubilization treatment sludge passage 31 Anaerobic treatment tank 33 Exhaust gas passage 34 Pump 36 Membrane separation device 37 Separation membrane 38 Permeate 39 Concentrated liquid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機性排液を生物処理槽において好気性
または嫌気性微生物を含む生物汚泥の存在下に生物処理
する方法であって、 有機性排液を生物処理槽に導入して、好気性または嫌気
性微生物を含む生物汚泥の存在下に好気性または嫌気性
生物処理する生物処理工程と、 生物処理槽内の混合液または濃縮汚泥を引抜き、この引
抜汚泥を界面活性剤の存在下に加熱して可溶化処理した
後、生物処理槽に移送する可溶化処理工程とを含むこと
を特徴とする有機性排液の生物処理方法。
1. A method of biologically treating an organic effluent in a biological treatment tank in the presence of biological sludge containing aerobic or anaerobic microorganisms, the method comprising introducing the organic effluent into the biological treatment tank, A biological treatment process for treating aerobic or anaerobic organisms in the presence of biological sludge containing aerobic or anaerobic microorganisms, and withdrawing the mixed liquid or concentrated sludge in the biological treatment tank, and extracting this extracted sludge in the presence of a surfactant. And a solubilization treatment step of transferring to a biological treatment tank after heating and solubilization treatment.
JP27797395A 1995-10-25 1995-10-25 Biological treatment of organic wastewater Expired - Fee Related JP3591086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27797395A JP3591086B2 (en) 1995-10-25 1995-10-25 Biological treatment of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27797395A JP3591086B2 (en) 1995-10-25 1995-10-25 Biological treatment of organic wastewater

Publications (2)

Publication Number Publication Date
JPH09117800A true JPH09117800A (en) 1997-05-06
JP3591086B2 JP3591086B2 (en) 2004-11-17

Family

ID=17590855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27797395A Expired - Fee Related JP3591086B2 (en) 1995-10-25 1995-10-25 Biological treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JP3591086B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334282A (en) * 2000-05-29 2001-12-04 Shinko Pantec Co Ltd Wastewater treatment apparatus and wastewater treatment method
EP1167303A1 (en) * 2000-06-26 2002-01-02 WWE Wastewater Engineering Limited Method for reducing sludge resulting from the cleaning of waste water in a biological oxidation step of a purification plant
JP2002066507A (en) * 2000-08-25 2002-03-05 Ishikawajima Harima Heavy Ind Co Ltd Organic solid processing method and organic solid processing apparatus
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Organic wastewater treatment method
JP2003071411A (en) * 2001-08-30 2003-03-11 Mitsubishi Kakoki Kaisha Ltd Organic waste treatment method
FR2838428A1 (en) * 2002-04-12 2003-10-17 Rhodia Chimie Sa Sewage treatment plant has a continuous aerobic reactor, and a thermal reactor, to process the sewage with a reduction in waste
CN104276723A (en) * 2014-08-20 2015-01-14 交城县威创环保工程有限公司 Buried sewage treatment device
JP2016221491A (en) * 2015-06-03 2016-12-28 オルガノ株式会社 Organic wastewater treatment method and organic wastewater treatment equipment
CN107500499A (en) * 2016-06-14 2017-12-22 洛阳华清天木生物科技有限公司 A kind of method for promoting sludge anaerobic fermentation using biosurfactant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334282A (en) * 2000-05-29 2001-12-04 Shinko Pantec Co Ltd Wastewater treatment apparatus and wastewater treatment method
EP1167303A1 (en) * 2000-06-26 2002-01-02 WWE Wastewater Engineering Limited Method for reducing sludge resulting from the cleaning of waste water in a biological oxidation step of a purification plant
JP2002066507A (en) * 2000-08-25 2002-03-05 Ishikawajima Harima Heavy Ind Co Ltd Organic solid processing method and organic solid processing apparatus
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Organic wastewater treatment method
JP2003071411A (en) * 2001-08-30 2003-03-11 Mitsubishi Kakoki Kaisha Ltd Organic waste treatment method
FR2838428A1 (en) * 2002-04-12 2003-10-17 Rhodia Chimie Sa Sewage treatment plant has a continuous aerobic reactor, and a thermal reactor, to process the sewage with a reduction in waste
WO2003086985A1 (en) * 2002-04-12 2003-10-23 Rhodia Chimie Method for reducing the production of sludge during a method for purifying aqueous effluents by means of aerobic biological fermentation
CN104276723A (en) * 2014-08-20 2015-01-14 交城县威创环保工程有限公司 Buried sewage treatment device
JP2016221491A (en) * 2015-06-03 2016-12-28 オルガノ株式会社 Organic wastewater treatment method and organic wastewater treatment equipment
CN107500499A (en) * 2016-06-14 2017-12-22 洛阳华清天木生物科技有限公司 A kind of method for promoting sludge anaerobic fermentation using biosurfactant

Also Published As

Publication number Publication date
JP3591086B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
EP0924168B1 (en) Method for sludge reduction in an aerobic waste water treatment system
JP2002316188A (en) Waste treatment with control over biological solid
JP2003245689A (en) Wastewater treatment method and treatment device
JP2973761B2 (en) Aerobic treatment of organic wastewater
EP1346956A1 (en) Process for sludge treatment using sludge pretreatment and membrane bioreactor
JPH1147784A (en) Treatment of organic waste water
JPH09117800A (en) Biological treatment method of organic waste liquid
JP2003033780A (en) Wastewater treatment method
KR20000065883A (en) A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor
JP3959843B2 (en) Biological treatment method for organic drainage
JP3900796B2 (en) Method and apparatus for treating organic wastewater
JP3921693B2 (en) Organic wastewater treatment method
JP3814855B2 (en) Anaerobic treatment method for organic drainage
JP2002361279A (en) Method and apparatus for treating waste water
JPH08103786A (en) Aerobic treatment of organic wastewater
JP2023077601A (en) Method for treating methane-fermented digestive fluid and system for treating methane-fermented digestive fluid
JPH0788495A (en) Aerobic treatment of organic wastewater
KR19990084124A (en) Bacteria group of bacillus spp in the aerobic reacting device and method for treating nihgtsoil, stackbreeding waste water, leachate and industrial organic wastewater
JP3493783B2 (en) Aerobic treatment of organic wastewater
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JPH08276197A (en) Organic waste treatment method
JPH0768285A (en) Aerobic treatment of organic wastewater
JP2002186988A (en) Wastewater treatment device and method for treating wastewater
JPH10216799A (en) Treatment method for excess sludge
JP2001259679A (en) Biological treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees